SEMICONDUCTOR TECHNOLOGY

An effective approach to improve split-gate flash product data retention

Dailong Wei, Zigui Cao and Zhilin Tang

+ Author Affiliations

 Corresponding author: Dailong.Wei@hhgrace.com

PDF

Abstract: Data retention is one of the most important reliability characteristics of split-gate flash. Therefore, many efforts were made to improve data retention of split-gate flash. By experiments, it was found that higher chlorine concentration produced in FGSP2 oxide deposition can induce worse data retention. Thus, reducing chlorine concentration is an effective approach to improve data retention for split-gate flash product. Additional RTO annealing between FGSP2 oxide deposition and FGSP2 etching could reduce chlorine concentration, and improve FGSP2 oxide film quality, and then get better data retention.

Key words: split-gate flashdata retentionRTO anneal



[1]
Bez R, Camerlenghi E, Modelli A, et al. Introduction to flash memory. Proc IEEE, 2003, 91(4): 489 doi: 10.1109/JPROC.2003.811702
[2]
Pavan P, Bez R, Olivo P, et al. Flash memory cells-an overview. Proc IEEE, 1997, 85(8): 1248 doi: 10.1109/5.622505
[3]
Aritome S. Advanced flash memory technology and trends for file storage application. Electron Devices Meeting, 2000
[4]
Chang K T, Chen W M, Swift C, et al. A new SONOS memory using source-side injection for programming. IEEE Electron Device Lett, 1998, 19(7): 253 doi: 10.1109/55.701434
[5]
Van Houdt J F, Groeseneken G, Maes H E. An analytical model for the optimization of source-side injection flash EEPROM devices. IEEE Trans Electron Devices, 1995, 42(7): 1314 doi: 10.1109/16.391214
[6]
Wu A T, Chan T Y, Ko P K, et al. A novel high-speed, 5-volt programming EPROM structure with source-side injection. Electron Devices Meeting, 1986
[7]
Ma Y, Pang C S, Pathak J, et al. A novel high density contactless flash memory array using split-gate source-side injection cell for 5 V-only application. 1994 Symposium on VLSI Technol, 1994
[8]
Lee Y K, Min H, Jeon C, et al. Highly scalable 2nd-generation 45-nm split-gate embedded flash with 10-ns access time and 1M-cycling endurance. Memory Workshop (IMW), 2016
[9]
Kono T, Ito T, Tsuruda T, et al. 40-nm embedded split-gate MONOS (SG-MONOS) flash macros for automotive with 160-MHz random access for code and endurance over 10 M cycles for data at the junction temperature of 170 °C. IEEE J Solid-State Circuits, 2014, 49(1): 154 doi: 10.1109/JSSC.2013.2280303
[10]
Nhan Do N. Scaling of split-gate flash memory and its adoption in modern embedded non-volatile applications. International Conference on IC Design and Technology, 2016
[11]
Cho C Y, Chen M J, Chen C F, et al. A novel self-aligned highly reliable sidewall split-gate flash memory. IEEE Trans Electron Devices, 2006, 53(3): 465 doi: 10.1109/TED.2005.863764
[12]
Saha S K. Design considerations for sub-90-nm split-gate flash memory cells. IEEE Trans Electron Devices, 2007, 54(11): 3046
[13]
Weinberg Z A, Young D R, Calise J A, et al. Reduction of electron and hole trapping in SiO2 by rapid thermal annealing. Appl Phys Lett, 1984, 45: 1204 doi: 10.1063/1.95098
[14]
van der Meulen Y J, Osburn C M, Ziegler J F. Properties of SiO2 grown in the presence of HCI or CI2. J Electrochem Soc, 1975, 122(2): 284 doi: 10.1149/1.2134196
[15]
Nishioka Y, Da Silva E F, Wang Y, et al. Dramatic improvement of hot-electron-induced interface degradation in MOS structures containing F or Cl in SiO2. IEEE Electron Device Lett, 1988, 9(1): 38 doi: 10.1109/55.20406
[16]
Nasyrov K A, Shaimeev S S, Gritsenko V A. Trap-assisted tunneling hole injection in SiO2: experiment and theory. J Exp Theor Phys, 2009, 109(5): 786 doi: 10.1134/S1063776109110089
[17]
Chou A I, Lai K F, Kumar K, et al. Modeling of stress-induced leakage current in ultrathin oxides with the trap-assisted tunneling mechanism. Appl Phys Lett, 1997, 70: 3407 doi: 10.1063/1.119186
[18]
Jiménez-Molinos F, Palma A, Gámiz F, et al. Physical model for trap-assisted inelastic tunneling in metal–oxide–semiconductor structures. J Appl Phys, 2001, 90: 3396 doi: 10.1063/1.1398603
Fig. 1.  (Color online) Split-gate flash cell structure.

Fig. 2.  (a) Annealing temperature versus chlorine concentration. (b) Annealing temperature versus chlorine concentration decreasing rate.

Fig. 3.  (a) DR of product 1 W/I versus W/O RTO annealing. (b) DR of product 2 W/I versus W/O RTO annealing.

Fig. 4.  (Color online) shows chlorine concentration comparison (SIMS) with different FGSP2 oxide deposition conditions.

Fig. 5.  (Color online) (a) Samples B and C source line ACT SEM profile. (b) Sample C CP2 DR map.

Table 1.   Different annealing temperatures with additional RTO annealing process.

Samples-No. Annealingtemperature (°C) O2 (slm) N2 (slm) Annealingtime (s)
1 850 1 5 90
2 900 1 5 90
3 950 1 5 90
4 1000 1 5 90
DownLoad: CSV

Table 2.   Different products W/I and W/O RTO annealing process.

Sample RTO annealing process Annealing temperature (°C) O2 (slm) N2 (slm) Annealingtime (s)
Product1 Add 1000 1 5 90
Product1 NA
Product2 Add 1000 1 5 90
Product2 NA
DownLoad: CSV

Table 3.   FGSP2 oxide deposition with different tools or different source amounts.

Samples-No. FGSP2 DEP tool DCS N2O
A ADHTO01 Baseline Baseline
B ADHTO05 Baseline Baseline
C ADHTO05 Baseline-10% Baseline
DownLoad: CSV
[1]
Bez R, Camerlenghi E, Modelli A, et al. Introduction to flash memory. Proc IEEE, 2003, 91(4): 489 doi: 10.1109/JPROC.2003.811702
[2]
Pavan P, Bez R, Olivo P, et al. Flash memory cells-an overview. Proc IEEE, 1997, 85(8): 1248 doi: 10.1109/5.622505
[3]
Aritome S. Advanced flash memory technology and trends for file storage application. Electron Devices Meeting, 2000
[4]
Chang K T, Chen W M, Swift C, et al. A new SONOS memory using source-side injection for programming. IEEE Electron Device Lett, 1998, 19(7): 253 doi: 10.1109/55.701434
[5]
Van Houdt J F, Groeseneken G, Maes H E. An analytical model for the optimization of source-side injection flash EEPROM devices. IEEE Trans Electron Devices, 1995, 42(7): 1314 doi: 10.1109/16.391214
[6]
Wu A T, Chan T Y, Ko P K, et al. A novel high-speed, 5-volt programming EPROM structure with source-side injection. Electron Devices Meeting, 1986
[7]
Ma Y, Pang C S, Pathak J, et al. A novel high density contactless flash memory array using split-gate source-side injection cell for 5 V-only application. 1994 Symposium on VLSI Technol, 1994
[8]
Lee Y K, Min H, Jeon C, et al. Highly scalable 2nd-generation 45-nm split-gate embedded flash with 10-ns access time and 1M-cycling endurance. Memory Workshop (IMW), 2016
[9]
Kono T, Ito T, Tsuruda T, et al. 40-nm embedded split-gate MONOS (SG-MONOS) flash macros for automotive with 160-MHz random access for code and endurance over 10 M cycles for data at the junction temperature of 170 °C. IEEE J Solid-State Circuits, 2014, 49(1): 154 doi: 10.1109/JSSC.2013.2280303
[10]
Nhan Do N. Scaling of split-gate flash memory and its adoption in modern embedded non-volatile applications. International Conference on IC Design and Technology, 2016
[11]
Cho C Y, Chen M J, Chen C F, et al. A novel self-aligned highly reliable sidewall split-gate flash memory. IEEE Trans Electron Devices, 2006, 53(3): 465 doi: 10.1109/TED.2005.863764
[12]
Saha S K. Design considerations for sub-90-nm split-gate flash memory cells. IEEE Trans Electron Devices, 2007, 54(11): 3046
[13]
Weinberg Z A, Young D R, Calise J A, et al. Reduction of electron and hole trapping in SiO2 by rapid thermal annealing. Appl Phys Lett, 1984, 45: 1204 doi: 10.1063/1.95098
[14]
van der Meulen Y J, Osburn C M, Ziegler J F. Properties of SiO2 grown in the presence of HCI or CI2. J Electrochem Soc, 1975, 122(2): 284 doi: 10.1149/1.2134196
[15]
Nishioka Y, Da Silva E F, Wang Y, et al. Dramatic improvement of hot-electron-induced interface degradation in MOS structures containing F or Cl in SiO2. IEEE Electron Device Lett, 1988, 9(1): 38 doi: 10.1109/55.20406
[16]
Nasyrov K A, Shaimeev S S, Gritsenko V A. Trap-assisted tunneling hole injection in SiO2: experiment and theory. J Exp Theor Phys, 2009, 109(5): 786 doi: 10.1134/S1063776109110089
[17]
Chou A I, Lai K F, Kumar K, et al. Modeling of stress-induced leakage current in ultrathin oxides with the trap-assisted tunneling mechanism. Appl Phys Lett, 1997, 70: 3407 doi: 10.1063/1.119186
[18]
Jiménez-Molinos F, Palma A, Gámiz F, et al. Physical model for trap-assisted inelastic tunneling in metal–oxide–semiconductor structures. J Appl Phys, 2001, 90: 3396 doi: 10.1063/1.1398603
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3527 Times PDF downloads: 39 Times Cited by: 0 Times

    History

    Received: 01 November 2016 Revised: 20 April 2017 Online: Accepted Manuscript: 13 November 2017Published: 01 October 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dailong Wei, Zigui Cao, Zhilin Tang. An effective approach to improve split-gate flash product data retention[J]. Journal of Semiconductors, 2017, 38(10): 106001. doi: 10.1088/1674-4926/38/10/106001 D L Wei, Z G Cao, Z L Tang. An effective approach to improve split-gate flash product data retention[J]. J. Semicond., 2017, 38(10): 106001. doi: 10.1088/1674-4926/38/10/106001.Export: BibTex EndNote
      Citation:
      Dailong Wei, Zigui Cao, Zhilin Tang. An effective approach to improve split-gate flash product data retention[J]. Journal of Semiconductors, 2017, 38(10): 106001. doi: 10.1088/1674-4926/38/10/106001

      D L Wei, Z G Cao, Z L Tang. An effective approach to improve split-gate flash product data retention[J]. J. Semicond., 2017, 38(10): 106001. doi: 10.1088/1674-4926/38/10/106001.
      Export: BibTex EndNote

      An effective approach to improve split-gate flash product data retention

      doi: 10.1088/1674-4926/38/10/106001
      More Information
      • Corresponding author: Dailong.Wei@hhgrace.com
      • Received Date: 2016-11-01
      • Revised Date: 2017-04-20
      • Published Date: 2017-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return