J. Semicond. > 2018, Volume 39 > Issue 1 > 011005

Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Oxide-based thin film transistors for flexible electronics

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou and Qing Wan

+ Author Affiliations

 Corresponding author: Qing Wan, Email: wanqing@nju.edu.cn

DOI: 10.1088/1674-4926/39/1/011005

PDF

Turn off MathJax

Abstract: The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends.

Key words: thin film transistorsflexible electronicsoxide semiconductor

Flexible electronics has received increasing attention in recent years because it offers a number of novel applications concerning multiple areas such as flexible circuits[1, 2], implantable medical devices[3], flexible displays[49], electronic textiles[10], electronic paper[11, 12], wearable devices[1315], conformable radio frequency identification devices (RFID)[1618], and electronic skin for robots[1921]. Flexible electronics enables electronic systems to be compact, light-weight, ultra-thin, stretchable, conformable, or even bio-compatible[22]. Thin film transistors, one of the most common active thin film devices which form the foundation of flexible electronics, are significant elements in flexible platforms[16]. Conventional silicon-based thin film transistors (TFTs) are widely used in flat panel displays. Flexible amorphous silicon (a-Si) thin film transistor devices have been investigated as driving elements in bendable displays[23, 24]. In addition, considerable advances have been made in flexible organic thin film transistors (OTFTs) on account of their inherent flexibility[2527]. However, organic semiconductors exhibit relatively low mobility and stability[28, 29].

Since the demonstration of amorphous indium-gallium-zinc-oxide (a-IGZO) based transparent flexible TFTs in 2004[30], flexible oxide-based TFTs have attracted a great deal of attention in the field of flexible electronics[31, 32]. Compared with conventional amorphous silicon, oxide-based TFTs exhibit high carrier mobility, low off-current, low process temperature, and high transparency in the visible region[30, 3336]. The low process temperature enables oxide-based TFTs compatible with flexible substrates such as paper and plastics. Moreover, amorphous oxide materials are compatible with traditional semiconductor processing techniques such as sputtering and patterning by photolithography, and their amorphous state ensures the device uniformity over large areas[3739]. Flexible sensors[40, 41], memories[42, 43], circuits[4446], and displays[4750] implemented by oxide-based TFTs on compliant substrates have been widely investigated. Fig. 1 shows the possible applications for flexible oxide-based TFTs.

Figure  1.  (Color online) Possible applications for flexible oxide-based TFTs. The inset images were reproduced from Refs. [15, 25, 30, 45, 5074].

Thin film transistors were firstly proposed in 1962[75] and have been widely used in flat panel displays. Oxide-based TFTs have attracted a great deal of attention due to their low process temperature, high carrier mobility, and good uniformity. In the past few years, oxide semiconductor materials have been widely investigated. Here, a brief introduction of oxide semiconductor materials is provided.

N-type oxide semiconductors such as zinc oxide (ZnO), tin oxide (SnO2), and indium oxide (In2O3) as well as their combinations, indium–zinc–oxide (IZO), indium–tin–oxide (ITO), zinc–tin–oxide (ZTO), and indium–tin–zinc–oxide (ITZO) have been widely investigated recently[34, 35, 37, 7683]. Oxide semiconductors exhibit high transparency in the visible region because of their wide band-gap (>3.0 eV)[84]. Transparent oxide semiconductors, ITO for example, are usually used as transparent electrodes in flat panel displays[85].

Ga-doped IZO (IGZO) in a crystalline phase and amorphous state were proposed by Nomura et al. in 2003[86] and 2004[30], respectively. A field effect mobility of ~10 cm2V−1s−1 was obtained in a-IGZO TFTs. As an active channel layer of TFTs, amorphous semiconductors are superior to polycrystalline ones due to their lower process temperature and better device uniformity. However, amorphous silicon which is widely used in flat panel displays typically exhibits field effect mobility lower than 10 cm2V−1s−1[87]. High mobility (>10 cm2V−1s−1) is possible for amorphous oxide semiconductors which contain post-transition-metal cations[88, 89]. Fig. 2 shows the carrier transport paths in amorphous oxide semiconductors. Polycrystalline phase hafnium-indium–zinc–oxide (HIZO), amorphous zirconium-indium–zinc–oxide (ZrInZnO), high mobility oxide/carbon nanotube composite, and polymer-doping amorphous oxide material were also investigated[73, 9092].

Figure  2.  (Color online) Schematic orbital drawings of (a) covalent semiconductor, and (b) metal oxide semiconductor in crystalline and amorphous states. Reproduced from Ref. [30].

Complementary inverters based on both n- and p-channel transistors are basic building blocks for low-power and high-performance integration. Most of the oxide semiconductors exhibit n-type channels, which are suitable for switching/ driving TFTs in next generation flat panel displays and bendable displays. P-channel oxide-based TFTs are still requisite for achieving various low-power circuits. Zinc oxide is an attractive material in many application areas such as optical devices, acoustics, and sensing. However, reproducible and stable p-type doping for ZnO is a bottleneck for its commercialization[93]. The developments of high performance p-type oxide semiconductors such as ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides greatly enlarge the family of oxide semiconducto rs[46, 70, 94100].

A variety of methods such as pulse laser deposition (PLD)[30], magnetron sputtering[2, 8, 17, 18, 36], chemical vapor deposition (CVD)[101], atomic layer deposition (ALD)[102], electron beam evaporation[2, 103], and solution processes including spin coating and printing[38, 104110] are usually applied to deposit oxide semiconductor materials. Printing electronics offers a low-cost process technology that patterning and depositing can be simultaneously accomplished. Sputtering and PLD are the most frequently used oxide semiconductor deposition methods at room temperature. Atomic layer deposition, which is based on self-limiting and saturation surface reaction, offers one greatly controllable chemical deposition method at a relatively low temperature of ~150 °C.

In order to achieve flexible devices, bendable substrate materials must be prepared. Oxide-based TFTs with low process temperature are well compatible with flexible substrates. A lot of works were reported on flexible oxide-based TFTs, and here we introduce some of them classified by the flexible substrates including polymer plastics, paper sheets, metal foils, and flexible thin glass.

Polymer plastics with plenty of advantages such as light-weight, high transparency, conformable, stretchable, and bendable are appropriate for flexible substrates[30, 111113]. Amorphous oxide-based TFT technologies with low process temperature are compatible with polymer plastics[114].

Among a large variety of polymer plastics, polyimide (PI) is the most frequently used plastic substrate for flexible oxide-based TFTs[17, 115138]. In addition, other polymer plastic foils such as polyethylene naphthalate (PEN)[52, 71, 139151], polyethylene-terephthalate (PET)[152164], polycarbonate (PC)[165167], polyether-sulfone (PES)[168172], polydimethylsiloxane (PDMS)[42, 173, 174], polyarylate[175], and poly(vinyl alcohol)(PVA)[176] are also usually used. Glass-fabric reinforced composite films are also fabricated as flexible plastic substrates[177]. Polyimide precursor and polyimide-based nanocomposite coated on the glass carrier are also used as flexible substrates[178182]. After the fabrication process, the polymer plastic films were released from the glass carriers to yield the free-standing flexible TFTs. To ease the detachment process, a release layer was deposited on the rigid carrier before the polyimide was coated[183185].

Plastic materials with thickness from a few micrometers to several hundred microns are commercially availab le[186189]. Flexible oxide-based TFTs can be directly fabricated on the free-standing polymer plastic substrates[190192]. In some situations, plastic substrates are attached to rigid carriers by cool-off type adhesive or other glues for mechanical support during the fabrication process and detached from the carriers when the device formation is completed[193196]. In some cases, oxide-based TFTs are fabricated on rigid substrates and then transferred to compliant substrates[197, 198].

In 2004, Nomura et al. demonstrated transparent flexible a-IGZO TFTs with PET substrate for the first time[30]. Fig. 3 shows the construction of the device and a photograph of flexible TFTs under bending condition on the probe station. The channel layer (IGZO), gate dielectric (Y2O3), and electrodes (ITO) (gate, drain, and source) were all deposited by pulse laser deposition at room temperature. Thin film transistors processed in this way exhibited good performance such as saturation mobility of ~6–9 cm2V−1s−1, a low leak current of about 10−10 A, and on/off ratio of about 103 even during and after bending.

Figure  3.  (Color online) (a) The structure of transparent flexible IGZO TFTs. (b) A photograph of the flexible TFT bent at R = 30 mm on the probe station. Reproduced from Ref. [30].

Park et al. studied flexible IGZO TFTs on 125-μm-thick PET substrate[199]. The PET substrate was laminated on the glass carrier using a cool-off type adhesive during the manufacturing process and delaminated from the glass substrate after the fabrication process was accomplished. 150-nm-thick ITO source/drain electrodes and 20-nm-thick active IGZO channel layer were deposited by sputtering. 100-nm-thick Al2O3 by ALD at 150 °C was used as the gate dielectric. The gate electrode was patterned by Al via thermal evaporation. The saturation mobility, threshold voltage, subthreshold swing, and on/off ratio of the device processed in this way were evaluated as 15.5 cm2V−1s−1, 4.1 V, 0.2 V/decade, and 2.2 × 108, respectively. Fig. 4 shows the parameters of saturation mobility, threshold voltage, and subthreshold swing at different bending curvature radii. The variations of the device parameters under different bending radii can be negligible as shown in Fig. 4.

Figure  4.  (Color online) Device parameters including saturation mobility, threshold voltage, and subthreshold swing versus different bending radii. Reproduced from Ref. [199].

Mativenga et al. deposited a 20-μm-thick polyimide film by spin coating on glass as a compliant substrate for transparent flexible IGZO based TFTs[45]. After all the fabrication processes were completed, the devices were first tested while they were still on the glass carrier. After the test was accomplished, the devices were separated from the glass substrate and attached to a 100-μm-thick PET substrate by a double-sided PI tape. Then a final anneal was performed at 150 °C at vacuum for 2 h. Then the bending properties of the samples were measured. Fig. 5 shows the transfer characteristics before and after detachment from the glass carrier substrate. A slight improvement of the transfer characteristics of the TFT was achieved because of annealing.

Figure  5.  (Color online) Transfer characteristics tested before and after separating from glass carrier to PET. Reproduced from Ref. [45].

Li et al. utilized a polyimide precursor to obtain 4.8-μm-thick polyimide films as a flexible substrate by spin coating on Si wafers[200]. After fabrication, the devices were released from the silicon wafer and formed a free-standing sample. They tested the device transfer characteristics after repeated bending cycles with bending orientations parallel and perpendicular to the current flow direction as shown in Fig. 6. After 50000 bending cycles, the device exhibited a little change above the threshold voltage region, but an increase in the off state current and a negative shift in the turn-on voltage of about 0.3 V. Tripathi et al. tested IGZO-based flexible transistors with PEN substrate[44]. Transfer characteristics were measured while the TFT was bent under different curvature radii with bending orientations parallel and perpendicular to the current flow direction as shown in Fig. 7. As we can see, the slight changes of transfer curves can be negligible under different bending conditions. An extremely small bending curvature radius of about 50 μm was achieved with the assistance of human hair[201, 202].

Figure  6.  (Color online) Transfer characteristics after repeated bending cycles with bending orientations (a) parallel and (b) perpendicular to the current flow direction. The bending radius is about 3.5 mm. Reproduced from Ref. [200].
Figure  7.  (Color online) Transfer characteristics while TFTs bent at different radii (a) parallel and (b) perpendicular to the current flow direction. Reproduced from Ref. [44].

For the field effect transistor, a gate electrode, gate dielectric, and semiconductor compose a capacitor. In order to achieve high performance of the usual gate dielectric, as little movable ions as possible is desired. On the contrary, capacitors based on electric-double-layer (EDL) utilize movable ions in electrolytes to form capacitive effects[203]. A number of materials such as ionic liquids, polymer electrolytes, ionic gels, and inorganic dielectric materials can be used as electrolytes in the EDL capacitor[204, 205]. An apparent advantage of electrolytes is that a large density carrier accumulation can be achieved in the dielectric/semiconductor interface by the EDL capacitor[206]. The specific capacitances of the usual gate dielectrics are of the order of ~10−7 F/cm2 with the induced carrier density of ~1013 cm−2. The specific capacitances of electrolytes are above 10−6 F/cm2 with the accumulation carrier density up to 1015 cm−2[205]. Flexible oxide-based TFTs gated by electrolytes are also widely investigated[207209].

Junctionless flexible IZO TFTs gated by SiO2-based solid electrolyte on plastic substrate were reported by Zhou et al.[207]. Fig. 8 demonstrates the structure of the device with EDL-based dielectric. The oxide-based TFTs were fabricated on flexible transparent ITO-coated PET substrate. The ITO film was used as the bottom gate electrode. 500-nm-thick phosphorus-doped SiO2-based solid-electrolyte was deposited by plasma enhanced chemical vapor deposition (PECVD) (SiH4/PH3 and O2 as active gases) as the gate dielectric. 30 nm-thick IZO layer arrays (150 ×1000 μm2) were deposited by RF magnetron sputtering. Drain current signals were obtained by contacting two tungsten probes onto the surface of IZO film with a distance (channel length) of 300 μm. The junctionless TFTs exhibited high performance such as a low subthreshold swing of 0.13 V/decade, on/off ratio >10 6, and field-effect mobility of about 60 cm2V−1s−1.

Figure  8.  (Color online) Schematic diagram of the IZO-based junctionless TFT on PET substrate. Reproduced from Ref. [207].

Compared with the polymer plastics, paper is a low-cost, renewable, and bio-degradable material in our daily life, which makes it an intriguing alternative substrate for flexible electronics. Eco-friendly paper sheets have attracted increasing attention as compliant substrates for flexible oxide-based TFTs[70, 210222]. Generally, paper often exhibits rough surface and water absorption. One layer of thin film is usually deposited to prevent paper absorbing water and solvents during the fabrication process and improve the surface roughness. Silicon dioxide deposited by PECVD[223, 224] and epoxy acrylate copolymer layer by coating[225] have been used to improve paper surface roughness.

Lim et al. reported a kind of low-voltage IGZO TFTs on paper substrates[211]. One layer of cyclotene (BCB 3022-35) was deposited on the paper by spin-coating as a water and solvent barrier layer. Thin film transistors processed in this way exhibited saturation mobility of 1.2 cm2V−1s−1, subthreshold swing of 0.65 V/decade, threshold voltage of 1.9 V, and on/off ratio of about 104. Fig. 9 shows the schematic diagram and I–V curve of the TFTs and the surface images with and without BCB coating. We can see that the BCB coating layer improves the surface roughness.

Figure  9.  (Color online) (a) (b) The schematic diagram and I–V curve of the TFTs. (c) (d) The surface images with and without BCB coating. Reproduced from Ref. [211].

Cellulose paper is not only a flexible substrate material but also a good gate dielectric. In 2008, Fortunato et al. reported oxide thin-film field-effect transistors using cellulose-fiber-based paper simultaneously as substrate and gate dielectric for the first time[226]. Fig. 10 illustrates the device configuration. Cellulose-fiber-based paper without any kind of surface treatment was used as substrate carrier and gate dielectric. 40-nm-thick IGZO was deposited by sputtering on one side of the paper sheet as a channel layer. 160-nm-thick IZO were sputtered on the other side of the paper as the gate electrode. The 180-nm-thick aluminum drain and source electrodes were deposited by e-beam evaporation. Transistors fabricated in this way had an enhanced n-type operation mode and exhibited a near zero-voltage threshold voltage, a saturation mobility exceeding 30 cm2V−1s−1, on/off ratio above 104, and a subthreshold swing of about 0.8 V/decade.

Figure  10.  (Color online) The schematic of the flexible oxide-based TFT using cellulose paper as both gate dielectric and substrate carrier. Reproduced from Ref. [226].

In addition, a selective floating gate non-volatile memory transistor, which used cellulose paper as both gate dielectric and substrate was reported by Martins et al.[227]. Fig. 11 demonstrates the selective floating gate non-volatile memory transistor structure. Moreover, Kim et al. reported a nonvolatile memory thin film transistor using biodegradable chicken albumen as the gate dielectric and eco-friendly paper as substrate[43].

Figure  11.  (Color online) Illustration of the device structure with its different layers. The magnified insets show the paper sheet dielectric structure and some of the expected electron paths along the fibers between source and drain electrodes. Reproduced from Ref. [227].

Metal materials such as gold, silver, copper, and aluminum exhibit excellent mechanical performance and good ductility. Compared with polymer plastics, metal foils exhibit higher thermal resistance and thus widen the processing windows[228]. Ductile metal foils can bend with an extremely small curvature radius so that TFTs with metal foil substrates can be applied to applications which require extremely high strain implementations such as sensors integrated on artificial skin systems[229].

Park et al. demonstrated a kind of flexible thermal and pressure sensors driven by IGZO TFTs fabricated on 50-μm-thick metal foils[229]. Fig. 12 shows a photograph of TFTs fabricated on metal foil under the bending condition. The flexible thermal sensor showed a seven times increase in the output current when the ambient temperature increased from 20 to 100 °C (temperature coefficient of resistance α~2.74%/K) and the pressure sensor also showed a high sensitivity as the pressure varied. The good performance of the sensor fabricated on metal foil confirmed that it can be applied to the artificial skin systems.

Figure  12.  (Color online) Photograph of flexible TFTs with metal foil substrate. Reproduced from Ref. [229].

In general, glass is chosen as a rigid substrate in electronics. Glass with a thickness of dozens of microns used as a flexible substrate is a very intriguing application[230233]. Flexible thin glass substrates exhibit a high degree of transparency in nature and can bear the high-temperature annealing process which is important for improving device performance. During the fabrication process of flexible oxide-based TFTs, polyimide substrates are frequently used for high-temperature annealing processes. However, polyimide cannot be applied to transparent displays because of the intrinsic yellowish color of PI itself[127, 234].

Lee et al. reported a kind of high transparent a-IGZO TFTs on a flexible thin glass substrate[231]. The optical transparency of the a-IGZO TFTs fabricated on 70-μm-thick glass substrate was higher than 80% in the visible region from 390 to 750 nm as shown in Fig. 13. The inset in Fig. 13 is a photograph of transparent flexible IGZO TFTs with thin glass substrate under bending state. The bending tests showed that the minimum bending curvature radius was 40 mm. On account of the high temperature annealing process, the device showed very good bias stability under both prolonged positive and negative stress tests.

Figure  13.  (Color online) Optical transmittance versus wavelength of the IGZO TFTs on flexible thin glass, the inset is a photograph of transparent flexible IGZO TFTs fabricated on flexible thin glass under bending status. Reproduced from Ref. [231].

Table 1 shows the bending properties of the flexible oxide-based TFTs. We can see that TFTs based on various oxide active layers and flexible substrates achieved bending properties. The oxide-based TFTs worked well when different strain types including tensile and compressive were applied to them. The flexible oxide-based TFTs operated normally, even the bending radius reached 50 μm or the bending times reached 10 000.

Table  1.  Bending properties of flexible oxide-based TFTs.
Active layer Substrate and thickness (μm) Bending radius (mm) Bending times Strain type Ref.
a-IGZO PET/200 30 Tensile [30]
a-IGZO PEN/125 5 10000 Tensile [199]
ZnO PI/5 3.5 5000 Tensile and compressive [200]
a-IGZO Parylene/1 0.05 Tensile [201]
InOx PI 1 [182]
In2O3 PI [77]
a-IGZO PC 15 [166]
ZnO PI/50 0.2 100 Tensile [120]
a-IGZO PI/16 10 10000 Tensile [116]
a-IGZO Paper/52 5 Tensile [220]
a-IGZO PI/20 15 10000 [178]
In2O3 PEN/— [83]
a-IGO PI/50 10 [76]
a-IGZO PEN/125 4 100 Tensile [139]
ZnO PI/50 25 Tensile [208]
a-IGZO PEN/25 2 Tensile and compressive [44]
a-IGZO Thin glass/70 40 Tensile [231]
a-IGZO Al/480 19 Tensile [228]
DownLoad: CSV  | Show Table

Flexible oxide-based TFTs have intriguing applications in many areas such as flexible sensors, memories, circuits, and bendable displays.

Flexible sensors have many application areas such as wearable electronics and electronic skin for robots. Low-cost bendable sensors sensing aspects such as pH, X-ray, and temperature achieved by flexible oxide-based TFTs have been demonstrated[40, 41, 142, 145, 235239].

Shah et al. engineered an integral system composed of an integrated sensor, flexible electronics, and CMOS readout chip[41]. The integrated biosensing system enabled the advantages of the large sensing area provided by flexible oxide-based TFTs process and the information processing capability of CMOS.

Liu et al. reported a flexible oxide-based neuromorphic transistor on PET substrate with multiple input gates for pH sensing[40]. Sensitivity of about 105 mV/pH was obtained when the device worked in a quasi-static dual-gate synergic mode. The single-spike sensing mode which was inspired by the spiking operation mode of the biological neuron was demonstrated to enhance the pH sensitivity and reduce the response/recover time and the power dissipation. The tests showed that the single-spike sensing mode could tremendously reduce the power consumption because the device was usually biased at zero voltage and low voltage spikes with very short duration time were applied for one measurement.

Smith et al. presented a flexible digital X-ray detector constructed with an active-matrix array of imaging pixels[236]. Each pixel consisted of one IGZO-based TFT and a p-i-n photodiode. A key medical imaging application of the transparent digital X-ray detector was single-exposure, low-dose, and full-body digital radiography. Fig. 14 shows the flexible electronic tiles for large area digital X-ray imaging.

Figure  14.  (Color online) Flexible electronic tiles for large area digital X-ray imaging. Reproduced from Ref. [236].

Flexible electronic systems require memories with low-power consumption and stable bending performance. Recently, flexible memory transistors based on oxide TFTs have attracted increasing attention[42, 124, 144, 146, 149, 240].

A flexible charge-trap-type IGZO memory TFT fabricated on PEN substrate was proposed by Kim et al.[146]. Zinc oxide and aluminium oxide layers were used as charge-trap layer and blocking/tunneling layers, respectively. A wide memory margin (25.6 V), programming speed of ~500 ns, and long retention time of about 3 h were achieved at room temperature and 80 °C. The transfer characteristics and on/off programming operations of the memory device did not show marked degradation even after 104 bending events at a curvature radius of 4.8 mm.

A p-type SnO-based polymer ferroelectric field-effect memory device on polyimide substrate was proposed by Caraveo-Frescas et al.[100]. Fig. 15 shows an optical profilometer scan of the TFT memory showing major parts of the device. The p-type SnO-based TFT memory exhibited a field effect mobility of 2.5 cm2V−1s−1 and a high memory window of 16 V.

Figure  15.  (Color online) Optical profilometer scan of the SnO-based polymer ferroelectric TFT memory. Reproduced from Ref. [100].

Higher integration level of TFTs is requisite for manufacturing flexible circuits for future applications such as RFID[18], transponder chip[241], and scan driver[242]. However, most TFT technologies have only monotype devices. Flexible circuits achieved by oxide-based TFTs such as ring oscillator, clock generator, operational amplifier (opamp), and transponder chip were reported[44, 45, 117, 119, 130, 182, 243247].

Huang et al. reported a design style named pseudo-CMOS for low-cost and robust flexible electronics using monotype single-Vth or dual-Vth TFTs[244]. To validate the design style, they fabricated digital cells in two different TFT technologies, i.e., p-type self-assembled-monolayer-organic TFTs and n-type IGZO-based TFTs. A compact design model for flexible analog/RF circuits with a-IGZO TFTs was also presented by Perumal et al.[248].

Zhao et al. fabricated a flexible 15-stage ring oscillator using ZnO TFTs on polyimide substrate[130]. The oscillator was operated at greater than 2 MHz with a supply voltage of 18 V and the propagation delay was less than 20 ns/stage. Fig. 16 shows flexible ZnO circuits on plastic substrate.

Figure  16.  (Color online) (Left) Optical microscopic image of ZnO TFT. (Top right) Schematic diagram of ZnO TFT and (bottom right) ZnO TFTs and circuits on flexible plastic substrate. Reproduced from Ref. [130].

A full-swing flexible clock generator based on a-IGZO dual-gate TFTs was reported by Chen et al.[119]. Clock signals were generated by a 13-stage ring oscillator, which was achieved by n-type-only dual-gate a-IGZO TFTs. Output frequency of 360 kHz was achieved by combining bootstrapping and pseudo-CMOS inverting.

An 8-b RFID transponder chip with an integration level of ~300 was manufactured with IGZO-based TFTs on PEN substrate by Tripathi et al.[44]. The transponder chip obtained a data transfer rate of 31.6 kb/s when operated under bending condition down to a bending radius of 2 mm. It took ~253 μs to generate the 8-b code with the supply voltage of 10 V.

Simulation and fabrication study of flexible IGZO-based circuits with two and three metal layers were reported by Cantarella et al.[117]. They fabricated flexible opamps and logic circuits based on IGZO TFTs under the guidance of systematic computer-aided design simulations. The opamps exhibited a gain of 19.4 dB, cut-off frequency of 7 kHz, and gain-bandwidth-product (GBWP) of 40 kHz, and the results showed good agreement with the simulation results.

Complementary inverters are expected for circuit integrations. Flexible complementary circuits based on both p- and n-channel oxide TFT technologies[2, 46, 70] and hybrid organic/ inorganic TFT technologies have been studied[169, 170, 249252]. A flexible ring oscillator achieved by complementary circuits employing n-type ZnO and p-type SnO TFTs was reported by Li et al.[2]. Hybrid complementary inverters composed of p-type pentacene and n-type a-IGZO TFTs with PES substrate were proposed by Kim et al.[169].

In recent years, amorphous oxide semiconductors, especially a-IGZO based TFTs have received a great deal of attention in the display backplanes due to high electron mobility, low process temperature, and good uniformity. Amorphous oxide-based TFTs fabricated on flexible substrates are promising alternatives for manufacturing bendable active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode (AMOLED) displays[8, 4753, 148, 253258].

In 2009, Park et al. fabricated a 6.5 in. flexible full color organic light-emitting diode display on polyimide substrate driven by a-IGZO TFTs[47]. The a-IGZO based TFTs exhibited field-effect mobility exceeding 15.1 cm2V−1s−1, subthreshold swing of 250 mV/decade, and threshold voltage of 0.9 V. Thin film transistors with 10-μm-thick polyimide substrate underwent bending down to R = 3 mm under tension and compression without any performance degradation. Fig. 17 shows the 6.5 in. flexible full-color top-emission AMOLED panel driven by a-IGZO TFTs. The displayed image did not show any electrical performance degradation when the panel was bent to about 2 cm of curvature. The total thickness of the AMOLED display was less than 0.1 mm.

Figure  17.  (Color online) Picture displayed by 6.5 in. flexible full-color top-emission AMOLED panel bent to a curvature radius of approximately 2 cm. Reproduced from Ref. [47].

Table 2 lists a portion of the recent studies of flexible oxide-based TFTs in different application areas. High mobility,high on/off ratio, and low subthreshold swing were achieved in flexible oxide-based TFTs. Besides displays, the oxide-based TFTs could also be applied to sensors, memories, and circuits. Sensors and memories based on flexible oxide TFTs have potential applications on flexible systems such as wearable electronics. Complementary circuits based on both n- and p-channel oxide TFTs can be applied to flexible low-power consumption electronic systems.

Table  2.  Applications of flexible oxide-based thin film transistors.
Active layer Dielectric Substrate μFE (cm2V−1s−1) Ion/Ioff Vth(V) SS (V/decade) Application Ref.
IZO SiO2 PET 12 6.4 × 105 −0.3 0.175 PH sensor [40]
a-IGZO SiO-based PEN 10–15 2 0.3 X-ray detector [145]
ZnO Ferroelectric copolymer PEN 33.3 108 0.65 Memory [144]
a-IGZO Ferroelectric copolymer PEN 1 107 0.4 Memory [149]
SnO Poly ferroelectric PI 2.53 0.94 × 102 −11.7 4.35 Memory [100]
SnOx/a-IGZO Paper Paper 1.3/23 104/102 2.1/1.4 3.1/6.9 Complementary circuits [70]
SnO/ZnO HfO2 PI 0.06/1.6 104/106 5/5 1.6/1.6 Ring oscillator [2]
ZnO Al2O3 PI 20 107 2 0.35 Ring oscillator [130]
a-IGZO SiNx PEN 13 108 3.1 0.33 8-b transponder chip [44]
InOx Al2O3 PI 8.02 3.67 Ring oscillator [182]
a-IGZO SiO2 PI 17 1.4 Clock generating circuit [119]
ITZO SiO2 PI 32.9 iOLED [48]
a-IGZO AlOx PEN 12.87 109 2.48 0.20 AMOLED [8]
a-IGZO SiNx PI 15.1 5 × 108 0.9 0.25 AMOLED [47]
a-IGZO Al2O3 PEN 11.2 109 0.5 0.27 AMOLED [52]
DownLoad: CSV  | Show Table

We have presented a review of the progress of flexible oxide-based thin film transistors. Flexible oxide-based TFTs were introduced classified by compliant substrates including polymer plastics, paper sheets, metal foils, and flexible thin glass. We can see that flexible oxide-based TFTs can work normally, even undergoing high strain implementation and repeatable bending events, which confirm that oxide-based TFTs are suitable for flexible electronic platforms. Flexible oxide-based TFTs not only are promising candidates for future bendable displays but also have many application areas such as sensors, memories, and circuits.

In the future, with the development of flexible oxide-based TFTs, displays will exhibit better bending properties, higher resolution, larger size, thinner thickness, or even better transparency. Various flexible sensors based on oxide TFTs will achieve multiple monitoring functions such as pH, temperature, humidity, blood sugar and pressure, and heart rate. With the development of high performance p-type oxide semiconductor materials, flexible circuits based on both p- and n-type oxide semiconductor TFTs will derive rapid development.



[1]
Cao Q, Kim H S, Pimparkar N, et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454(7203): 495 doi: 10.1038/nature07110
[2]
Li Y S, He J C, Hsu S M, et al. Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors. IEEE Electron Device Lett, 2016, 37(1): 46 doi: 10.1109/LED.2015.2501843
[3]
Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6): 511 doi: 10.1038/nmat2745
[4]
Bock K. Polymer electronics systems-polytronics. Proc IEEE, 2005, 93(8): 1400 doi: 10.1109/JPROC.2005.851513
[5]
Heremans P. Electronics on plastic foil, for applications in flexible OLED displays, sensor arrays and circuits. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 1
[6]
Allen K J. Reel to real: prospects for flexible displays. Proc IEEE, 2005, 93(8): 1394 doi: 10.1109/JPROC.2005.851511
[7]
Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008 doi: 10.1088/0268-1242/26/3/034008
[8]
Xu H, Luo D, Li M, et al. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J Mater Chem C, 2014, 2(7): 1255 doi: 10.1039/C3TC31710B
[9]
Gelinck G H, Huitema H E A, Van Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3(2): 106 doi: 10.1038/nmat1061
[10]
Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part 1: Systems and applications. Proc IEEE, 2005, 93(7): 1235 doi: 10.1109/JPROC.2005.851525
[11]
Ito M, Kon M, Ishizaki M, et al. A flexible active-matrix TFT array with amorphous oxide semiconductors for electronic paper. Proc IDW/AD, 2005, 5: 845
[12]
Rogers J A, Bao Z, Baldwin K, et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci, 2001, 98(9): 4835 doi: 10.1073/pnas.091588098
[13]
Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part II: Materials and devices. Proc IEEE, 2005, 93(8): 1391 doi: 10.1109/JPROC.2005.851509
[14]
Khan Y, Garg M, Gui Q, et al. Flexible Hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv Funct Mater, 2016, 26(47): 8764 doi: 10.1002/adfm.v26.47
[15]
Pu X, Li L, Song H, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater, 2015, 27(15): 2472 doi: 10.1002/adma.201500311
[16]
Nathan A, Ahnood A, Cole M T, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE, 2012, 100(Special Centennial Issue): 1486 doi: 10.1109/JPROC.2012.2190168
[17]
Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815 doi: 10.1109/TED.2013.2274575
[18]
Tripathi A, Smits E P, Van Der Putten J, et al. Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: building blocks for radio frequency identification application. Appl Phys Lett, 2011, 98(16): 162102 doi: 10.1063/1.3579529
[19]
Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603 doi: 10.1126/science.1182383
[20]
Sekitani T, Kaltenbrunner M, Yokota T, et al. Imperceptible Electronic Skin. SID Symp Dig Tech Pap, 2014, 45(1): 122 doi: 10.1002/j.2168-0159.2014.tb00034.x
[21]
Sun Y, Rogers J A. Inorganic semiconductors for flexible electronics. Adv Mater, 2007, 19(15): 1897 doi: 10.1002/(ISSN)1521-4095
[22]
Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3(2): 021303 doi: 10.1063/1.4953034
[23]
Lee J K, Lim Y S, Park C , et al. a-Si: H thin-film transistor-driven flexible color E-paper display on flexible substrates. IEEE Electron Device Lett, 2010, 31(8): 833 doi: 10.1109/LED.2010.2051531
[24]
Huang J J, Chen Y P, Huang Y S, et al. A 4.1-inch flexible QVGA AMOLED using a microcrystalline-Si:H TFT on a polyimide substrate. SID Symp Dig Tech Pap, 2009, 40(1): 866 doi: 10.1889/1.3256932
[25]
Fukuda K, Takeda Y, Yoshimura Y, et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat Commun, 2014, 5: 4147
[26]
Yi H T, Payne M M, Anthony J E, et al. Ultra-flexible solution-processed organic field-effect transistors. Nat Commun, 2012, 3: 1259 doi: 10.1038/ncomms2263
[27]
Guo X, Xu Y, Ogier S, et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices, 2017, 64(5): 1906 doi: 10.1109/TED.2017.2677086
[28]
Dimitrakopoulos C D, Mascaro D J. Organic thin-film transistors: a review of recent advances. IBM J Res Dev, 2001, 45(1): 11 doi: 10.1147/rd.451.0011
[29]
Lin P, Yan F. Organic thin-film transistors for chemical and biological sensing. Adv Mater, 2012, 24(1): 34 doi: 10.1002/adma.201103334
[30]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488 doi: 10.1038/nature03090
[31]
Nomura K, Takagi A, Kamiya T, et al. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J Appl Phys, 2006, 45(5S): 4303
[32]
Kamiya T, Hiramatsu H, Nomura K, et al. Device applications of transparent oxide semiconductors: excitonic blue LED and transparent flexible TFT. J Electroceram, 2006, 17(2): 267
[33]
Raja J, Jang K, Nguyen C P T, et al. Improvement of mobility in oxide-based thin film transistors: a brief review. Trans Electr Electron Mater, 2015, 16(5): 234 doi: 10.4313/TEEM.2015.16.5.234
[34]
Kwon J Y, Lee D J, Kim K B. Transparent amorphous oxide semiconductor thin film transistor. Electron Mater Lett, 2011, 7(1): 1 doi: 10.1007/s13391-011-0301-x
[35]
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945 doi: 10.1002/adma.v24.22
[36]
Lee S, Nathan A. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science, 2016, 354(6310): 302 doi: 10.1126/science.aah5035
[37]
Park J S, Maeng W J, Kim H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 2012, 520(6): 1679 doi: 10.1016/j.tsf.2011.07.018
[38]
Ahn B D, Jeon H J, Sheng J, et al. A review on the recent developments of solution processes for oxide thin film transistors. Semicond Sci Technol, 2015, 30(6): 064001 doi: 10.1088/0268-1242/30/6/064001
[39]
Kamiya T, Nomura K, Hosono H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J Disp Technol, 2009, 5(7): 273 doi: 10.1109/JDT.2009.2021582
[40]
Liu N, Zhu L Q, Feng P, et al. Flexible sensory platform based on oxide-based neuromorphic transistors. Sci Rep, 2015, 5: 18082
[41]
Shah S, Smith J, Stowell J, et al. Biosensing platform on a flexible substrate. Sens Actuators B, 2015, 210: 197 doi: 10.1016/j.snb.2014.12.075
[42]
Jung S W, Koo J B, Park C W, et al. Flexible nonvolatile memory transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly (vinylidene fluoride-co-trifluoroethylene) fabricated on elastomer substrate. J Vac Sci Technol B, 2015, 33(5): 051201 doi: 10.1116/1.4927367
[43]
Kim S J, Jeon D B, Park J H, et al. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate. ACS Appl Mater Inter, 2015, 7(8): 4869 doi: 10.1021/am508834y
[44]
Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063 doi: 10.1109/TED.2015.2494694
[45]
Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170 doi: 10.1109/LED.2010.2093504
[46]
Dindar A, Kim J, Fuentes-Hernandez C, et al. Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Appl Phys Lett, 2011, 99(17): 172104 doi: 10.1063/1.3656974
[47]
Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503 doi: 10.1063/1.3159832
[48]
Nakata M, Motomura G, Nakajima Y, et al. Development of flexible displays using back-channel-etched In–Sn–Zn–O thin-film transistors and air-stable inverted organic light-emitting diodes. J Soc Inf Display, 2016, 24(1): 3 doi: 10.1002/jsid.408
[49]
Nag M, Bhoolokam A, Smout S, et al. Circuits and AMOLED display with self-aligned a-IGZO TFTs on polyimide foil. J Soc Inf Display, 2014, 22(10): 509 doi: 10.1002/jsid.v22.10
[50]
Hatano K, Chida A, Okano T, et al. 3.4-inch quarter high definition flexible active matrix organic light emitting display with oxide thin film transistor. Jpn J Appl Phys, 2011, 50(3S): 03CC06 doi: 10.7567/JJAP.50.03CC06
[51]
Nakajima Y, Nakata M, Takei T, et al. Development of 8-in. oxide-TFT-driven flexible AMOLED display using high-performance red phosphorescent OLED. J Soc Inf Display, 2014, 22(3): 137 doi: 10.1002/jsid.v22.3
[52]
Xu H, Pang J, Xu M, et al. Fabrication of flexible amorphous indium-gallium-zinc-oxide thin-film transistors by a chemical vapor deposition-free process on polyethylene napthalate. ECS J Solid State Sci Technol, 2014, 3(9): Q3035 doi: 10.1149/2.007409jss
[53]
Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inf Display, 2015, 23(2): 41 doi: 10.1002/jsid.276
[54]
Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604 doi: 10.1002/adfm.201606604
[55]
Tee B C, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol, 2012, 7(12): 825 doi: 10.1038/nnano.2012.192
[56]
Micera S, Carrozza M C, Beccai L, et al. Hybrid bionic systems for the replacement of hand function. Proc IEEE, 2006, 94(9): 1752 doi: 10.1109/JPROC.2006.881294
[57]
Coyle S, Wu Y, Lau K T, et al. Smart nanotextiles: a review of materials and applications. MRS Bull, 2007, 32(5): 434 doi: 10.1557/mrs2007.67
[58]
Kinkeldei T, Zysset C, Münzenrieder N, et al. An electronic nose on flexible substrates integrated into a smart textile. Senss Actuators B, 2012, 174: 81 doi: 10.1016/j.snb.2012.08.023
[59]
Vervust T, Buyle G, Bossuyt F, et al. Integration of stretchable and washable electronic modules for smart textile applications. J Text I, 2012, 103(10): 1127 doi: 10.1080/00405000.2012.664866
[60]
Cherenack K, Zysset C, Kinkeldei T, et al. Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater, 2010, 22(45): 5178 doi: 10.1002/adma.201002159
[61]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[62]
Benito-Lopez F, Coyle S, Byrne R, et al. Pump less wearable microfluidic device for real time pH sweat monitoring. Procedia Chemistry, 2009, 1(1): 1103 doi: 10.1016/j.proche.2009.07.275
[63]
Lemey S, Agneessens S, Van Torre P, et al. Wearable flexible lightweight modular RFID tag with integrated energy harvester. IEEE Trans Microwave Theory Tech, 2016, 64(7): 2304 doi: 10.1109/TMTT.2016.2573274
[64]
Yang L, Martin L, Staiculescu D, et al. A novel flexible magnetic composite material for RFID, wearable RF and bio-monitoring applications. IEEE MTT-S International Microwave Symposium Digest, 2008: 963
[65]
Hester J G, Tentzeris M M. Inkjet-printed flexible mm-wave Van-Atta reflectarrays: a solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins. IEEE Trans Microwave Theory Tech, 2016, 64(12): 4763 doi: 10.1109/TMTT.2016.2623790
[66]
Falco A, Salmerón J F, Loghin F C, et al. Fully printed flexible single-chip RFID tag with light detection capabilities. Sensors, 2017, 17(3): 534 doi: 10.3390/s17030534
[67]
Imenes K, Andersen M H, Nguyen A-T T, et al. Implantable MEMS acceleration sensor for heart monitoring recent development and outlook. IEEE 4th Electronic System-Integration Technology Conference (ESTC), 2012: 1
[68]
Lo R, Li P Y, Saati S, et al. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices, 2009, 11(5): 959 doi: 10.1007/s10544-009-9313-9
[69]
Hwang G T, Im D, Lee S E, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano, 2013, 7(5): 4545 doi: 10.1021/nn401246y
[70]
Martins R F, Ahnood A, Correia N, et al. Recyclable, flexible, low-power oxide electronics. Adv Funct Mater, 2013, 23(17): 2153 doi: 10.1002/adfm.v23.17
[71]
Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 2011, 32(12): 1692 doi: 10.1109/LED.2011.2167122
[72]
Yin Y, Sawin H H. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma. J Vac Sci Technol A, 2008, 26(1): 151 doi: 10.1116/1.2821747
[73]
Kim C J, Kim S, Lee J H, et al. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Appl Phys Lett, 2009, 95(25): 252103 doi: 10.1063/1.3275801
[74]
Jiang J, Sun J, Zhou B, et al. Vertical oxide homojunction TFTs of 0.8 V gated by H3PO4-treated SiO2 nanogranular dielectric. IEEE Electron Device Lett, 2010, 31(11): 1263
[75]
Weimer P K. The TFT a new thin-film transistor. Proc IRE, 1962, 50(6): 1462 doi: 10.1109/JRPROC.1962.288190
[76]
Jeong S, Lee J Y, Ham M H, et al. Bendable thin-film transistors based on sol–gel derived amorphous Ga-doped In2O3 semiconductors. Superlattices Microstruct, 2013, 59: 21 doi: 10.1016/j.spmi.2013.03.026
[77]
Park J H, Yoo Y B, Lee K H, et al. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl Mater Inter, 2013, 5(16): 8067 doi: 10.1021/am402153g
[78]
Ju S, Facchetti A, Xuan Y, et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat Nanotechnol, 2007, 2(6): 378 doi: 10.1038/nnano.2007.151
[79]
Lee C, Lin M, Wu W, et al. Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations. Semicond Sci Technol, 2010, 25(10): 105008 doi: 10.1088/0268-1242/25/10/105008
[80]
Zeumault A, Ma S, Holbery J. Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys Status Solidi A, 2016, 213(8): 2189 doi: 10.1002/pssa.v213.8
[81]
Kim S H, Yoon J, Yun S O, et al. Ultrathin sticker-type ZnO thin film transistors formed by transfer printing via topological confinement of water-soluble sacrificial polymer in dimple structure. Adv Funct Mater, 2013, 23(11): 1375 doi: 10.1002/adfm.201202409
[82]
Kim M-G, Kanatzidis M G, Facchetti A, et al. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater, 2011, 10(5): 382 doi: 10.1038/nmat3011
[83]
Dasgupta S, Kruk R, Mechau N, et al. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature. ACS Nano, 2011, 5(12): 9628 doi: 10.1021/nn202992v
[84]
Lee S, Jeon S, Chaji R, et al. Transparent semiconducting oxide technology for touch free interactive flexible displays. Proc IEEE, 2015, 103(4): 644 doi: 10.1109/JPROC.2015.2405767
[85]
Ginley D S, Bright C. Transparent conducting oxides. MRS Bull, 2000, 25(8): 15 doi: 10.1557/mrs2000.256
[86]
Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300(5623): 1269 doi: 10.1126/science.1083212
[87]
Libsch F, Kanicki J. Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl Phys Lett, 1993, 62(11): 1286 doi: 10.1063/1.108709
[88]
Hosono H, Kikuchi N, Ueda N, et al. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J Non-Cryst Solids, 1996, 198: 165
[89]
Orita M, Ohta H, Hirano M, et al. Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤4): a Zn4s conductor. Philos Mag B, 2001, 81(5): 501 doi: 10.1080/13642810110045923
[90]
Park J S, Kim K, Park Y G, et al. Novel ZrInZnO thin-film transistor with excellent stability. Adv Mater, 2009, 21(3): 329 doi: 10.1002/adma.v21:3
[91]
Xingqiang L, Jinshui M, Lei L, et al. High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors with enhanced-current paths for potential high-speed flexible electronics. J Mater Chem C, 2014, 2(7): 1201 doi: 10.1039/C3TC31705F
[92]
Yu X, Zeng L, Zhou N, et al. Ultra-flexible," invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. Adv Mater, 2015, 27(14): 2390 doi: 10.1002/adma.v27.14
[93]
Özgür Ü, Hofstetter D, Morkoc H. ZnO devices and applications: a review of current status and future prospects. Proc IEEE, 2010, 98(7): 1255 doi: 10.1109/JPROC.2010.2044550
[94]
Wang Z, Nayak P K, Caraveo-Frescas J A, et al. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater, 2016, 28(20): 3831 doi: 10.1002/adma.v28.20
[95]
Liang L Y, Cao H T, Chen X B, et al. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl Phys Lett, 2012, 100(26): 263502 doi: 10.1063/1.4731271
[96]
Yao Z, Liu S, Zhang L, et al. Room temperature fabrication of p-channel Cu2O thin-film transistors on flexible polyethylene terephthalate substrates. Appl Phys Lett, 2012, 101(4): 042114 doi: 10.1063/1.4739524
[97]
Yabuta H, Kaji N, Hayashi R, et al. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl Phys Lett, 2010, 97(7): 072111 doi: 10.1063/1.3478213
[98]
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6): 5160 doi: 10.1021/nn400852r
[99]
Martins R, Nathan A, Barros R, et al. Complementary metal oxide semiconductor technology with and on paper. Adv Mater, 2011, 23(39): 4491 doi: 10.1002/adma.201102232
[100]
Caraveo-Frescas J, Khan M, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility. Sci Rep, 2014, 4: 5243
[101]
Shiosaki T, Ohnishi S, Hirokawa Y, et al. As-grown CVD ZnO optical waveguides on sapphire. Appl Phys Lett, 1978, 33(5): 406 doi: 10.1063/1.90393
[102]
Tynell T, Karppinen M. Atomic layer deposition of ZnO: a review. Semicond Sci Technol, 2014, 29(4): 043001 doi: 10.1088/0268-1242/29/4/043001
[103]
Diniz A S A C. The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications. Renew Energ, 2011, 36(4): 1153 doi: 10.1016/j.renene.2010.09.005
[104]
Kim S J, Yoon S, Kim H J. Review of solution-processed oxide thin-film transistors. Jpn J Appl Phys, 2014, 53(2S): 02B
[105]
Thomas S R, Pattanasattayavong P, Anthopoulos T D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem Soc Rev, 2013, 42(16): 6910 doi: 10.1039/c3cs35402d
[106]
Seo J S, Jeon J H, Hwang Y H, et al. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci Rep, 2013, 3: 2085 doi: 10.1038/srep02085
[107]
Kim S Y, Kim K, Hwang Y, et al. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale, 2016, 8(39): 17113 doi: 10.1039/C6NR05577J
[108]
Choi C H, Lin L Y, Cheng C C, et al. Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol, 2015, 4(4): P3044 doi: 10.1149/2.0071504jss
[109]
Wee D, Yoo S, Kang Y H, et al. Poly (imide-benzoxazole) gate insulators with high thermal resistance for solution-processed flexible indium-zinc oxide thin-film transistors. J Mater Chem C, 2014, 2(31): 6395 doi: 10.1039/C4TC00709C
[110]
Leppäniemi J, Huttunen O H, Majumdar H, et al. Flexography-printed In2O3 semiconductor layers for high-mobility thin-film transistors on flexible plastic substrate. Adv Mater, 2015, 27(44): 7168 doi: 10.1002/adma.201502569
[111]
Nakata M, Takechi K, Eguchi T, et al. Effects of thermal annealing on ZnO thin-film transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors. Jpn J Appl Phys, 2009, 48(8R): 081608
[112]
Zhang J, Wu G D. Ultralow-voltage electric-double-layer oxide-based thin-film transistors with faster switching response on flexible substrates. Chin Phys Lett, 2014, 31(7): 078502 doi: 10.1088/0256-307X/31/7/078502
[113]
Zhang J, Liu Y, Guo L, et al. Flexible oxide-based thin-film transistors on plastic substrates for logic applications. J Mater Sci Technol, 2015, 31(2): 171 doi: 10.1016/j.jmst.2014.07.009
[114]
Sheets W C, Kang S J, Hsieh H H, et al. Organic gate insulator materials for amorphous metal oxide TFTs. IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: 1878
[115]
Gao P, Lan L, Xiao P, et al. Solution-processed flexible zinc-tin oxide thin-film transistors on ultra-thin polyimide substrates. J Soc Inf Display, 2016, 24(4): 211 doi: 10.1002/jsid.438
[116]
Kim Y C, Lee S J, Oh I-K, et al. Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes. J Alloy Compd, 2016, 688: 1108 doi: 10.1016/j.jallcom.2016.07.169
[117]
Cantarella G, Ishida K, Petti L, et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and fabrication study. IEEE Electron Device Lett, 2016, 37(12): 1582 doi: 10.1109/LED.2016.2619738
[118]
Petti L, Frutiger A, Münzenrieder N, et al. Flexible quasi-vertical In–Ga–Zn–O thin-film transistor with 300-nm channel length. IEEE Electron Device Lett, 2015, 36(5): 475 doi: 10.1109/LED.2015.2418295
[119]
Chen Y, Geng D, Lin T, et al. Full-swing clock generating circuits on plastic using a-IGZO dual-gate TFTs with pseudo-CMOS and bootstrapping. IEEE Electron Device Lett, 2016, 37(7): 882 doi: 10.1109/LED.2016.2571321
[120]
Song K, Noh J, Jun T, et al. Fully flexible solution-deposited ZnO thin-film transistors. Adv Mater, 2010, 22(38): 4308 doi: 10.1002/adma.201002163
[121]
Bong H, Lee W H, Lee D Y, et al. High-mobility low-temperature ZnO transistors with low-voltage operation. Appl Phys Lett, 2010, 96(19): 192115 doi: 10.1063/1.3428357
[122]
Jackson W, Hoffman R, Herman G. High-performance flexible zinc tin oxide field-effect transistors. Appl Phys Lett, 2005, 87(19): 193503 doi: 10.1063/1.2120895
[123]
Cherenack K H, Münzenrieder N S, Troster G. Impact of mechanical bending on ZnO and IGZO thin-film transistors. IEEE Electron Device Lett, 2010, 31(11): 1254
[124]
Petti L, Münzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085 doi: 10.1109/TED.2014.2304307
[125]
Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105 doi: 10.1063/1.4914085
[126]
Kim I D, Choi Y, Tuller H L. Low-voltage ZnO thin-film transistors with high-k Bi1.0Nb1.5O7 gate insulator for transparent and flexible electronics. Appl Phys Lett, 2005, 87(4): 043509 doi: 10.1063/1.1993762
[127]
Su N C, Wang S J, Huang C C, et al. Low-voltage-driven flexible InGaZnO thin-film transistor with small subthreshold swing. IEEE Electron Device Lett, 2010, 31(7): 680 doi: 10.1109/LED.2010.2047232
[128]
Rim Y S, Jeong W H, Kim D L, et al. Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. J Mater Chem, 2012, 22(25): 12491 doi: 10.1039/c2jm16846d
[129]
Liao P Y, Chang T C, Su W C, et al. Effect of mechanical-strain-induced defect generation on the performance of flexible amorphous In–Ga–Zn–O thin-film transistors. Appl Phys Express, 2016, 9(12): 124101 doi: 10.7567/APEX.9.124101
[130]
Zhao D, Mourey D A, Jackson T N. Fast flexible plastic substrate ZnO circuits. IEEE Electron Device Lett, 2010, 31(4): 323 doi: 10.1109/LED.2010.2041321
[131]
Hsieh H H, Wu C H, Wu C C, et al. Amorphous In2O3–Ga2O3–ZnO thin film transistors and integrated circuits on flexible and colorless polyimide substrates. SID Symp Dig Tech Pap, 2008, 39(1): 1207 doi: 10.1889/1.3069352
[132]
Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Inter, 2016, 8(49): 33821 doi: 10.1021/acsami.6b11774
[133]
Park J, Kim C S, Ahn B, et al. Flexible In–Ga–Zn–O thin-film transistors fabricated on polyimide substrates and mechanically induced instability under negative bias illumination stress. J Electroceram, 2015, 1(35): 106
[134]
Jo J W, Kim J, Kim K T, et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv Mater, 2015, 27(7): 1182 doi: 10.1002/adma.201404296
[135]
You H C, Lin Y H. Investigation of the sol–gel method on the flexible ZnO device. Int J Electrochem Sci, 2012, 7: 9085
[136]
Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458 doi: 10.1016/j.orgel.2014.04.003
[137]
Rim Y S, Chen H, Liu Y, et al. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano, 2014, 8(9): 9680 doi: 10.1021/nn504420r
[138]
Kinkeldei T, Münzenrieder N, Zysset C, et al. Encapsulation for flexible electronic devices. IEEE Electron Device Lett, 2011, 32(12): 1743 doi: 10.1109/LED.2011.2168378
[139]
Lai H C, Pei Z, Jian J R, et al. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability. Appl Phys Lett, 2014, 105(3): 033510 doi: 10.1063/1.4891426
[140]
Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113 doi: 10.1063/1.3577607
[141]
Marrs M A, Moyer C D, Bawolek E J, et al. Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal–oxide–semiconductor on flexible plastic substrates. IEEE Trans Electron Devices, 2011, 58(10): 3428 doi: 10.1109/TED.2011.2161764
[142]
Smith J T, Shah S S, Goryll M, et al. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sens J, 2014, 14(4): 937 doi: 10.1109/JSEN.2013.2295057
[143]
Dey A, Indluru A, Venugopal S M, et al. Effect of mechanical and electromechanical stress on a-ZIO TFTs. IEEE Electron Device Lett, 2010, 31(12): 1416 doi: 10.1109/LED.2010.2080350
[144]
Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel. J Electrochem Soc, 2011, 158(9): H892 doi: 10.1149/1.3609842
[145]
Lujan R, Street R. Flexible X-ray detector array fabricated with oxide thin-film transistors. IEEE Electron Device Lett, 2012, 33(5): 688 doi: 10.1109/LED.2012.2188825
[146]
Kim S J, Park M J, Yun D J, et al. High performance and stable flexible memory thin-film transistors using In–Ga–Zn–O channel and ZnO charge-trap layers on poly (ethylene naphthalate) substrate. IEEE Trans Electron Devices, 2016, 63(4): 1557 doi: 10.1109/TED.2016.2531087
[147]
Xiao P, Dong T, Lan L, et al. High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer. Phys Status Solidi R, 2016, 10(6): 493 doi: 10.1002/pssr.201600052
[148]
Kaftanoglu K, Venugopal S M, Marrs M, et al. Stability of IZO and a-Si: H TFTs processed at low temperature (200 ℃). J Disp Technol, 2011, 7(6): 339 doi: 10.1109/JDT.2011.2107879
[149]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly (vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 012901 doi: 10.1063/1.3608145
[150]
Smith J, Couture A, Allee D. Charge emission induced transient leakage currents of a-Si: H and IGZO TFTs on flexible plastic substrates. Electron Lett, 2014, 50(2): 105 doi: 10.1049/el.2013.3795
[151]
Lin Y H, Faber H, Zhao K, et al. High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80–180 °C. Adv Mater, 2013, 25(31): 4340 doi: 10.1002/adma.v25.31
[152]
Liu J, Buchholz D B, Chang R P, et al. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Adv Mater, 2010, 22(21): 2333 doi: 10.1002/adma.200903761
[153]
Han D, Chen Z, Cong Y, et al. High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates. IEEE Trans Electron Devices, 2016, 63(8): 3360
[154]
Liu J, Buchholz D B, Hennek J W, et al. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. J Am Chem Soc, 2010, 132(34): 11934 doi: 10.1021/ja9103155
[155]
Huang L, Han D, Chen Z, et al. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature. Jpn J Appl Phys, 2015, 54(4S): 04D
[156]
Lim W, Jang J H, Kim S H, et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl Phys Lett, 2008, 93(8): 082102 doi: 10.1063/1.2975959
[157]
Hyung G W, Park J, Wang J X, et al. Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn J Appl Phys, 2013, 52(7R): 071102 doi: 10.7567/JJAP.52.071102
[158]
Choi K M, Hyung G W, Yang J W, et al. Fabrication of atomic layer deposited zinc oxide thin film transistors with organic gate insulator on flexible substrate. Mol Cryst Liq Cryst, 2010, 529(1): 131 doi: 10.1080/15421406.2010.495889
[159]
Lee C Y, Chang C, Shih W P, et al. Wet etching rates of InGaZnO for the fabrication of transparent thin-film transistors on plastic substrates. Thin Solid Films, 2010, 518(14): 3992 doi: 10.1016/j.tsf.2009.12.010
[160]
Ha Y G, Everaerts K, Hersam M C, et al. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc Chem Res, 2014, 47(4): 1019 doi: 10.1021/ar4002262
[161]
Han D, Zhang Y, Cong Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984 doi: 10.1038/srep38984
[162]
Kumomi H, Nomura K, Kamiya T, et al. Amorphous oxide channel TFTs. Thin Solid Films, 2008, 516(7): 1516 doi: 10.1016/j.tsf.2007.03.161
[163]
Liu Y, Zhou H, Cheng R, et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett, 2014, 14(3): 1413 doi: 10.1021/nl404484s
[164]
Vidor F F, Meyers T, Wirth G I, et al. ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique. Microelectron Eng, 2016, 159: 155 doi: 10.1016/j.mee.2016.02.059
[165]
Hsu H H, Chang C Y, Cheng C H, et al. High mobility field-effect thin film transistor using room-temperature high-k gate dielectrics. J Disp Technol, 2014, 10(10): 847 doi: 10.1109/JDT.2014.2326175
[166]
Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768 doi: 10.1109/LED.2013.2258455
[167]
Hsu H H, Chiu Y C, Chiou P, et al. Improvement of dielectric flexibility and electrical properties of mechanically flexible thin film devices using titanium oxide materials fabricated at a very low temperature of 100 °C. J Alloy Compd, 2015, 643: S133 doi: 10.1016/j.jallcom.2014.12.061
[168]
Jun J H, Park B, Cho K, et al. Flexible TFTs based on solution-processed ZnO nanoparticles. Nanotechnology, 2009, 20(50): 505201 doi: 10.1088/0957-4484/20/50/505201
[169]
Kim J, Fuentes-Hernandez C, Kim S J, et al. Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors. Org Electron, 2010, 11(6): 1074 doi: 10.1016/j.orgel.2010.03.008
[170]
Kim J, Fuentes-Hernandez C, Hwang D, et al. Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates. Org Electron, 2011, 12(1): 45 doi: 10.1016/j.orgel.2010.10.012
[171]
Oh H, Cho K, Park S, et al. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron Eng, 2016, 159: 179 doi: 10.1016/j.mee.2016.03.044
[172]
Park S, Cho K, Yang K, et al. Electrical characteristics of flexible ZnO thin-film transistors annealed by microwave irradiation. J Vac Sci Technol B, 2014, 32(6): 062203 doi: 10.1116/1.4898115
[173]
Park K, Lee D K, Kim B S, et al. Stretchable, transparent zinc oxide thin film transistors. Adv Funct Mater, 2010, 20(20): 3577 doi: 10.1002/adfm.v20:20
[174]
Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781 doi: 10.1109/LED.2015.2442271
[175]
Cheong W S, Bak J Y, Kim H S. Transparent flexible zinc–indium–tin oxide thin-film transistors fabricated on polyarylate films. Jpn J Appl Phys, 2010, 49(5S1): 05EB10
[176]
Jin S H, Kang S K, Cho I T, et al. Water-soluble thin film transistors and circuits based on amorphous indium–gallium–zinc oxide. ACS Appl Mater Inter, 2015, 7(15): 8268 doi: 10.1021/acsami.5b00086
[177]
Jin J, Ko J H, Yang S, et al. Rollable transparent glass‐fabric reinforced composite substrate for flexible devices. Adv Mater, 2010, 22(40): 4510 doi: 10.1002/adma.v22:40
[178]
Ok K C, Park S H K, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508 doi: 10.1063/1.4864617
[179]
Chien C W, Wu C H, Tsai Y T, et al. High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2011, 58(5): 1440 doi: 10.1109/TED.2011.2109041
[180]
Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous InGaZnO thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917 doi: 10.1109/LED.2015.2461003
[181]
Park C B, Na H, Yoo S S, et al. Electrical characteristics of a-IGZO transistors along the in-plane axis during outward bending. Microelectron Reliab, 2016, 59: 37 doi: 10.1016/j.microrel.2016.01.006
[182]
Park S, Kim K H, Jo J W, et al. In-depth studies on rapid photochemical activation of various sol-gel metal oxide films for flexible transparent electronics. Adv Funct Mater, 2015, 25(19): 2807 doi: 10.1002/adfm.201500545
[183]
Mativenga M, Geng D, Kim B, et al. Fully transparent and rollable electronics. ACS Appl Mater Inter, 2015, 7(3): 1578 doi: 10.1021/am506937s
[184]
Lin C Y, Chien C W, Wu C C, et al. Effects of mechanical strains on the characteristics of top-gate staggered a-IGZO thin-film transistors fabricated on polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2012, 59(7): 1956 doi: 10.1109/TED.2012.2193585
[185]
Li X, Billah M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811 doi: 10.1109/LED.2015.2451005
[186]
Münzenrieder N, Salvatore G A, Petti L, et al. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation. Appl Phys Lett, 2014, 105(26): 263504 doi: 10.1063/1.4905015
[187]
Münzenrieder N, Cherenack K H, Troster G. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041 doi: 10.1109/TED.2011.2143416
[188]
Lee S J, Ko J, Park J H, et al. Effective work function modulation of SWCNT–AZO NP hybrid electrodes in fully solution-processed flexible metal-oxide thin film transistors. J Mater Chem C, 2015, 3(31): 8121 doi: 10.1039/C5TC01481F
[189]
Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401 doi: 10.1016/j.orgel.2012.06.038
[190]
Münzenrieder N, Petti L, Zysset C, et al. Flexible a-IGZO TFT amplifier fabricated on a free standing polyimide foil operating at 1.2 MHz while bent to a radius of 5 mm. IEEE International Electron Devices Meeting (IEDM), 2012: 5.2. 1
[191]
Ji L W, Wu C Z, Fang T H, et al. Characteristics of flexible thin-film transistors with ZnO channels. IEEE Sens J, 2013, 13(12): 4940 doi: 10.1109/JSEN.2013.2267808
[192]
Münzenrieder N, Zysset C, Petti L, et al. Flexible double gate a-IGZO TFT fabricated on free standing polyimide foil. Solid-State Electron, 2013, 84: 198 doi: 10.1016/j.sse.2013.02.025
[193]
Lim W, Douglas E, Kim S H, et al. Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape. Appl Phys Lett, 2008, 93(25): 252103 doi: 10.1063/1.3054167
[194]
Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208 doi: 10.1116/1.4731257
[195]
Wu S C, Feng H T, Yu M J, et al. Flexible three-bit-per-cell resistive switching memory using a-IGZO TFTs. IEEE Electron Device Lett, 2013, 34(10): 1265 doi: 10.1109/LED.2013.2278098
[196]
Hwang Y H, Seo J S, Yun J M, et al. An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater, 2013, 5(4): e45 doi: 10.1038/am.2013.11
[197]
Sharma B K, Jang B, Lee J E, et al. Load-controlled roll transfer of oxide transistors for stretchable electronics. Adv Funct Mater, 2013, 23(16): 2024 doi: 10.1002/adfm.v23.16
[198]
Eun K, Hwang W, Sharma B, et al. Mechanical flexibility of zinc oxide thin-film transistors prepared by transfer printing method. Mod Phys Lett B, 2012, 26(12): 1250077 doi: 10.1142/S0217984912500777
[199]
Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779 doi: 10.1039/C5TC00048C
[200]
Li H U, Jackson T N. Oxide semiconductor thin film transistors on thin solution-cast flexible substrates. IEEE Electron Device Lett, 2015, 36(1): 35 doi: 10.1109/LED.2014.2371011
[201]
Salvatore G A, Münzenrieder N, Kinkeldei T, et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat Commun, 2014, 5: 2982
[202]
Petti L, Münzenrieder N, Salvatore G A, et al. Flexible electronics based on oxide semiconductors. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 323
[203]
Yuan H, Wang H, Cui Y. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. ACC Chem Res, 2015, 48(1): 81 doi: 10.1021/ar5003297
[204]
Fujimoto T, Awaga K. Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys, 2013, 15(23): 8983 doi: 10.1039/c3cp50755f
[205]
Du H, Lin X, Xu Z, et al. Electric double-layer transistors: a review of recent progress. J Mater Sci, 2015, 50(17): 5641 doi: 10.1007/s10853-015-9121-y
[206]
Ono S, Seki S, Hirahara R, et al. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett, 2008, 92(10): 93
[207]
Zhou J, Wu G, Guo L, et al. Flexible transparent junctionless TFTs with oxygen-tuned indium–zinc–oxide channels. IEEE Electron Device Lett, 2013, 34(7): 888 doi: 10.1109/LED.2013.2260819
[208]
Hong K, Kim S H, Lee K H, et al. Printed, sub-2 V ZnO electrolyte gated transistors and inverters on plastic. Adv Mater, 2013, 25(25): 3413 doi: 10.1002/adma.v25.25
[209]
Liu Y H, Zhu L Q, Feng P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater, 2015, 27(37): 5599 doi: 10.1002/adma.201502719
[210]
Martins R, Ferreira I, Fortunato E. Electronics with and on paper. Phys Status Solidi-R, 2011, 5(9): 332 doi: 10.1002/pssr.201105247
[211]
Lim W, Douglas E, Norton D, et al. Low-voltage indium gallium zinc oxide thin film transistors on paper substrates. Appl Phys Lett, 2010, 96(5): 053510 doi: 10.1063/1.3309753
[212]
Wu G, Wan X, Yang Y, et al. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D: Appl Phys, 2014, 47(49): 495101 doi: 10.1088/0022-3727/47/49/495101
[213]
Dou W, Zhu L, Jiang J, et al. Flexible dual-gate oxide TFTs gated by chitosan film on paper substrates. IEEE Electron Device Lett, 2013, 34(2): 259 doi: 10.1109/LED.2012.2231661
[214]
Jiang J, Sun J, Dou W, et al. Junctionless flexible oxide-based thin-film transistors on paper substrates. IEEE Electron Device Lett, 2012, 33(1): 65 doi: 10.1109/LED.2011.2172973
[215]
Jiang J, Sun J, Dou W, et al. In-plane-gate indium–tin–oxide thin-film transistors self-assembled on paper substrates. Appl Phys Lett, 2011, 98(11): 113507 doi: 10.1063/1.3567946
[216]
Lim W, Douglas E, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper. Appl Phys Lett, 2009, 94(7): 072103 doi: 10.1063/1.3086394
[217]
Jiang S, Feng P, Yang Y, et al. Flexible low-voltage In–Zn–O homojunction TFTs with beeswax gate dielectric on paper substrates. IEEE Electron Device Lett, 2016, 37(3): 287 doi: 10.1109/LED.2016.2518666
[218]
Lu A, Dai M, Sun J, et al. Flexible low-voltage electric-double-layer TFTs self-assembled on paper substrates. IEEE Electron Device Lett, 2011, 32(4): 518 doi: 10.1109/LED.2011.2107550
[219]
Thiemann S, Sachnov S J, Pettersson F, et al. Cellulose-based ionogels for paper electronics. Adv Funct Mater, 2014, 24(5): 625 doi: 10.1002/adfm.201302026
[220]
Pereira L, Gaspar D, Guerin D, et al. The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology, 2014, 25(9): 094007 doi: 10.1088/0957-4484/25/9/094007
[221]
Martins R, Barquinha P, Pereira L, et al. Write-erase and read paper memory transistor. Appl Phys Lett, 2008, 93(20): 203501 doi: 10.1063/1.3030873
[222]
Gaspar D, Fernandes S, De Oliveira A, et al. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25(9): 094008 doi: 10.1088/0957-4484/25/9/094008
[223]
Wu G D, Zhang J, Wan X. Junctionless coplanar-gate oxide-based thin-film transistors gated by Al2O3 proton conducting films on paper substrates. Chin Phys Lett, 2014, 31(10): 108505 doi: 10.1088/0256-307X/31/10/108505
[224]
Sun J, Jiang J, Lu A, et al. One-volt oxide thin-film transistors on paper substrates gated by SiO2-based solid electrolyte with controllable operation modes. IEEE Trans Electron Devices, 2010, 57(9): 2258 doi: 10.1109/TED.2010.2052168
[225]
Choi N, Khan S A, Ma X, et al. Amorphous oxide thin film transistors with methyl siloxane based gate dielectric on paper substrate. Electrochem Solid-State Lett, 2011, 14(6): H247 doi: 10.1149/1.3570612
[226]
Fortunato E, Correia N, Barquinha P, et al. High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett, 2008, 29(9): 988 doi: 10.1109/LED.2008.2001549
[227]
Martins R, Barquinha P, Pereira L, et al. Selective floating gate non-volatile paper memory transistor. Phys Status Solidi R, 2009, 3(9): 308
[228]
Mahmoudabadi F, Ma X, Hatalis M K, et al. Amorphous IGZO TFTs and circuits on conformable aluminum substrates. Solid-State Electron, 2014, 101: 57 doi: 10.1016/j.sse.2014.06.031
[229]
Park I J, Jeong C Y, Cho I T, et al. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors. Semicond Sci Technol, 2012, 27(10): 105019 doi: 10.1088/0268-1242/27/10/105019
[230]
Plichta A, Weber A, Habeck A. Ultra thin flexible glass substrates. Symposium on Flexible Electronics-Materials and Device Technology held at the 2003 MRS Spring Meeting, 2003: 273
[231]
Lee G J, Kim J, Kim J H, et al. High performance, transparent a-IGZO TFTs on a flexible thin glass substrate. Semicond Sci Technol, 2014, 29(3): 035003 doi: 10.1088/0268-1242/29/3/035003
[232]
Yamauchi N, Itoh T, Noguchi T. Low energy-cost TFT technologies using ultra-thin flexible glass substrate. IEEE 19th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2012: 213
[233]
Dai M K, Lian J T, Lin T Y, et al. High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. J Mater Chem C, 2013, 1(33): 5064 doi: 10.1039/c3tc30890a
[234]
Münzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69 doi: 10.1109/LED.2013.2286319
[235]
Li Y, Liu Y, Yun F, et al. Self-assembled transparent a-IGZO based TFTs for flexible sensing applications. International Symposium on Photonics and Optoelectronics, 2014: 92332A
[236]
Smith J T, Couture A J, Stowell J R, et al. Optically seamless flexible electronic tiles for ultra large-area digital X-ray imaging. IEEE Trans Compon Packag Manuf Technol, 2014, 4(6): 1109 doi: 10.1109/TCPMT.2014.2316477
[237]
Gelinck G H, Kumar A, Van Der Steen J L P, et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes. IEEE Trans Electron Devices, 2016, 63(1): 197 doi: 10.1109/TED.2015.2432572
[238]
Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 2015, 27(32): 4674 doi: 10.1002/adma.v27.32
[239]
Kim J, Kim J, Jo S, et al. Ultrahigh detective heterogeneous photosensor arrays with in-pixel signal boosting capability for large-area and skin-compatible electronics. Adv Mater, 2016, 28(16): 3078 doi: 10.1002/adma.201505149
[240]
Van Breemen A, Kam B, Cobb B, et al. Ferroelectric transistor memory arrays on flexible foils. Org Electron, 2013, 14(8): 1966 doi: 10.1016/j.orgel.2013.04.025
[241]
Myny K, Steudel S. Flexible thin-film nfc transponder chip exhibiting data rates compatible to ISO NFC standards using self-aligned metal-oxide tfts. IEEE International Solid-State Circuits Conference (ISSCC), 2016: 298
[242]
Zhang L R, Huang C Y, Li G M, et al. A low-power high-stability flexible scan driver integrated by IZO TFTs. IEEE Trans Electron Devices, 2016, 63(4): 1779 doi: 10.1109/TED.2016.2529656
[243]
Meister T, Ishida K, Shabanpour R, et al. 20.3 dB 0.39 mW AM detector with single-transistor active inductor in bendable a-IGZO TFT. IEEE 46th European Solid-State Device Research Conference (ESSDERC), 2016: 71
[244]
Huang T C, Fukuda K, Lo C M, et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices, 2011, 58(1): 141 doi: 10.1109/TED.2010.2088127
[245]
Münzenrieder N, Zysset C, Kinkeldei T, et al. Design rules for IGZO logic gates on plastic foil enabling operation at bending radii of 3.5 mm. IEEE Trans Electron Devices, 2012, 59(8): 2153 doi: 10.1109/TED.2012.2198480
[246]
Kim Y H, Heo J S, Kim T H, et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature, 2012, 489(7414): 128 doi: 10.1038/nature11434
[247]
Zysset C, Münzenrieder N, Petti L, et al. IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm. IEEE Electron Device Lett, 2013, 34(11): 1394 doi: 10.1109/LED.2013.2280024
[248]
Perumal C, Ishida K, Shabanpour R, et al. A Compact a-IGZO TFT model based on MOSFET SPICE Level=3 template for analog/RF circuit designs. IEEE Electron Device Lett, 2013, 34(11): 1391 doi: 10.1109/LED.2013.2279940
[249]
Nomura K, Aoki T, Nakamura K, et al. Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9, 9-dioctylfluorene-co-bithiophene) thin-film transistors. Appl Phys Lett, 2010, 96(26): 263509 doi: 10.1063/1.3458799
[250]
Rockelé M, Pham D V, Steiger J, et al. Solution-processed and low-temperature metal oxide n-channel thin-film transistors and low-voltage complementary circuitry on large-area flexible polyimide foil. J Soc Inf Display, 2012, 20(9): 499 doi: 10.1002/jsid.114
[251]
Oh M S, Choi W, Lee K, et al. Flexible high gain complementary inverter using n-ZnO and p-pentacene channels on polyethersulfone substrate. Appl Phys Lett, 2008, 93(3): 033510 doi: 10.1063/1.2956406
[252]
Honda W, Arie T, Akita S, et al. Mechanically flexible and high-performance CMOS logic circuits. Sci Rep, 2015, 5: 15099 doi: 10.1038/srep15099
[253]
Nag M, Chasin A, Rockele M, et al. Single-source dual-layer amorphous IGZO thin-film transistors for display and circuit applications. J Soc Inf Display, 2013, 21(3): 129 doi: 10.1002/jsid.v21.3
[254]
Yamamoto T, Takei T, Nakajima Y, et al. Simple transfer technology for fabrication of TFT backplane for flexible displays. IEEE T Ind Appl, 2012, 48(5): 1662 doi: 10.1109/TIA.2012.2209170
[255]
Oh T. Tunneling phenomenon of amorphous indium-gallium-zinc-oxide thin film transistors for flexible display. Electron Mater Lett, 2015, 11(5): 853
[256]
Kim H, Kim Y J. Influence of external forces on the mechanical characteristics of the a-IGZO and graphene based flexible display. Global Conference on Polymer and Composite Materials (PCM), 2014: 012022
[257]
Genoe J, Obata K, Ameys M, et al. Integrated line driver for digital pulse-width modulation driven AMOLED displays on flex. IEEE J Soild-State Circuits, 2015, 50(1): 282 doi: 10.1109/JSSC.2014.2364268
[258]
Zysset C, Münzenrieder N, Kinkeldei T, et al. Woven active-matrix display. IEEE Trans Electron Devices, 2012, 59(3): 721 doi: 10.1109/TED.2011.2180724
Fig. 1.  (Color online) Possible applications for flexible oxide-based TFTs. The inset images were reproduced from Refs. [15, 25, 30, 45, 5074].

Fig. 2.  (Color online) Schematic orbital drawings of (a) covalent semiconductor, and (b) metal oxide semiconductor in crystalline and amorphous states. Reproduced from Ref. [30].

Fig. 3.  (Color online) (a) The structure of transparent flexible IGZO TFTs. (b) A photograph of the flexible TFT bent at R = 30 mm on the probe station. Reproduced from Ref. [30].

Fig. 4.  (Color online) Device parameters including saturation mobility, threshold voltage, and subthreshold swing versus different bending radii. Reproduced from Ref. [199].

Fig. 5.  (Color online) Transfer characteristics tested before and after separating from glass carrier to PET. Reproduced from Ref. [45].

Fig. 6.  (Color online) Transfer characteristics after repeated bending cycles with bending orientations (a) parallel and (b) perpendicular to the current flow direction. The bending radius is about 3.5 mm. Reproduced from Ref. [200].

Fig. 7.  (Color online) Transfer characteristics while TFTs bent at different radii (a) parallel and (b) perpendicular to the current flow direction. Reproduced from Ref. [44].

Fig. 8.  (Color online) Schematic diagram of the IZO-based junctionless TFT on PET substrate. Reproduced from Ref. [207].

Fig. 9.  (Color online) (a) (b) The schematic diagram and I–V curve of the TFTs. (c) (d) The surface images with and without BCB coating. Reproduced from Ref. [211].

Fig. 10.  (Color online) The schematic of the flexible oxide-based TFT using cellulose paper as both gate dielectric and substrate carrier. Reproduced from Ref. [226].

Fig. 11.  (Color online) Illustration of the device structure with its different layers. The magnified insets show the paper sheet dielectric structure and some of the expected electron paths along the fibers between source and drain electrodes. Reproduced from Ref. [227].

Fig. 12.  (Color online) Photograph of flexible TFTs with metal foil substrate. Reproduced from Ref. [229].

Fig. 13.  (Color online) Optical transmittance versus wavelength of the IGZO TFTs on flexible thin glass, the inset is a photograph of transparent flexible IGZO TFTs fabricated on flexible thin glass under bending status. Reproduced from Ref. [231].

Fig. 14.  (Color online) Flexible electronic tiles for large area digital X-ray imaging. Reproduced from Ref. [236].

Fig. 15.  (Color online) Optical profilometer scan of the SnO-based polymer ferroelectric TFT memory. Reproduced from Ref. [100].

Fig. 16.  (Color online) (Left) Optical microscopic image of ZnO TFT. (Top right) Schematic diagram of ZnO TFT and (bottom right) ZnO TFTs and circuits on flexible plastic substrate. Reproduced from Ref. [130].

Fig. 17.  (Color online) Picture displayed by 6.5 in. flexible full-color top-emission AMOLED panel bent to a curvature radius of approximately 2 cm. Reproduced from Ref. [47].

Table 1.   Bending properties of flexible oxide-based TFTs.

Active layer Substrate and thickness (μm) Bending radius (mm) Bending times Strain type Ref.
a-IGZO PET/200 30 Tensile [30]
a-IGZO PEN/125 5 10000 Tensile [199]
ZnO PI/5 3.5 5000 Tensile and compressive [200]
a-IGZO Parylene/1 0.05 Tensile [201]
InOx PI 1 [182]
In2O3 PI [77]
a-IGZO PC 15 [166]
ZnO PI/50 0.2 100 Tensile [120]
a-IGZO PI/16 10 10000 Tensile [116]
a-IGZO Paper/52 5 Tensile [220]
a-IGZO PI/20 15 10000 [178]
In2O3 PEN/— [83]
a-IGO PI/50 10 [76]
a-IGZO PEN/125 4 100 Tensile [139]
ZnO PI/50 25 Tensile [208]
a-IGZO PEN/25 2 Tensile and compressive [44]
a-IGZO Thin glass/70 40 Tensile [231]
a-IGZO Al/480 19 Tensile [228]
DownLoad: CSV

Table 2.   Applications of flexible oxide-based thin film transistors.

Active layer Dielectric Substrate μFE (cm2V−1s−1) Ion/Ioff Vth(V) SS (V/decade) Application Ref.
IZO SiO2 PET 12 6.4 × 105 −0.3 0.175 PH sensor [40]
a-IGZO SiO-based PEN 10–15 2 0.3 X-ray detector [145]
ZnO Ferroelectric copolymer PEN 33.3 108 0.65 Memory [144]
a-IGZO Ferroelectric copolymer PEN 1 107 0.4 Memory [149]
SnO Poly ferroelectric PI 2.53 0.94 × 102 −11.7 4.35 Memory [100]
SnOx/a-IGZO Paper Paper 1.3/23 104/102 2.1/1.4 3.1/6.9 Complementary circuits [70]
SnO/ZnO HfO2 PI 0.06/1.6 104/106 5/5 1.6/1.6 Ring oscillator [2]
ZnO Al2O3 PI 20 107 2 0.35 Ring oscillator [130]
a-IGZO SiNx PEN 13 108 3.1 0.33 8-b transponder chip [44]
InOx Al2O3 PI 8.02 3.67 Ring oscillator [182]
a-IGZO SiO2 PI 17 1.4 Clock generating circuit [119]
ITZO SiO2 PI 32.9 iOLED [48]
a-IGZO AlOx PEN 12.87 109 2.48 0.20 AMOLED [8]
a-IGZO SiNx PI 15.1 5 × 108 0.9 0.25 AMOLED [47]
a-IGZO Al2O3 PEN 11.2 109 0.5 0.27 AMOLED [52]
DownLoad: CSV
[1]
Cao Q, Kim H S, Pimparkar N, et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454(7203): 495 doi: 10.1038/nature07110
[2]
Li Y S, He J C, Hsu S M, et al. Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors. IEEE Electron Device Lett, 2016, 37(1): 46 doi: 10.1109/LED.2015.2501843
[3]
Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6): 511 doi: 10.1038/nmat2745
[4]
Bock K. Polymer electronics systems-polytronics. Proc IEEE, 2005, 93(8): 1400 doi: 10.1109/JPROC.2005.851513
[5]
Heremans P. Electronics on plastic foil, for applications in flexible OLED displays, sensor arrays and circuits. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 1
[6]
Allen K J. Reel to real: prospects for flexible displays. Proc IEEE, 2005, 93(8): 1394 doi: 10.1109/JPROC.2005.851511
[7]
Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008 doi: 10.1088/0268-1242/26/3/034008
[8]
Xu H, Luo D, Li M, et al. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J Mater Chem C, 2014, 2(7): 1255 doi: 10.1039/C3TC31710B
[9]
Gelinck G H, Huitema H E A, Van Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3(2): 106 doi: 10.1038/nmat1061
[10]
Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part 1: Systems and applications. Proc IEEE, 2005, 93(7): 1235 doi: 10.1109/JPROC.2005.851525
[11]
Ito M, Kon M, Ishizaki M, et al. A flexible active-matrix TFT array with amorphous oxide semiconductors for electronic paper. Proc IDW/AD, 2005, 5: 845
[12]
Rogers J A, Bao Z, Baldwin K, et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci, 2001, 98(9): 4835 doi: 10.1073/pnas.091588098
[13]
Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part II: Materials and devices. Proc IEEE, 2005, 93(8): 1391 doi: 10.1109/JPROC.2005.851509
[14]
Khan Y, Garg M, Gui Q, et al. Flexible Hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv Funct Mater, 2016, 26(47): 8764 doi: 10.1002/adfm.v26.47
[15]
Pu X, Li L, Song H, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater, 2015, 27(15): 2472 doi: 10.1002/adma.201500311
[16]
Nathan A, Ahnood A, Cole M T, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE, 2012, 100(Special Centennial Issue): 1486 doi: 10.1109/JPROC.2012.2190168
[17]
Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815 doi: 10.1109/TED.2013.2274575
[18]
Tripathi A, Smits E P, Van Der Putten J, et al. Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: building blocks for radio frequency identification application. Appl Phys Lett, 2011, 98(16): 162102 doi: 10.1063/1.3579529
[19]
Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603 doi: 10.1126/science.1182383
[20]
Sekitani T, Kaltenbrunner M, Yokota T, et al. Imperceptible Electronic Skin. SID Symp Dig Tech Pap, 2014, 45(1): 122 doi: 10.1002/j.2168-0159.2014.tb00034.x
[21]
Sun Y, Rogers J A. Inorganic semiconductors for flexible electronics. Adv Mater, 2007, 19(15): 1897 doi: 10.1002/(ISSN)1521-4095
[22]
Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3(2): 021303 doi: 10.1063/1.4953034
[23]
Lee J K, Lim Y S, Park C , et al. a-Si: H thin-film transistor-driven flexible color E-paper display on flexible substrates. IEEE Electron Device Lett, 2010, 31(8): 833 doi: 10.1109/LED.2010.2051531
[24]
Huang J J, Chen Y P, Huang Y S, et al. A 4.1-inch flexible QVGA AMOLED using a microcrystalline-Si:H TFT on a polyimide substrate. SID Symp Dig Tech Pap, 2009, 40(1): 866 doi: 10.1889/1.3256932
[25]
Fukuda K, Takeda Y, Yoshimura Y, et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat Commun, 2014, 5: 4147
[26]
Yi H T, Payne M M, Anthony J E, et al. Ultra-flexible solution-processed organic field-effect transistors. Nat Commun, 2012, 3: 1259 doi: 10.1038/ncomms2263
[27]
Guo X, Xu Y, Ogier S, et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices, 2017, 64(5): 1906 doi: 10.1109/TED.2017.2677086
[28]
Dimitrakopoulos C D, Mascaro D J. Organic thin-film transistors: a review of recent advances. IBM J Res Dev, 2001, 45(1): 11 doi: 10.1147/rd.451.0011
[29]
Lin P, Yan F. Organic thin-film transistors for chemical and biological sensing. Adv Mater, 2012, 24(1): 34 doi: 10.1002/adma.201103334
[30]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488 doi: 10.1038/nature03090
[31]
Nomura K, Takagi A, Kamiya T, et al. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J Appl Phys, 2006, 45(5S): 4303
[32]
Kamiya T, Hiramatsu H, Nomura K, et al. Device applications of transparent oxide semiconductors: excitonic blue LED and transparent flexible TFT. J Electroceram, 2006, 17(2): 267
[33]
Raja J, Jang K, Nguyen C P T, et al. Improvement of mobility in oxide-based thin film transistors: a brief review. Trans Electr Electron Mater, 2015, 16(5): 234 doi: 10.4313/TEEM.2015.16.5.234
[34]
Kwon J Y, Lee D J, Kim K B. Transparent amorphous oxide semiconductor thin film transistor. Electron Mater Lett, 2011, 7(1): 1 doi: 10.1007/s13391-011-0301-x
[35]
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945 doi: 10.1002/adma.v24.22
[36]
Lee S, Nathan A. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science, 2016, 354(6310): 302 doi: 10.1126/science.aah5035
[37]
Park J S, Maeng W J, Kim H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 2012, 520(6): 1679 doi: 10.1016/j.tsf.2011.07.018
[38]
Ahn B D, Jeon H J, Sheng J, et al. A review on the recent developments of solution processes for oxide thin film transistors. Semicond Sci Technol, 2015, 30(6): 064001 doi: 10.1088/0268-1242/30/6/064001
[39]
Kamiya T, Nomura K, Hosono H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J Disp Technol, 2009, 5(7): 273 doi: 10.1109/JDT.2009.2021582
[40]
Liu N, Zhu L Q, Feng P, et al. Flexible sensory platform based on oxide-based neuromorphic transistors. Sci Rep, 2015, 5: 18082
[41]
Shah S, Smith J, Stowell J, et al. Biosensing platform on a flexible substrate. Sens Actuators B, 2015, 210: 197 doi: 10.1016/j.snb.2014.12.075
[42]
Jung S W, Koo J B, Park C W, et al. Flexible nonvolatile memory transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly (vinylidene fluoride-co-trifluoroethylene) fabricated on elastomer substrate. J Vac Sci Technol B, 2015, 33(5): 051201 doi: 10.1116/1.4927367
[43]
Kim S J, Jeon D B, Park J H, et al. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate. ACS Appl Mater Inter, 2015, 7(8): 4869 doi: 10.1021/am508834y
[44]
Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063 doi: 10.1109/TED.2015.2494694
[45]
Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170 doi: 10.1109/LED.2010.2093504
[46]
Dindar A, Kim J, Fuentes-Hernandez C, et al. Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Appl Phys Lett, 2011, 99(17): 172104 doi: 10.1063/1.3656974
[47]
Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503 doi: 10.1063/1.3159832
[48]
Nakata M, Motomura G, Nakajima Y, et al. Development of flexible displays using back-channel-etched In–Sn–Zn–O thin-film transistors and air-stable inverted organic light-emitting diodes. J Soc Inf Display, 2016, 24(1): 3 doi: 10.1002/jsid.408
[49]
Nag M, Bhoolokam A, Smout S, et al. Circuits and AMOLED display with self-aligned a-IGZO TFTs on polyimide foil. J Soc Inf Display, 2014, 22(10): 509 doi: 10.1002/jsid.v22.10
[50]
Hatano K, Chida A, Okano T, et al. 3.4-inch quarter high definition flexible active matrix organic light emitting display with oxide thin film transistor. Jpn J Appl Phys, 2011, 50(3S): 03CC06 doi: 10.7567/JJAP.50.03CC06
[51]
Nakajima Y, Nakata M, Takei T, et al. Development of 8-in. oxide-TFT-driven flexible AMOLED display using high-performance red phosphorescent OLED. J Soc Inf Display, 2014, 22(3): 137 doi: 10.1002/jsid.v22.3
[52]
Xu H, Pang J, Xu M, et al. Fabrication of flexible amorphous indium-gallium-zinc-oxide thin-film transistors by a chemical vapor deposition-free process on polyethylene napthalate. ECS J Solid State Sci Technol, 2014, 3(9): Q3035 doi: 10.1149/2.007409jss
[53]
Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inf Display, 2015, 23(2): 41 doi: 10.1002/jsid.276
[54]
Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604 doi: 10.1002/adfm.201606604
[55]
Tee B C, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol, 2012, 7(12): 825 doi: 10.1038/nnano.2012.192
[56]
Micera S, Carrozza M C, Beccai L, et al. Hybrid bionic systems for the replacement of hand function. Proc IEEE, 2006, 94(9): 1752 doi: 10.1109/JPROC.2006.881294
[57]
Coyle S, Wu Y, Lau K T, et al. Smart nanotextiles: a review of materials and applications. MRS Bull, 2007, 32(5): 434 doi: 10.1557/mrs2007.67
[58]
Kinkeldei T, Zysset C, Münzenrieder N, et al. An electronic nose on flexible substrates integrated into a smart textile. Senss Actuators B, 2012, 174: 81 doi: 10.1016/j.snb.2012.08.023
[59]
Vervust T, Buyle G, Bossuyt F, et al. Integration of stretchable and washable electronic modules for smart textile applications. J Text I, 2012, 103(10): 1127 doi: 10.1080/00405000.2012.664866
[60]
Cherenack K, Zysset C, Kinkeldei T, et al. Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater, 2010, 22(45): 5178 doi: 10.1002/adma.201002159
[61]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296 doi: 10.1038/nnano.2011.36
[62]
Benito-Lopez F, Coyle S, Byrne R, et al. Pump less wearable microfluidic device for real time pH sweat monitoring. Procedia Chemistry, 2009, 1(1): 1103 doi: 10.1016/j.proche.2009.07.275
[63]
Lemey S, Agneessens S, Van Torre P, et al. Wearable flexible lightweight modular RFID tag with integrated energy harvester. IEEE Trans Microwave Theory Tech, 2016, 64(7): 2304 doi: 10.1109/TMTT.2016.2573274
[64]
Yang L, Martin L, Staiculescu D, et al. A novel flexible magnetic composite material for RFID, wearable RF and bio-monitoring applications. IEEE MTT-S International Microwave Symposium Digest, 2008: 963
[65]
Hester J G, Tentzeris M M. Inkjet-printed flexible mm-wave Van-Atta reflectarrays: a solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins. IEEE Trans Microwave Theory Tech, 2016, 64(12): 4763 doi: 10.1109/TMTT.2016.2623790
[66]
Falco A, Salmerón J F, Loghin F C, et al. Fully printed flexible single-chip RFID tag with light detection capabilities. Sensors, 2017, 17(3): 534 doi: 10.3390/s17030534
[67]
Imenes K, Andersen M H, Nguyen A-T T, et al. Implantable MEMS acceleration sensor for heart monitoring recent development and outlook. IEEE 4th Electronic System-Integration Technology Conference (ESTC), 2012: 1
[68]
Lo R, Li P Y, Saati S, et al. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices, 2009, 11(5): 959 doi: 10.1007/s10544-009-9313-9
[69]
Hwang G T, Im D, Lee S E, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano, 2013, 7(5): 4545 doi: 10.1021/nn401246y
[70]
Martins R F, Ahnood A, Correia N, et al. Recyclable, flexible, low-power oxide electronics. Adv Funct Mater, 2013, 23(17): 2153 doi: 10.1002/adfm.v23.17
[71]
Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 2011, 32(12): 1692 doi: 10.1109/LED.2011.2167122
[72]
Yin Y, Sawin H H. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma. J Vac Sci Technol A, 2008, 26(1): 151 doi: 10.1116/1.2821747
[73]
Kim C J, Kim S, Lee J H, et al. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Appl Phys Lett, 2009, 95(25): 252103 doi: 10.1063/1.3275801
[74]
Jiang J, Sun J, Zhou B, et al. Vertical oxide homojunction TFTs of 0.8 V gated by H3PO4-treated SiO2 nanogranular dielectric. IEEE Electron Device Lett, 2010, 31(11): 1263
[75]
Weimer P K. The TFT a new thin-film transistor. Proc IRE, 1962, 50(6): 1462 doi: 10.1109/JRPROC.1962.288190
[76]
Jeong S, Lee J Y, Ham M H, et al. Bendable thin-film transistors based on sol–gel derived amorphous Ga-doped In2O3 semiconductors. Superlattices Microstruct, 2013, 59: 21 doi: 10.1016/j.spmi.2013.03.026
[77]
Park J H, Yoo Y B, Lee K H, et al. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl Mater Inter, 2013, 5(16): 8067 doi: 10.1021/am402153g
[78]
Ju S, Facchetti A, Xuan Y, et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat Nanotechnol, 2007, 2(6): 378 doi: 10.1038/nnano.2007.151
[79]
Lee C, Lin M, Wu W, et al. Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations. Semicond Sci Technol, 2010, 25(10): 105008 doi: 10.1088/0268-1242/25/10/105008
[80]
Zeumault A, Ma S, Holbery J. Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys Status Solidi A, 2016, 213(8): 2189 doi: 10.1002/pssa.v213.8
[81]
Kim S H, Yoon J, Yun S O, et al. Ultrathin sticker-type ZnO thin film transistors formed by transfer printing via topological confinement of water-soluble sacrificial polymer in dimple structure. Adv Funct Mater, 2013, 23(11): 1375 doi: 10.1002/adfm.201202409
[82]
Kim M-G, Kanatzidis M G, Facchetti A, et al. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater, 2011, 10(5): 382 doi: 10.1038/nmat3011
[83]
Dasgupta S, Kruk R, Mechau N, et al. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature. ACS Nano, 2011, 5(12): 9628 doi: 10.1021/nn202992v
[84]
Lee S, Jeon S, Chaji R, et al. Transparent semiconducting oxide technology for touch free interactive flexible displays. Proc IEEE, 2015, 103(4): 644 doi: 10.1109/JPROC.2015.2405767
[85]
Ginley D S, Bright C. Transparent conducting oxides. MRS Bull, 2000, 25(8): 15 doi: 10.1557/mrs2000.256
[86]
Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300(5623): 1269 doi: 10.1126/science.1083212
[87]
Libsch F, Kanicki J. Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl Phys Lett, 1993, 62(11): 1286 doi: 10.1063/1.108709
[88]
Hosono H, Kikuchi N, Ueda N, et al. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J Non-Cryst Solids, 1996, 198: 165
[89]
Orita M, Ohta H, Hirano M, et al. Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤4): a Zn4s conductor. Philos Mag B, 2001, 81(5): 501 doi: 10.1080/13642810110045923
[90]
Park J S, Kim K, Park Y G, et al. Novel ZrInZnO thin-film transistor with excellent stability. Adv Mater, 2009, 21(3): 329 doi: 10.1002/adma.v21:3
[91]
Xingqiang L, Jinshui M, Lei L, et al. High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors with enhanced-current paths for potential high-speed flexible electronics. J Mater Chem C, 2014, 2(7): 1201 doi: 10.1039/C3TC31705F
[92]
Yu X, Zeng L, Zhou N, et al. Ultra-flexible," invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. Adv Mater, 2015, 27(14): 2390 doi: 10.1002/adma.v27.14
[93]
Özgür Ü, Hofstetter D, Morkoc H. ZnO devices and applications: a review of current status and future prospects. Proc IEEE, 2010, 98(7): 1255 doi: 10.1109/JPROC.2010.2044550
[94]
Wang Z, Nayak P K, Caraveo-Frescas J A, et al. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater, 2016, 28(20): 3831 doi: 10.1002/adma.v28.20
[95]
Liang L Y, Cao H T, Chen X B, et al. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl Phys Lett, 2012, 100(26): 263502 doi: 10.1063/1.4731271
[96]
Yao Z, Liu S, Zhang L, et al. Room temperature fabrication of p-channel Cu2O thin-film transistors on flexible polyethylene terephthalate substrates. Appl Phys Lett, 2012, 101(4): 042114 doi: 10.1063/1.4739524
[97]
Yabuta H, Kaji N, Hayashi R, et al. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl Phys Lett, 2010, 97(7): 072111 doi: 10.1063/1.3478213
[98]
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6): 5160 doi: 10.1021/nn400852r
[99]
Martins R, Nathan A, Barros R, et al. Complementary metal oxide semiconductor technology with and on paper. Adv Mater, 2011, 23(39): 4491 doi: 10.1002/adma.201102232
[100]
Caraveo-Frescas J, Khan M, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility. Sci Rep, 2014, 4: 5243
[101]
Shiosaki T, Ohnishi S, Hirokawa Y, et al. As-grown CVD ZnO optical waveguides on sapphire. Appl Phys Lett, 1978, 33(5): 406 doi: 10.1063/1.90393
[102]
Tynell T, Karppinen M. Atomic layer deposition of ZnO: a review. Semicond Sci Technol, 2014, 29(4): 043001 doi: 10.1088/0268-1242/29/4/043001
[103]
Diniz A S A C. The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications. Renew Energ, 2011, 36(4): 1153 doi: 10.1016/j.renene.2010.09.005
[104]
Kim S J, Yoon S, Kim H J. Review of solution-processed oxide thin-film transistors. Jpn J Appl Phys, 2014, 53(2S): 02B
[105]
Thomas S R, Pattanasattayavong P, Anthopoulos T D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem Soc Rev, 2013, 42(16): 6910 doi: 10.1039/c3cs35402d
[106]
Seo J S, Jeon J H, Hwang Y H, et al. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci Rep, 2013, 3: 2085 doi: 10.1038/srep02085
[107]
Kim S Y, Kim K, Hwang Y, et al. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale, 2016, 8(39): 17113 doi: 10.1039/C6NR05577J
[108]
Choi C H, Lin L Y, Cheng C C, et al. Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol, 2015, 4(4): P3044 doi: 10.1149/2.0071504jss
[109]
Wee D, Yoo S, Kang Y H, et al. Poly (imide-benzoxazole) gate insulators with high thermal resistance for solution-processed flexible indium-zinc oxide thin-film transistors. J Mater Chem C, 2014, 2(31): 6395 doi: 10.1039/C4TC00709C
[110]
Leppäniemi J, Huttunen O H, Majumdar H, et al. Flexography-printed In2O3 semiconductor layers for high-mobility thin-film transistors on flexible plastic substrate. Adv Mater, 2015, 27(44): 7168 doi: 10.1002/adma.201502569
[111]
Nakata M, Takechi K, Eguchi T, et al. Effects of thermal annealing on ZnO thin-film transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors. Jpn J Appl Phys, 2009, 48(8R): 081608
[112]
Zhang J, Wu G D. Ultralow-voltage electric-double-layer oxide-based thin-film transistors with faster switching response on flexible substrates. Chin Phys Lett, 2014, 31(7): 078502 doi: 10.1088/0256-307X/31/7/078502
[113]
Zhang J, Liu Y, Guo L, et al. Flexible oxide-based thin-film transistors on plastic substrates for logic applications. J Mater Sci Technol, 2015, 31(2): 171 doi: 10.1016/j.jmst.2014.07.009
[114]
Sheets W C, Kang S J, Hsieh H H, et al. Organic gate insulator materials for amorphous metal oxide TFTs. IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: 1878
[115]
Gao P, Lan L, Xiao P, et al. Solution-processed flexible zinc-tin oxide thin-film transistors on ultra-thin polyimide substrates. J Soc Inf Display, 2016, 24(4): 211 doi: 10.1002/jsid.438
[116]
Kim Y C, Lee S J, Oh I-K, et al. Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes. J Alloy Compd, 2016, 688: 1108 doi: 10.1016/j.jallcom.2016.07.169
[117]
Cantarella G, Ishida K, Petti L, et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and fabrication study. IEEE Electron Device Lett, 2016, 37(12): 1582 doi: 10.1109/LED.2016.2619738
[118]
Petti L, Frutiger A, Münzenrieder N, et al. Flexible quasi-vertical In–Ga–Zn–O thin-film transistor with 300-nm channel length. IEEE Electron Device Lett, 2015, 36(5): 475 doi: 10.1109/LED.2015.2418295
[119]
Chen Y, Geng D, Lin T, et al. Full-swing clock generating circuits on plastic using a-IGZO dual-gate TFTs with pseudo-CMOS and bootstrapping. IEEE Electron Device Lett, 2016, 37(7): 882 doi: 10.1109/LED.2016.2571321
[120]
Song K, Noh J, Jun T, et al. Fully flexible solution-deposited ZnO thin-film transistors. Adv Mater, 2010, 22(38): 4308 doi: 10.1002/adma.201002163
[121]
Bong H, Lee W H, Lee D Y, et al. High-mobility low-temperature ZnO transistors with low-voltage operation. Appl Phys Lett, 2010, 96(19): 192115 doi: 10.1063/1.3428357
[122]
Jackson W, Hoffman R, Herman G. High-performance flexible zinc tin oxide field-effect transistors. Appl Phys Lett, 2005, 87(19): 193503 doi: 10.1063/1.2120895
[123]
Cherenack K H, Münzenrieder N S, Troster G. Impact of mechanical bending on ZnO and IGZO thin-film transistors. IEEE Electron Device Lett, 2010, 31(11): 1254
[124]
Petti L, Münzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085 doi: 10.1109/TED.2014.2304307
[125]
Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105 doi: 10.1063/1.4914085
[126]
Kim I D, Choi Y, Tuller H L. Low-voltage ZnO thin-film transistors with high-k Bi1.0Nb1.5O7 gate insulator for transparent and flexible electronics. Appl Phys Lett, 2005, 87(4): 043509 doi: 10.1063/1.1993762
[127]
Su N C, Wang S J, Huang C C, et al. Low-voltage-driven flexible InGaZnO thin-film transistor with small subthreshold swing. IEEE Electron Device Lett, 2010, 31(7): 680 doi: 10.1109/LED.2010.2047232
[128]
Rim Y S, Jeong W H, Kim D L, et al. Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. J Mater Chem, 2012, 22(25): 12491 doi: 10.1039/c2jm16846d
[129]
Liao P Y, Chang T C, Su W C, et al. Effect of mechanical-strain-induced defect generation on the performance of flexible amorphous In–Ga–Zn–O thin-film transistors. Appl Phys Express, 2016, 9(12): 124101 doi: 10.7567/APEX.9.124101
[130]
Zhao D, Mourey D A, Jackson T N. Fast flexible plastic substrate ZnO circuits. IEEE Electron Device Lett, 2010, 31(4): 323 doi: 10.1109/LED.2010.2041321
[131]
Hsieh H H, Wu C H, Wu C C, et al. Amorphous In2O3–Ga2O3–ZnO thin film transistors and integrated circuits on flexible and colorless polyimide substrates. SID Symp Dig Tech Pap, 2008, 39(1): 1207 doi: 10.1889/1.3069352
[132]
Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Inter, 2016, 8(49): 33821 doi: 10.1021/acsami.6b11774
[133]
Park J, Kim C S, Ahn B, et al. Flexible In–Ga–Zn–O thin-film transistors fabricated on polyimide substrates and mechanically induced instability under negative bias illumination stress. J Electroceram, 2015, 1(35): 106
[134]
Jo J W, Kim J, Kim K T, et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv Mater, 2015, 27(7): 1182 doi: 10.1002/adma.201404296
[135]
You H C, Lin Y H. Investigation of the sol–gel method on the flexible ZnO device. Int J Electrochem Sci, 2012, 7: 9085
[136]
Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458 doi: 10.1016/j.orgel.2014.04.003
[137]
Rim Y S, Chen H, Liu Y, et al. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano, 2014, 8(9): 9680 doi: 10.1021/nn504420r
[138]
Kinkeldei T, Münzenrieder N, Zysset C, et al. Encapsulation for flexible electronic devices. IEEE Electron Device Lett, 2011, 32(12): 1743 doi: 10.1109/LED.2011.2168378
[139]
Lai H C, Pei Z, Jian J R, et al. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability. Appl Phys Lett, 2014, 105(3): 033510 doi: 10.1063/1.4891426
[140]
Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113 doi: 10.1063/1.3577607
[141]
Marrs M A, Moyer C D, Bawolek E J, et al. Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal–oxide–semiconductor on flexible plastic substrates. IEEE Trans Electron Devices, 2011, 58(10): 3428 doi: 10.1109/TED.2011.2161764
[142]
Smith J T, Shah S S, Goryll M, et al. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sens J, 2014, 14(4): 937 doi: 10.1109/JSEN.2013.2295057
[143]
Dey A, Indluru A, Venugopal S M, et al. Effect of mechanical and electromechanical stress on a-ZIO TFTs. IEEE Electron Device Lett, 2010, 31(12): 1416 doi: 10.1109/LED.2010.2080350
[144]
Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel. J Electrochem Soc, 2011, 158(9): H892 doi: 10.1149/1.3609842
[145]
Lujan R, Street R. Flexible X-ray detector array fabricated with oxide thin-film transistors. IEEE Electron Device Lett, 2012, 33(5): 688 doi: 10.1109/LED.2012.2188825
[146]
Kim S J, Park M J, Yun D J, et al. High performance and stable flexible memory thin-film transistors using In–Ga–Zn–O channel and ZnO charge-trap layers on poly (ethylene naphthalate) substrate. IEEE Trans Electron Devices, 2016, 63(4): 1557 doi: 10.1109/TED.2016.2531087
[147]
Xiao P, Dong T, Lan L, et al. High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer. Phys Status Solidi R, 2016, 10(6): 493 doi: 10.1002/pssr.201600052
[148]
Kaftanoglu K, Venugopal S M, Marrs M, et al. Stability of IZO and a-Si: H TFTs processed at low temperature (200 ℃). J Disp Technol, 2011, 7(6): 339 doi: 10.1109/JDT.2011.2107879
[149]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly (vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 012901 doi: 10.1063/1.3608145
[150]
Smith J, Couture A, Allee D. Charge emission induced transient leakage currents of a-Si: H and IGZO TFTs on flexible plastic substrates. Electron Lett, 2014, 50(2): 105 doi: 10.1049/el.2013.3795
[151]
Lin Y H, Faber H, Zhao K, et al. High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80–180 °C. Adv Mater, 2013, 25(31): 4340 doi: 10.1002/adma.v25.31
[152]
Liu J, Buchholz D B, Chang R P, et al. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Adv Mater, 2010, 22(21): 2333 doi: 10.1002/adma.200903761
[153]
Han D, Chen Z, Cong Y, et al. High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates. IEEE Trans Electron Devices, 2016, 63(8): 3360
[154]
Liu J, Buchholz D B, Hennek J W, et al. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. J Am Chem Soc, 2010, 132(34): 11934 doi: 10.1021/ja9103155
[155]
Huang L, Han D, Chen Z, et al. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature. Jpn J Appl Phys, 2015, 54(4S): 04D
[156]
Lim W, Jang J H, Kim S H, et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl Phys Lett, 2008, 93(8): 082102 doi: 10.1063/1.2975959
[157]
Hyung G W, Park J, Wang J X, et al. Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn J Appl Phys, 2013, 52(7R): 071102 doi: 10.7567/JJAP.52.071102
[158]
Choi K M, Hyung G W, Yang J W, et al. Fabrication of atomic layer deposited zinc oxide thin film transistors with organic gate insulator on flexible substrate. Mol Cryst Liq Cryst, 2010, 529(1): 131 doi: 10.1080/15421406.2010.495889
[159]
Lee C Y, Chang C, Shih W P, et al. Wet etching rates of InGaZnO for the fabrication of transparent thin-film transistors on plastic substrates. Thin Solid Films, 2010, 518(14): 3992 doi: 10.1016/j.tsf.2009.12.010
[160]
Ha Y G, Everaerts K, Hersam M C, et al. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc Chem Res, 2014, 47(4): 1019 doi: 10.1021/ar4002262
[161]
Han D, Zhang Y, Cong Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984 doi: 10.1038/srep38984
[162]
Kumomi H, Nomura K, Kamiya T, et al. Amorphous oxide channel TFTs. Thin Solid Films, 2008, 516(7): 1516 doi: 10.1016/j.tsf.2007.03.161
[163]
Liu Y, Zhou H, Cheng R, et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett, 2014, 14(3): 1413 doi: 10.1021/nl404484s
[164]
Vidor F F, Meyers T, Wirth G I, et al. ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique. Microelectron Eng, 2016, 159: 155 doi: 10.1016/j.mee.2016.02.059
[165]
Hsu H H, Chang C Y, Cheng C H, et al. High mobility field-effect thin film transistor using room-temperature high-k gate dielectrics. J Disp Technol, 2014, 10(10): 847 doi: 10.1109/JDT.2014.2326175
[166]
Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768 doi: 10.1109/LED.2013.2258455
[167]
Hsu H H, Chiu Y C, Chiou P, et al. Improvement of dielectric flexibility and electrical properties of mechanically flexible thin film devices using titanium oxide materials fabricated at a very low temperature of 100 °C. J Alloy Compd, 2015, 643: S133 doi: 10.1016/j.jallcom.2014.12.061
[168]
Jun J H, Park B, Cho K, et al. Flexible TFTs based on solution-processed ZnO nanoparticles. Nanotechnology, 2009, 20(50): 505201 doi: 10.1088/0957-4484/20/50/505201
[169]
Kim J, Fuentes-Hernandez C, Kim S J, et al. Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors. Org Electron, 2010, 11(6): 1074 doi: 10.1016/j.orgel.2010.03.008
[170]
Kim J, Fuentes-Hernandez C, Hwang D, et al. Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates. Org Electron, 2011, 12(1): 45 doi: 10.1016/j.orgel.2010.10.012
[171]
Oh H, Cho K, Park S, et al. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron Eng, 2016, 159: 179 doi: 10.1016/j.mee.2016.03.044
[172]
Park S, Cho K, Yang K, et al. Electrical characteristics of flexible ZnO thin-film transistors annealed by microwave irradiation. J Vac Sci Technol B, 2014, 32(6): 062203 doi: 10.1116/1.4898115
[173]
Park K, Lee D K, Kim B S, et al. Stretchable, transparent zinc oxide thin film transistors. Adv Funct Mater, 2010, 20(20): 3577 doi: 10.1002/adfm.v20:20
[174]
Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781 doi: 10.1109/LED.2015.2442271
[175]
Cheong W S, Bak J Y, Kim H S. Transparent flexible zinc–indium–tin oxide thin-film transistors fabricated on polyarylate films. Jpn J Appl Phys, 2010, 49(5S1): 05EB10
[176]
Jin S H, Kang S K, Cho I T, et al. Water-soluble thin film transistors and circuits based on amorphous indium–gallium–zinc oxide. ACS Appl Mater Inter, 2015, 7(15): 8268 doi: 10.1021/acsami.5b00086
[177]
Jin J, Ko J H, Yang S, et al. Rollable transparent glass‐fabric reinforced composite substrate for flexible devices. Adv Mater, 2010, 22(40): 4510 doi: 10.1002/adma.v22:40
[178]
Ok K C, Park S H K, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508 doi: 10.1063/1.4864617
[179]
Chien C W, Wu C H, Tsai Y T, et al. High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2011, 58(5): 1440 doi: 10.1109/TED.2011.2109041
[180]
Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous InGaZnO thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917 doi: 10.1109/LED.2015.2461003
[181]
Park C B, Na H, Yoo S S, et al. Electrical characteristics of a-IGZO transistors along the in-plane axis during outward bending. Microelectron Reliab, 2016, 59: 37 doi: 10.1016/j.microrel.2016.01.006
[182]
Park S, Kim K H, Jo J W, et al. In-depth studies on rapid photochemical activation of various sol-gel metal oxide films for flexible transparent electronics. Adv Funct Mater, 2015, 25(19): 2807 doi: 10.1002/adfm.201500545
[183]
Mativenga M, Geng D, Kim B, et al. Fully transparent and rollable electronics. ACS Appl Mater Inter, 2015, 7(3): 1578 doi: 10.1021/am506937s
[184]
Lin C Y, Chien C W, Wu C C, et al. Effects of mechanical strains on the characteristics of top-gate staggered a-IGZO thin-film transistors fabricated on polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2012, 59(7): 1956 doi: 10.1109/TED.2012.2193585
[185]
Li X, Billah M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811 doi: 10.1109/LED.2015.2451005
[186]
Münzenrieder N, Salvatore G A, Petti L, et al. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation. Appl Phys Lett, 2014, 105(26): 263504 doi: 10.1063/1.4905015
[187]
Münzenrieder N, Cherenack K H, Troster G. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041 doi: 10.1109/TED.2011.2143416
[188]
Lee S J, Ko J, Park J H, et al. Effective work function modulation of SWCNT–AZO NP hybrid electrodes in fully solution-processed flexible metal-oxide thin film transistors. J Mater Chem C, 2015, 3(31): 8121 doi: 10.1039/C5TC01481F
[189]
Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401 doi: 10.1016/j.orgel.2012.06.038
[190]
Münzenrieder N, Petti L, Zysset C, et al. Flexible a-IGZO TFT amplifier fabricated on a free standing polyimide foil operating at 1.2 MHz while bent to a radius of 5 mm. IEEE International Electron Devices Meeting (IEDM), 2012: 5.2. 1
[191]
Ji L W, Wu C Z, Fang T H, et al. Characteristics of flexible thin-film transistors with ZnO channels. IEEE Sens J, 2013, 13(12): 4940 doi: 10.1109/JSEN.2013.2267808
[192]
Münzenrieder N, Zysset C, Petti L, et al. Flexible double gate a-IGZO TFT fabricated on free standing polyimide foil. Solid-State Electron, 2013, 84: 198 doi: 10.1016/j.sse.2013.02.025
[193]
Lim W, Douglas E, Kim S H, et al. Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape. Appl Phys Lett, 2008, 93(25): 252103 doi: 10.1063/1.3054167
[194]
Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208 doi: 10.1116/1.4731257
[195]
Wu S C, Feng H T, Yu M J, et al. Flexible three-bit-per-cell resistive switching memory using a-IGZO TFTs. IEEE Electron Device Lett, 2013, 34(10): 1265 doi: 10.1109/LED.2013.2278098
[196]
Hwang Y H, Seo J S, Yun J M, et al. An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater, 2013, 5(4): e45 doi: 10.1038/am.2013.11
[197]
Sharma B K, Jang B, Lee J E, et al. Load-controlled roll transfer of oxide transistors for stretchable electronics. Adv Funct Mater, 2013, 23(16): 2024 doi: 10.1002/adfm.v23.16
[198]
Eun K, Hwang W, Sharma B, et al. Mechanical flexibility of zinc oxide thin-film transistors prepared by transfer printing method. Mod Phys Lett B, 2012, 26(12): 1250077 doi: 10.1142/S0217984912500777
[199]
Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779 doi: 10.1039/C5TC00048C
[200]
Li H U, Jackson T N. Oxide semiconductor thin film transistors on thin solution-cast flexible substrates. IEEE Electron Device Lett, 2015, 36(1): 35 doi: 10.1109/LED.2014.2371011
[201]
Salvatore G A, Münzenrieder N, Kinkeldei T, et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat Commun, 2014, 5: 2982
[202]
Petti L, Münzenrieder N, Salvatore G A, et al. Flexible electronics based on oxide semiconductors. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 323
[203]
Yuan H, Wang H, Cui Y. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. ACC Chem Res, 2015, 48(1): 81 doi: 10.1021/ar5003297
[204]
Fujimoto T, Awaga K. Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys, 2013, 15(23): 8983 doi: 10.1039/c3cp50755f
[205]
Du H, Lin X, Xu Z, et al. Electric double-layer transistors: a review of recent progress. J Mater Sci, 2015, 50(17): 5641 doi: 10.1007/s10853-015-9121-y
[206]
Ono S, Seki S, Hirahara R, et al. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett, 2008, 92(10): 93
[207]
Zhou J, Wu G, Guo L, et al. Flexible transparent junctionless TFTs with oxygen-tuned indium–zinc–oxide channels. IEEE Electron Device Lett, 2013, 34(7): 888 doi: 10.1109/LED.2013.2260819
[208]
Hong K, Kim S H, Lee K H, et al. Printed, sub-2 V ZnO electrolyte gated transistors and inverters on plastic. Adv Mater, 2013, 25(25): 3413 doi: 10.1002/adma.v25.25
[209]
Liu Y H, Zhu L Q, Feng P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater, 2015, 27(37): 5599 doi: 10.1002/adma.201502719
[210]
Martins R, Ferreira I, Fortunato E. Electronics with and on paper. Phys Status Solidi-R, 2011, 5(9): 332 doi: 10.1002/pssr.201105247
[211]
Lim W, Douglas E, Norton D, et al. Low-voltage indium gallium zinc oxide thin film transistors on paper substrates. Appl Phys Lett, 2010, 96(5): 053510 doi: 10.1063/1.3309753
[212]
Wu G, Wan X, Yang Y, et al. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D: Appl Phys, 2014, 47(49): 495101 doi: 10.1088/0022-3727/47/49/495101
[213]
Dou W, Zhu L, Jiang J, et al. Flexible dual-gate oxide TFTs gated by chitosan film on paper substrates. IEEE Electron Device Lett, 2013, 34(2): 259 doi: 10.1109/LED.2012.2231661
[214]
Jiang J, Sun J, Dou W, et al. Junctionless flexible oxide-based thin-film transistors on paper substrates. IEEE Electron Device Lett, 2012, 33(1): 65 doi: 10.1109/LED.2011.2172973
[215]
Jiang J, Sun J, Dou W, et al. In-plane-gate indium–tin–oxide thin-film transistors self-assembled on paper substrates. Appl Phys Lett, 2011, 98(11): 113507 doi: 10.1063/1.3567946
[216]
Lim W, Douglas E, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper. Appl Phys Lett, 2009, 94(7): 072103 doi: 10.1063/1.3086394
[217]
Jiang S, Feng P, Yang Y, et al. Flexible low-voltage In–Zn–O homojunction TFTs with beeswax gate dielectric on paper substrates. IEEE Electron Device Lett, 2016, 37(3): 287 doi: 10.1109/LED.2016.2518666
[218]
Lu A, Dai M, Sun J, et al. Flexible low-voltage electric-double-layer TFTs self-assembled on paper substrates. IEEE Electron Device Lett, 2011, 32(4): 518 doi: 10.1109/LED.2011.2107550
[219]
Thiemann S, Sachnov S J, Pettersson F, et al. Cellulose-based ionogels for paper electronics. Adv Funct Mater, 2014, 24(5): 625 doi: 10.1002/adfm.201302026
[220]
Pereira L, Gaspar D, Guerin D, et al. The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology, 2014, 25(9): 094007 doi: 10.1088/0957-4484/25/9/094007
[221]
Martins R, Barquinha P, Pereira L, et al. Write-erase and read paper memory transistor. Appl Phys Lett, 2008, 93(20): 203501 doi: 10.1063/1.3030873
[222]
Gaspar D, Fernandes S, De Oliveira A, et al. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25(9): 094008 doi: 10.1088/0957-4484/25/9/094008
[223]
Wu G D, Zhang J, Wan X. Junctionless coplanar-gate oxide-based thin-film transistors gated by Al2O3 proton conducting films on paper substrates. Chin Phys Lett, 2014, 31(10): 108505 doi: 10.1088/0256-307X/31/10/108505
[224]
Sun J, Jiang J, Lu A, et al. One-volt oxide thin-film transistors on paper substrates gated by SiO2-based solid electrolyte with controllable operation modes. IEEE Trans Electron Devices, 2010, 57(9): 2258 doi: 10.1109/TED.2010.2052168
[225]
Choi N, Khan S A, Ma X, et al. Amorphous oxide thin film transistors with methyl siloxane based gate dielectric on paper substrate. Electrochem Solid-State Lett, 2011, 14(6): H247 doi: 10.1149/1.3570612
[226]
Fortunato E, Correia N, Barquinha P, et al. High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett, 2008, 29(9): 988 doi: 10.1109/LED.2008.2001549
[227]
Martins R, Barquinha P, Pereira L, et al. Selective floating gate non-volatile paper memory transistor. Phys Status Solidi R, 2009, 3(9): 308
[228]
Mahmoudabadi F, Ma X, Hatalis M K, et al. Amorphous IGZO TFTs and circuits on conformable aluminum substrates. Solid-State Electron, 2014, 101: 57 doi: 10.1016/j.sse.2014.06.031
[229]
Park I J, Jeong C Y, Cho I T, et al. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors. Semicond Sci Technol, 2012, 27(10): 105019 doi: 10.1088/0268-1242/27/10/105019
[230]
Plichta A, Weber A, Habeck A. Ultra thin flexible glass substrates. Symposium on Flexible Electronics-Materials and Device Technology held at the 2003 MRS Spring Meeting, 2003: 273
[231]
Lee G J, Kim J, Kim J H, et al. High performance, transparent a-IGZO TFTs on a flexible thin glass substrate. Semicond Sci Technol, 2014, 29(3): 035003 doi: 10.1088/0268-1242/29/3/035003
[232]
Yamauchi N, Itoh T, Noguchi T. Low energy-cost TFT technologies using ultra-thin flexible glass substrate. IEEE 19th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2012: 213
[233]
Dai M K, Lian J T, Lin T Y, et al. High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. J Mater Chem C, 2013, 1(33): 5064 doi: 10.1039/c3tc30890a
[234]
Münzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69 doi: 10.1109/LED.2013.2286319
[235]
Li Y, Liu Y, Yun F, et al. Self-assembled transparent a-IGZO based TFTs for flexible sensing applications. International Symposium on Photonics and Optoelectronics, 2014: 92332A
[236]
Smith J T, Couture A J, Stowell J R, et al. Optically seamless flexible electronic tiles for ultra large-area digital X-ray imaging. IEEE Trans Compon Packag Manuf Technol, 2014, 4(6): 1109 doi: 10.1109/TCPMT.2014.2316477
[237]
Gelinck G H, Kumar A, Van Der Steen J L P, et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes. IEEE Trans Electron Devices, 2016, 63(1): 197 doi: 10.1109/TED.2015.2432572
[238]
Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 2015, 27(32): 4674 doi: 10.1002/adma.v27.32
[239]
Kim J, Kim J, Jo S, et al. Ultrahigh detective heterogeneous photosensor arrays with in-pixel signal boosting capability for large-area and skin-compatible electronics. Adv Mater, 2016, 28(16): 3078 doi: 10.1002/adma.201505149
[240]
Van Breemen A, Kam B, Cobb B, et al. Ferroelectric transistor memory arrays on flexible foils. Org Electron, 2013, 14(8): 1966 doi: 10.1016/j.orgel.2013.04.025
[241]
Myny K, Steudel S. Flexible thin-film nfc transponder chip exhibiting data rates compatible to ISO NFC standards using self-aligned metal-oxide tfts. IEEE International Solid-State Circuits Conference (ISSCC), 2016: 298
[242]
Zhang L R, Huang C Y, Li G M, et al. A low-power high-stability flexible scan driver integrated by IZO TFTs. IEEE Trans Electron Devices, 2016, 63(4): 1779 doi: 10.1109/TED.2016.2529656
[243]
Meister T, Ishida K, Shabanpour R, et al. 20.3 dB 0.39 mW AM detector with single-transistor active inductor in bendable a-IGZO TFT. IEEE 46th European Solid-State Device Research Conference (ESSDERC), 2016: 71
[244]
Huang T C, Fukuda K, Lo C M, et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices, 2011, 58(1): 141 doi: 10.1109/TED.2010.2088127
[245]
Münzenrieder N, Zysset C, Kinkeldei T, et al. Design rules for IGZO logic gates on plastic foil enabling operation at bending radii of 3.5 mm. IEEE Trans Electron Devices, 2012, 59(8): 2153 doi: 10.1109/TED.2012.2198480
[246]
Kim Y H, Heo J S, Kim T H, et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature, 2012, 489(7414): 128 doi: 10.1038/nature11434
[247]
Zysset C, Münzenrieder N, Petti L, et al. IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm. IEEE Electron Device Lett, 2013, 34(11): 1394 doi: 10.1109/LED.2013.2280024
[248]
Perumal C, Ishida K, Shabanpour R, et al. A Compact a-IGZO TFT model based on MOSFET SPICE Level=3 template for analog/RF circuit designs. IEEE Electron Device Lett, 2013, 34(11): 1391 doi: 10.1109/LED.2013.2279940
[249]
Nomura K, Aoki T, Nakamura K, et al. Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9, 9-dioctylfluorene-co-bithiophene) thin-film transistors. Appl Phys Lett, 2010, 96(26): 263509 doi: 10.1063/1.3458799
[250]
Rockelé M, Pham D V, Steiger J, et al. Solution-processed and low-temperature metal oxide n-channel thin-film transistors and low-voltage complementary circuitry on large-area flexible polyimide foil. J Soc Inf Display, 2012, 20(9): 499 doi: 10.1002/jsid.114
[251]
Oh M S, Choi W, Lee K, et al. Flexible high gain complementary inverter using n-ZnO and p-pentacene channels on polyethersulfone substrate. Appl Phys Lett, 2008, 93(3): 033510 doi: 10.1063/1.2956406
[252]
Honda W, Arie T, Akita S, et al. Mechanically flexible and high-performance CMOS logic circuits. Sci Rep, 2015, 5: 15099 doi: 10.1038/srep15099
[253]
Nag M, Chasin A, Rockele M, et al. Single-source dual-layer amorphous IGZO thin-film transistors for display and circuit applications. J Soc Inf Display, 2013, 21(3): 129 doi: 10.1002/jsid.v21.3
[254]
Yamamoto T, Takei T, Nakajima Y, et al. Simple transfer technology for fabrication of TFT backplane for flexible displays. IEEE T Ind Appl, 2012, 48(5): 1662 doi: 10.1109/TIA.2012.2209170
[255]
Oh T. Tunneling phenomenon of amorphous indium-gallium-zinc-oxide thin film transistors for flexible display. Electron Mater Lett, 2015, 11(5): 853
[256]
Kim H, Kim Y J. Influence of external forces on the mechanical characteristics of the a-IGZO and graphene based flexible display. Global Conference on Polymer and Composite Materials (PCM), 2014: 012022
[257]
Genoe J, Obata K, Ameys M, et al. Integrated line driver for digital pulse-width modulation driven AMOLED displays on flex. IEEE J Soild-State Circuits, 2015, 50(1): 282 doi: 10.1109/JSSC.2014.2364268
[258]
Zysset C, Münzenrieder N, Kinkeldei T, et al. Woven active-matrix display. IEEE Trans Electron Devices, 2012, 59(3): 721 doi: 10.1109/TED.2011.2180724
1

Flexible inorganic oxide thin-film electronics enabled by advanced strategies

Tianyao Zhang, Guang Yao, Taisong Pan, Qingjian Lu, Yuan Lin, et al.

Journal of Semiconductors, 2020, 41(4): 041602. doi: 10.1088/1674-4926/41/4/041602

2

Giant spin injection into semiconductor and THz pulse emission

Zheng Feng

Journal of Semiconductors, 2019, 40(7): 070201. doi: 10.1088/1674-4926/40/7/070201

3

Hybrid functional microfibers for textile electronics and biosensors

Bichitra Nanda Sahoo, Byungwoo Choi, Jungmok Seo, Taeyoon Lee

Journal of Semiconductors, 2018, 39(1): 011009. doi: 10.1088/1674-4926/39/1/011009

4

Engineering in-plane silicon nanowire springs for highly stretchable electronics

Zhaoguo Xue, Taige Dong, Zhimin Zhu, Yaolong Zhao, Ying Sun, et al.

Journal of Semiconductors, 2018, 39(1): 011001. doi: 10.1088/1674-4926/39/1/011001

5

Materials and applications of bioresorbable electronics

Xian Huang

Journal of Semiconductors, 2018, 39(1): 011003. doi: 10.1088/1674-4926/39/1/011003

6

Recent advances in flexible and wearable organic optoelectronic devices

Hong Zhu, Yang Shen, Yanqing Li, Jianxin Tang

Journal of Semiconductors, 2018, 39(1): 011011. doi: 10.1088/1674-4926/39/1/011011

7

Graphene-based flexible and wearable electronics

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn

Journal of Semiconductors, 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

8

Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

Jiazhen Sheng, Ki-Lim Han, TaeHyun Hong, Wan-Ho Choi, Jin-Seong Park, et al.

Journal of Semiconductors, 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008

9

ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis

Utsa Das, Partha P. Pal

Journal of Semiconductors, 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001

10

Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique

Paragjyoti Gogoi, Rajib Saikia, Sanjib Changmai

Journal of Semiconductors, 2015, 36(4): 044002. doi: 10.1088/1674-4926/36/4/044002

11

Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang, et al.

Journal of Semiconductors, 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

12

In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip

Yuelin Wang, Tie Li, Xiao Zhang, Hongjiang Zeng, Qinhua Jin, et al.

Journal of Semiconductors, 2014, 35(8): 081001. doi: 10.1088/1674-4926/35/8/081001

13

ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors

Zhefeng Li, Xianye Luo

Journal of Semiconductors, 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004

14

A process simplification scheme for fabricating CMOS polycrystalline-Si thin film transistors

Juang Miin-Horng, Chang Chia-Wei, Shye Der-Chih, Hwang Chuan-Chou, Wang Jih-Liang, et al.

Journal of Semiconductors, 2010, 31(6): 064003. doi: 10.1088/1674-4926/31/6/064003

15

CuPc/C60 heterojunction thin film optoelectronic devices

Imran Murtaza, Ibrahim Qazi, Khasan S. Karimov

Journal of Semiconductors, 2010, 31(6): 064005. doi: 10.1088/1674-4926/31/6/064005

16

Comparison of electron transmittances and tunneling currents in an anisotropic TiNx/HfO2/SiO2/p-Si(100) metal–oxide–semiconductor (MOS) capacitor calculated using exponential- and Airy-wavefunction app

Fatimah A. Noor, Mikrajuddin Abdullah, Sukirno, Khairurrijal

Journal of Semiconductors, 2010, 31(12): 124002. doi: 10.1088/1674-4926/31/12/124002

17

Ternary logic circuit design based on single electron transistors

Wu Gang, Cai Li, Li Qin

Journal of Semiconductors, 2009, 30(2): 025011. doi: 10.1088/1674-4926/30/2/025011

18

Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors

Zhu Xiaming, Wu Huizhen, Wang Shuangjiang, Zhang Yingying, Cai Chunfeng, et al.

Journal of Semiconductors, 2009, 30(3): 033001. doi: 10.1088/1674-4926/30/3/033001

19

Sensitive properties of In-based compound semiconductor oxide to Cl2 gas

Zhao Wenjie, Shi Yunbo, Xiu Debin, Lei Tingping, Feng Qiaohua, et al.

Journal of Semiconductors, 2009, 30(3): 034010. doi: 10.1088/1674-4926/30/3/034010

20

Electronic Structure of Semiconductor Nanocrystals

Li Jingbo, Wang Linwang, Wei Suhuai

Chinese Journal of Semiconductors , 2006, 27(2): 191-196.

1. Jeon, S.-P., Jo, J.-W., Nam, D. et al. High-performance metal oxide TFTs for flexible displays: materials, fabrication, architecture, and applications. Soft Science, 2025, 5(1): 1. doi:10.20517/ss.2024.35
2. Martinuzzi, S.M., Caporali, S., Taurino, R. et al. Nanostructured Chromium PVD Thin Films Fabricated Through Copper–Chromium Selective Dissolution. Materials, 2025, 18(4): 894. doi:10.3390/ma18040894
3. Rowlinson, B.D., Zeng, J., Patzig, C. et al. Impact of bias stress and endurance switching on electrical characteristics of polycrystalline ZnO-TFTs with Al2O3 gate dielectric. Journal of Physics D: Applied Physics, 2025, 58(2): 025308. doi:10.1088/1361-6463/ad8663
4. Dacha, P., Kumari R, A., Pohl, D. et al. Solution Shearing of Sustainable Aluminum Oxide Thin Films for Compliance-Free, Voltage-Regulated Multi-Bit Memristors. Advanced Electronic Materials, 2025. doi:10.1002/aelm.202400698
5. Ren, C., Xu, J., Cao, Z. et al. Electret mechano-sensor array integrated with tribopotential-modulated thin film transistors for precise spatiotemporal pressure perception. Nano Energy, 2024. doi:10.1016/j.nanoen.2024.110351
6. Zhang, X., Kim, B., Lee, H. et al. Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology | [低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(9): 096802. doi:10.7498/aps.73.20240082
7. Lee, H.E.. Construction of flexible transistors enabled by transfer printing. Transfer Printing Technologies and Applications, 2024. doi:10.1016/B978-0-443-18845-9.00011-9
8. Natu, K., Laad, M., Ghule, B. et al. Transparent and flexible zinc oxide-based thin-film diodes and thin-film transistors: A review. Journal of Applied Physics, 2023, 134(19): 190701. doi:10.1063/5.0169308
9. Shrivastava, S., Bahubalindruni, P.G., Choudhary, V. Temperature Detection System Using Oxide TFTs on a Flexible Substrate. IEEE Journal on Flexible Electronics, 2023, 2(6): 464-471. doi:10.1109/JFLEX.2023.3304598
10. Rao, Z., Wang, X., Mao, S. et al. Flexible Memristor-Based Nanoelectronic Devices for Wearable Applications: A Review. ACS Applied Nano Materials, 2023, 6(20): 18645-18669. doi:10.1021/acsanm.3c03397
11. Al-Mamun, N.S., Rasel, M.A.J., Wolfe, D.E. et al. Mitigating Heavy Ion Irradiation-Induced Degradation in p-type SnO Thin-Film Transistors at Room Temperature. Physica Status Solidi (A) Applications and Materials Science, 2023, 220(19): 2300392. doi:10.1002/pssa.202300392
12. Ma, L.-Y., Soin, N., Aidit, S.N. et al. Recent advances in flexible solution-processed thin-film transistors for wearable electronics. Materials Science in Semiconductor Processing, 2023. doi:10.1016/j.mssp.2023.107658
13. Rogers, D., Teherani, F., Sandana, E. et al. Oxide electronic devices. Sustainable Nanomaterials for Energy Applications, 2023. doi:10.1088/978-0-7503-3531-7ch10
14. Mohan, N., Ahuir-Torres, J.I., Bhogaraju, S.K. et al. Rapid sintering of inkjet printed Cu complex inks using Laser in air. Advancing Microelectronics, 2023, 2023(EMPC): 267-273. doi:10.4071/001c.94813
15. Lau, C.S., Das, S., Verzhbitskiy, I.A. et al. Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS Nano, 2023, 17(11): 9870-9905. doi:10.1021/acsnano.3c03455
16. Panca, A., Panidi, J., Faber, H. et al. Flexible Oxide Thin Film Transistors, Memristors, and Their Integration. Advanced Functional Materials, 2023, 33(20): 2213762. doi:10.1002/adfm.202213762
17. Yang, Y., Cui, H., Zhu, Y. et al. Research Progress of Flexible Neuromorphic Transistors | [柔性神经形态晶体管研究进展]. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, 38(4): 367-377. doi:10.15541/jim20220700
18. Mohan, N., Ahuir-Torres, J.I., Bhogaraju, S.K. et al. Rapid Sintering of Inkjet Printed Cu Complex Inks Using Laser in Air. 2023. doi:10.23919/EMPC55870.2023.10418323
19. Shrivastava, S., Bahubalindruni, P.G., Kansal, N. Low-Voltage Clocked Comparator With Flexible Oxide TFT Technology. Proceedings - IEEE International Symposium on Circuits and Systems, 2023. doi:10.1109/ISCAS46773.2023.10181745
20. Virt, I.. Special Issue: Recent Advances in Semiconducting Thin Films. Coatings, 2023, 13(1): 79. doi:10.3390/coatings13010079
21. Huang, J., Chen, W. Flexible strategy of epitaxial oxide thin films. iScience, 2022, 25(10): 105041. doi:10.1016/j.isci.2022.105041
22. Kim, J.-W., Park, S.-G., Yang, M.K. et al. Microwave-Assisted Annealing Method for Low-Temperature Fabrication of Amorphous Indium-Gallium-Zinc Oxide Thin-Film Transistors. Electronics (Switzerland), 2022, 11(19): 3094. doi:10.3390/electronics11193094
23. Song, Z., Tang, W., Chen, Z. et al. Temperature-Modulated Selective Detection of Part-per-Trillion NO2 Using Platinum Nanocluster Sensitized 3D Metal Oxide Nanotube Arrays. Small, 2022, 18(40): 2203212. doi:10.1002/smll.202203212
24. Liu, J., Chen, Y., Ran, C. et al. Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden-Popper Perovskites for Efficient Perovskite Solar Cells. ACS Applied Materials and Interfaces, 2022, 14(30): 34189-34197. doi:10.1021/acsami.1c16124
25. Hong, R., Tian, Q., Lin, J. et al. Al2O3/HfO2Bilayer Dielectric for Ambipolar SnO Thin-Film Transistors With Superior Operational Stability. IEEE Transactions on Electron Devices, 2022, 69(8): 4293-4297. doi:10.1109/TED.2022.3184908
26. Jung, B., Park, C., Jang, J. Biaxially stretchable a-IGZO TFT on PI/PDMS. Proceedings of the International Display Workshops, 2022. doi:10.36463/idw.2022.0961
27. Shrivastava, S., Bahubalindruni, P.G. Temperature Sensing System With Flexible Electronics Using Oxide TFTs. Proceedings - IEEE International Symposium on Circuits and Systems, 2022. doi:10.1109/ISCAS48785.2022.9937522
28. Fino, M.H.. Optimization-based Determination of TFT Contact Resistances in Python. 2022. doi:10.23919/MIXDES55591.2022.9837978
29. Min, J.-G., Cho, W.-J. Sol-gel composites-based flexible and transparent amorphous indium gallium zinc oxide thin-film synaptic transistors for wearable intelligent electronics. Molecules, 2021, 26(23): 7233. doi:10.3390/molecules26237233
30. Mirshojaeian Hosseini, M.J., Nawrocki, R.A. A review of the progress of thin-film transistors and their technologies for flexible electronics. Micromachines, 2021, 12(6): 655. doi:10.3390/mi12060655
31. Park, K.-W., Cho, W.-J. Thermal damage-free microwave annealing with efficient energy conversion for fabricating of high-performance a-igzo thin-film transistors on flexible substrates. Materials, 2021, 14(10): 2630. doi:10.3390/ma14102630
32. Jang, J.T., Ko, D., Choi, S.-J. et al. Observation of Hydrogen-Related Defect in Subgap Density of States and Its Effects under Positive Bias Stress in Amorphous InGaZnO TFT. IEEE Electron Device Letters, 2021, 42(5): 708-711. doi:10.1109/LED.2021.3066624
33. Yang, L.-L., Qin, Y.-H., Wei, J.-T. et al. Research progress of Cu2Se thin film thermoelectric properties | [硒化亚铜薄膜热电性能研究进展]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(7): 076802. doi:10.7498/aps.70.20201677
34. Marques, G.C., Birla, A., Arnal, A. et al. Printed Logic Gates Based on Enhancement- And Depletion-Mode Electrolyte-Gated Transistors. IEEE Transactions on Electron Devices, 2020, 67(8): 3146-3151. doi:10.1109/TED.2020.3002208
35. Choi, J.-W., Oh, J., Ngoc Van, T.T. et al. Tin oxysulfide composite thin films based on atomic layer deposition of tin sulfide and tin oxide using Sn(dmamp)2 as Sn precursor. Ceramics International, 2020, 46(4): 5109-5118. doi:10.1016/j.ceramint.2019.10.254
36. Kim, D.W., Min, S.-Y., Lee, Y. et al. Transparent Flexible Nanoline Field-Effect Transistor Array with High Integration in a Large Area. ACS Nano, 2020, 14(1): 907-918. doi:10.1021/acsnano.9b08199
37. Odeh, A.A., Al-Douri, Y. Metal oxides in electronics. Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications, 2020. doi:10.1016/B978-0-12-817505-7.00013-0
38. Zhang, J., Ma, Z., Li, S. et al. Recent research progress in biomimetic tactile sensors | [仿生触觉传感器研究进展]. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2020, 50(1): 1-16. doi:10.1360/SST-2019-0204
39. An, H.J., Kim, H.M., Lee, W. et al. Solution-based flexible indium oxide thin-film transistors with high mobility and stability by selective surface modification. Materials Science in Semiconductor Processing, 2019. doi:10.1016/j.mssp.2019.104590
40. Kim, M.-H., Park, J.-W., Lim, J.-H. et al. The Effect of Hydrogen on the Device Stability of Amorphous InGaZnO Thin-Film Transistors under Positive Bias with Various Temperature Stresses. Physica Status Solidi (A) Applications and Materials Science, 2019, 216(20): 1900297. doi:10.1002/pssa.201900297
41. Xia, G., Wang, S. Rapid and facile low-temperature solution production of ZrO2 films as high-k dielectrics for flexible low-voltage thin-film transistors. Ceramics International, 2019, 45(13): 16482-16488. doi:10.1016/j.ceramint.2019.05.181
42. Guillén, C., Herrero, J. P-type SnO thin films prepared by reactive sputtering at high deposition rates. Journal of Materials Science and Technology, 2019, 35(8): 1706-1711. doi:10.1016/j.jmst.2019.03.034
43. Wang, S., Yao, S., Lin, J. et al. Eco-friendly, low-temperature solution production of oxide thin films for high-performance transistors via infrared irradiation of chloride precursors. Ceramics International, 2019, 45(8): 9829-9834. doi:10.1016/j.ceramint.2019.02.021
44. Zhang, Q., Xia, G., Li, L. et al. High-performance Zinc-Tin-Oxide thin film transistors based on environment friendly solution process. Current Applied Physics, 2019, 19(2): 174-181. doi:10.1016/j.cap.2018.10.012
45. Kim, D.-K., Bae, J.-H. Effective Positive Bias Recovery for Negative Bias Stressed sol-gel IGZO Thin-film Transistors. Journal of Sensor Science and Technology, 2019, 28(5): 329-333. doi:10.5369/JSST.2019.28.5.329
46. Luo, J., Gao, Y., Wang, X.Y. et al. Double in-plane-gate IZO-based thin-film transistors with pea protein gate dielectrics. Journal of Physics D: Applied Physics, 2019, 15(17): 174001. doi:10.1088/1361-6463/ab01ee
  • Search

    Advanced Search >>

    GET CITATION

    Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics[J]. Journal of Semiconductors, 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005
    Y L He, X Y Wang, Y Gao, Y H Hou, Q Wan, Oxide-based thin film transistors for flexible electronics[J]. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 8091 Times PDF downloads: 313 Times Cited by: 46 Times

    History

    Received: 05 August 2017 Revised: 29 September 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics[J]. Journal of Semiconductors, 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005 ****Y L He, X Y Wang, Y Gao, Y H Hou, Q Wan, Oxide-based thin film transistors for flexible electronics[J]. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005.
      Citation:
      Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics[J]. Journal of Semiconductors, 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005 ****
      Y L He, X Y Wang, Y Gao, Y H Hou, Q Wan, Oxide-based thin film transistors for flexible electronics[J]. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005.

      Oxide-based thin film transistors for flexible electronics

      DOI: 10.1088/1674-4926/39/1/011005
      Funds:

      Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

      More Information
      • Corresponding author: Email: wanqing@nju.edu.cn
      • Received Date: 2017-08-05
      • Revised Date: 2017-09-29
      • Published Date: 2018-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return