ARTICLES

Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment

Hui Hao1, 2, , Xiao Chen2, , Zhengcheng Li2, Yang Shen2, Hu Wang2, Yanfei Zhao2, Rong Huang2, Tong Liu2, Jian Liang1, Yuxin An2, Qing Peng2 and Sunan Ding2,

+ Author Affiliations

 Corresponding author: Sunan Ding, Email: adingsun2014@sinano.ac.cn

PDF

Turn off MathJax

Abstract: High quality gallium oxide (Ga2O3) thin films are deposited by remote plasma-enhanced atomic layer deposition (RPEALD) with trimethylgallium (TMG) and oxygen plasma as precursors. By introducing in-situ NH3 plasma pretreatment on the substrates, the deposition rate of Ga2O3 films on Si and GaN are remarkably enhanced, reached to 0.53 and 0.46 Å/cycle at 250 °C, respectively. The increasing of deposition rate is attributed to more hydroxyls (–OH) generated on the substrate surfaces after NH3 pretreatment, which has no effect on the stoichiometry and surface morphology of the oxide films, but only modifies the surface states of substrates by enhancing reactive site density. Ga2O3 film deposited on GaN wafer is crystallized at 250 °C, with an epitaxial interface between Ga2O3 and GaN clearly observed. This is potentially very important for reducing the interface state density through high quality passivation.

Key words: Ga-oxideRPEALDpassivationNH3 plasma



[1]
Engelmann S U, Wise R S, Meng L, et al. Facile fabrication of Si-based nanostructures. Proc SPIE, 2017, 10149: 1014910 doi: 10.1117/12.2271503
[2]
Hori Y, Yatabe Z, Hashizume T. Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J Appl Phys, 2013, 114(24): 244503 doi: 10.1063/1.4859576
[3]
Shan F K, Liu G X, Lee W J, et al. Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition. J Appl Phys, 2005, 98(2): 023504 doi: 10.1063/1.1980535
[4]
Altuntas H, Donmez I, Ozgit-Akgun C, et al. Electrical characteristics of β-Ga2O3 thin films grown by PEALD. J Alloys Compd, 2014, 593: 190 doi: 10.1016/j.jallcom.2014.01.029
[5]
Dakhel A A. Investigation of opto-dielectric properties of Ti-doped Ga2O3 thin films. Solid State Sci, 2013, 20: 54-58 doi: 10.1016/j.solidstatesciences.2013.03.009
[6]
Szyszka A, Lupina L, Lupina G, et al. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts. J Appl Phys, 2014, 116(8): 083108 doi: 10.1063/1.4894251
[7]
Shih H Y, Chu F C, Das A, et al. Atomic layer deposition of gallium oxide films as gate dielectrics in AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors. Nanoscale Res Lett, 2016, 11(1): 235 doi: 10.1186/s11671-016-1448-z
[8]
Yamada T, Ito J, Asahara R, et al. Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers. Appl Phys Lett, 2017, 110(26): 261603 doi: 10.1063/1.4990689
[9]
Liu G X, Shan F K, Park J J, et al. Electrical properties of Ga2O3-based dielectric thin films prepared by plasma enhanced atomic layer deposition (PEALD). J Electroceram, 2006, 17(24): 145
[10]
Yu F P, Ou S, Wuu D S. Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors. Opt Mater Express, 2015, 5(5): 1240 doi: 10.1364/OME.5.001240
[11]
Al-Kuhaili M F, Durrani S M A, Khawaja E E. Optical properties of gallium oxide films deposited by electron-beam evaporation. Appl Phys Lett, 2003, 83(22): 4533 doi: 10.1063/1.1630845
[12]
Takeuchi T, Ishikawa H, Takeuchi N, et al. High resolution X-ray photoelectron spectroscopy of beta gallium oxide films deposited by ultra high vacuum radio frequency magnetron sputtering. Thin Solid Films, 2008, 516(14): 4593 doi: 10.1016/j.tsf.2007.06.075
[13]
Ghose S, Rahman S, Hong L, et al. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors. J Appl Phys, 2017, 122(9): 095302 doi: 10.1063/1.4985855
[14]
Baldini M, Albrecht M, Fiedler A, et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J Mater Sci, 2015, 51(7): 3650
[15]
Sasaki K , Thieu Q T, Wakimoto D, et al. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl Phys Express, 2017, 10(12): 124201 doi: 10.7567/APEX.10.124201
[16]
Battiston G A, Gerbasi R, Porchia M, et al. Chemical vapour deposition and characterization of gallium oxide thin films. Thin Solid Films, 1996, 279: 115 doi: 10.1016/0040-6090(95)08161-5
[17]
Comstock D J, Elam J W. Atomic Layer Deposition of Ga2O3 Films Using Trimethylgallium and Ozone. Chem Mater, 2012, 24(21): 4011 doi: 10.1021/cm300712x
[18]
Donmez I, Ozgit-Akgun C, Biyikli N. Low temperature deposition of Ga2O3 thin films using trimethylgallium and oxygen plasma. J Vac Sci Technol A, 2013, 31(1): 01A110 doi: 10.1116/1.4758782
[19]
Choi D W, Chung K B, Park J S. Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water. Thin Solid Films, 2013, 546: 31 doi: 10.1016/j.tsf.2013.03.066
[20]
Ramachandran R K, Dendooven J, Botterman J, et al. Plasma enhanced atomic layer deposition of Ga2O3 thin films. J Mater Chem A, 2014, 2(45): 19232 doi: 10.1039/C4TA05007J
[21]
O'Donoghue R, Rechmann J, Aghaee M, et al. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition. Dalton Trans, 2017, 46(47): 16551 doi: 10.1039/C7DT03427J
[22]
Hoex B, Heil S B S, Langereis E, et al. Ultra low surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl Phys Lett, 2006, 89(4): 042112 doi: 10.1063/1.2240736
[23]
Park J M, Jang S J, Yusup L L, et al. Plasma-enhanced atomic layer deposition of silicon nitride using a novel silylamine precursor. ACS Appl Mater Interfaces, 2016, 8(32): 20865 doi: 10.1021/acsami.6b06175
[24]
Profijt H B, Potts S E, van de Sanden M C M, et al. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. J Vac Sci Technol A, 2011, 29(5): 050801 doi: 10.1116/1.3609974
[25]
Bose M, Basa D K, Bose D N. Effect of ammonia plasma pretreatment on the plasma enhanced chemical vapor deposited silicon nitride films. Mater Lett, 2001, 48: 336 doi: 10.1016/S0167-577X(00)00323-2
[26]
Yang J, Eller B S, Nemanich R J. Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride. J Appl Phys, 2014, 116(12): 123702 doi: 10.1063/1.4895985
[27]
Li D, Huang J, Yang D. Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. Physica E, 2009, 41(6): 920 doi: 10.1016/j.physe.2008.08.024
[28]
Krylov I, Gavrilov A, Ritter D, et al. Elimination of the weak inversion hump in Si3N4/InGaAs (001) gate stacks using an in situ NH3 pre-treatment. Appl Phys Lett, 2011, 99(20): 203504 doi: 10.1063/1.3662035
[29]
Park J M, Jang S J, Lee S I, et al. Novel Cyclosilazane-Type Silicon Precursor and Two-Step Plasma for Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride. ACS Appl Mater Interfaces, 2018, 10(10): 9155 doi: 10.1021/acsami.7b19741
[30]
Kim B J, Kim Y C, Lee J J. The effect of NH3 plasma pre-treatment on the adhesion property of (Ti1-xAlx)N coatings deposited by plasma-enhanced chemical vapor deposition. Surf Coat Technol, 1999, 114: 85 doi: 10.1016/S0257-8972(99)00026-2
[31]
Aydil E S. Real time in situ monitoring of surfaces during glow discharge processing: NH3 and H2 plasma passivation of GaAs. J Vac Sci Technol B, 1995, 13(2): 258 doi: 10.1116/1.588361
[32]
Tadjer M J, Mastro M A, Mahadik N A, et al. Structural, optical, and electrical characterization of monoclinic β-Ga2O3 grown by MOVPE on sapphire substrates. J Electron Mater, 2016, 45(4): 2031 doi: 10.1007/s11664-016-4346-3
[33]
Oon H S, Cheong K Y. Recent development of gallium oxide thin film on GaN. Mater Sci Semicond Process, 2013, 16(5): 1217 doi: 10.1016/j.mssp.2013.01.027
[34]
Jaiswal P, Ul Muazzam U, Pratiyush A S, et al. Microwave irradiation-assisted deposition of Ga2O3 on III-nitrides for deep-UV opto-electronics. Appl Phys Lett, 2018, 112(2): 021105 doi: 10.1063/1.5010683
[35]
Deng X Y, Weis C, Bluhm H, et al. Adsorption of water on Cu2O and Al2O3 thin films. J Phys Chem C, 2008, 112: 9668 doi: 10.1021/jp800944r
[36]
Wang J Q, Wu W H, Feng W M. Introduction to electron spectroscopy (XPS/XAES/UPS). Beijing. National Defence of Industry Press, 1992
[37]
Duan T L, Pan J S, Ang D S. Investigation of surface band bending of Ga-face GaN by angle-resolved X-ray photoelectron spectroscopy. ECS J Solid State Sci Technol, 2016, 5(9): P514 doi: 10.1149/2.0261609jss
Fig. 1.  (Color online) Schematic diagram of Ga2O3 thin film deposition process.

Fig. 2.  (Color online) (a) Growth rate of Ga2O3 films on Si as a function of O2 plasma flow duration at 250 °C. (b) Growth rate and O/Ga ratio of Ga2O3 films on Si as a function of temperature. (c) The Ga2O3 thin films thickness as a function of the number of RPEALD cycles. (d) A comparison of Ga2O3 deposition rates on Si between this work and the reported literatures.

Fig. 3.  (Color online) Growth rate of Ga2O3 thin films as a function of NH3 plasma cycles.

Fig. 4.  (Color online) High resolution XPS spectra of (a) Ga3d core level and (b) O1s core level, in Ga2O3 films. The insets in (a) and (b) show the overlap of Ga3d and O1s peaks from the Ga oxide films deposited by different processes.

Fig. 5.  (Color online) AFM images of (a) Ga2O3 film deposited on Si without NH3 plasma treatment, (b) Ga2O3 film deposited on GaN without NH3 plasma treatment, (c) Ga2O3 film deposited on GaN with NH3 plasma treatment, and (d) a comparison of roughness between this work and previous reported literatures.

Fig. 6.  (Color online) SIMS depth profiles of (a) Ga2O3/Si and (b) Ga2O3/GaN. The insets in (b) show 3D images of SIMS data reconstructions of Ga2O3/GaN.

Fig. 7.  (Color online) High resolution XPS spectra of (a) Ga3d core level and (b) O1s core level on GaN surface.

Fig. 8.  (Color online) Ga3d core level spectra (a) w/o NH3 plasma and (b) with NH3 plasma, in Ga2O3 films.

Fig. 9.  (Color online) the linear fitting of ln (1+R/R0) against 1/sinθ.

Fig. 10.  (Color online) High resolution XPS spectra of Ga3d core level (a) w/o NH3 plasma and (b) with NH3 plasma, in Ga2O3 film.

Fig. 11.  (Color online) HRTEM analysis of Ga2O3 films on GaN deposited by RPEALD. (a) Cross-sectional TEM image of a Ga2O3/GaN structure without NH3 plasma treatment. (a-1) Higher magnification views of the Ga2O3/GaN interface without NH3 plasma treatment. (a-2) FFT of Ga2O3 films deposited on GaN without NH3 plasma treatment. (b) Cross-sectional TEM image of a Ga2O3/GaN structure with NH3 plasma treatment. (b-1) Higher magnification views of the Ga2O3/GaN interface with NH3 plasma treatment. (b-2) FFT of Ga2O3 film deposited on GaN with NH3 plasma treatment.

Table 1.   Deposition recipe for Ga2O3 thin films.

Parameter Pretreatment condition Deposition condition
Working pressure (hPa) 10 10
Deposition temperature (°C) room temperature 100, 200, 250, 300, 400
Gas flow rate (sccm) 150 (NH3 plasma), 40 (N2) 150 (TMG), 50 (O2 plasma), 50 (N2)
Pulse/purge time (s) NH3 plasma (13), N2 (6) TMG (0.1), N2 (6), O2 plasma (13–20), N2 (6)
Plasma generator power (W) 2000 (NH3 plasma) 2800 (O2 plasma)
DownLoad: CSV
[1]
Engelmann S U, Wise R S, Meng L, et al. Facile fabrication of Si-based nanostructures. Proc SPIE, 2017, 10149: 1014910 doi: 10.1117/12.2271503
[2]
Hori Y, Yatabe Z, Hashizume T. Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J Appl Phys, 2013, 114(24): 244503 doi: 10.1063/1.4859576
[3]
Shan F K, Liu G X, Lee W J, et al. Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition. J Appl Phys, 2005, 98(2): 023504 doi: 10.1063/1.1980535
[4]
Altuntas H, Donmez I, Ozgit-Akgun C, et al. Electrical characteristics of β-Ga2O3 thin films grown by PEALD. J Alloys Compd, 2014, 593: 190 doi: 10.1016/j.jallcom.2014.01.029
[5]
Dakhel A A. Investigation of opto-dielectric properties of Ti-doped Ga2O3 thin films. Solid State Sci, 2013, 20: 54-58 doi: 10.1016/j.solidstatesciences.2013.03.009
[6]
Szyszka A, Lupina L, Lupina G, et al. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts. J Appl Phys, 2014, 116(8): 083108 doi: 10.1063/1.4894251
[7]
Shih H Y, Chu F C, Das A, et al. Atomic layer deposition of gallium oxide films as gate dielectrics in AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors. Nanoscale Res Lett, 2016, 11(1): 235 doi: 10.1186/s11671-016-1448-z
[8]
Yamada T, Ito J, Asahara R, et al. Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers. Appl Phys Lett, 2017, 110(26): 261603 doi: 10.1063/1.4990689
[9]
Liu G X, Shan F K, Park J J, et al. Electrical properties of Ga2O3-based dielectric thin films prepared by plasma enhanced atomic layer deposition (PEALD). J Electroceram, 2006, 17(24): 145
[10]
Yu F P, Ou S, Wuu D S. Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors. Opt Mater Express, 2015, 5(5): 1240 doi: 10.1364/OME.5.001240
[11]
Al-Kuhaili M F, Durrani S M A, Khawaja E E. Optical properties of gallium oxide films deposited by electron-beam evaporation. Appl Phys Lett, 2003, 83(22): 4533 doi: 10.1063/1.1630845
[12]
Takeuchi T, Ishikawa H, Takeuchi N, et al. High resolution X-ray photoelectron spectroscopy of beta gallium oxide films deposited by ultra high vacuum radio frequency magnetron sputtering. Thin Solid Films, 2008, 516(14): 4593 doi: 10.1016/j.tsf.2007.06.075
[13]
Ghose S, Rahman S, Hong L, et al. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors. J Appl Phys, 2017, 122(9): 095302 doi: 10.1063/1.4985855
[14]
Baldini M, Albrecht M, Fiedler A, et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J Mater Sci, 2015, 51(7): 3650
[15]
Sasaki K , Thieu Q T, Wakimoto D, et al. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl Phys Express, 2017, 10(12): 124201 doi: 10.7567/APEX.10.124201
[16]
Battiston G A, Gerbasi R, Porchia M, et al. Chemical vapour deposition and characterization of gallium oxide thin films. Thin Solid Films, 1996, 279: 115 doi: 10.1016/0040-6090(95)08161-5
[17]
Comstock D J, Elam J W. Atomic Layer Deposition of Ga2O3 Films Using Trimethylgallium and Ozone. Chem Mater, 2012, 24(21): 4011 doi: 10.1021/cm300712x
[18]
Donmez I, Ozgit-Akgun C, Biyikli N. Low temperature deposition of Ga2O3 thin films using trimethylgallium and oxygen plasma. J Vac Sci Technol A, 2013, 31(1): 01A110 doi: 10.1116/1.4758782
[19]
Choi D W, Chung K B, Park J S. Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water. Thin Solid Films, 2013, 546: 31 doi: 10.1016/j.tsf.2013.03.066
[20]
Ramachandran R K, Dendooven J, Botterman J, et al. Plasma enhanced atomic layer deposition of Ga2O3 thin films. J Mater Chem A, 2014, 2(45): 19232 doi: 10.1039/C4TA05007J
[21]
O'Donoghue R, Rechmann J, Aghaee M, et al. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition. Dalton Trans, 2017, 46(47): 16551 doi: 10.1039/C7DT03427J
[22]
Hoex B, Heil S B S, Langereis E, et al. Ultra low surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl Phys Lett, 2006, 89(4): 042112 doi: 10.1063/1.2240736
[23]
Park J M, Jang S J, Yusup L L, et al. Plasma-enhanced atomic layer deposition of silicon nitride using a novel silylamine precursor. ACS Appl Mater Interfaces, 2016, 8(32): 20865 doi: 10.1021/acsami.6b06175
[24]
Profijt H B, Potts S E, van de Sanden M C M, et al. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. J Vac Sci Technol A, 2011, 29(5): 050801 doi: 10.1116/1.3609974
[25]
Bose M, Basa D K, Bose D N. Effect of ammonia plasma pretreatment on the plasma enhanced chemical vapor deposited silicon nitride films. Mater Lett, 2001, 48: 336 doi: 10.1016/S0167-577X(00)00323-2
[26]
Yang J, Eller B S, Nemanich R J. Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride. J Appl Phys, 2014, 116(12): 123702 doi: 10.1063/1.4895985
[27]
Li D, Huang J, Yang D. Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. Physica E, 2009, 41(6): 920 doi: 10.1016/j.physe.2008.08.024
[28]
Krylov I, Gavrilov A, Ritter D, et al. Elimination of the weak inversion hump in Si3N4/InGaAs (001) gate stacks using an in situ NH3 pre-treatment. Appl Phys Lett, 2011, 99(20): 203504 doi: 10.1063/1.3662035
[29]
Park J M, Jang S J, Lee S I, et al. Novel Cyclosilazane-Type Silicon Precursor and Two-Step Plasma for Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride. ACS Appl Mater Interfaces, 2018, 10(10): 9155 doi: 10.1021/acsami.7b19741
[30]
Kim B J, Kim Y C, Lee J J. The effect of NH3 plasma pre-treatment on the adhesion property of (Ti1-xAlx)N coatings deposited by plasma-enhanced chemical vapor deposition. Surf Coat Technol, 1999, 114: 85 doi: 10.1016/S0257-8972(99)00026-2
[31]
Aydil E S. Real time in situ monitoring of surfaces during glow discharge processing: NH3 and H2 plasma passivation of GaAs. J Vac Sci Technol B, 1995, 13(2): 258 doi: 10.1116/1.588361
[32]
Tadjer M J, Mastro M A, Mahadik N A, et al. Structural, optical, and electrical characterization of monoclinic β-Ga2O3 grown by MOVPE on sapphire substrates. J Electron Mater, 2016, 45(4): 2031 doi: 10.1007/s11664-016-4346-3
[33]
Oon H S, Cheong K Y. Recent development of gallium oxide thin film on GaN. Mater Sci Semicond Process, 2013, 16(5): 1217 doi: 10.1016/j.mssp.2013.01.027
[34]
Jaiswal P, Ul Muazzam U, Pratiyush A S, et al. Microwave irradiation-assisted deposition of Ga2O3 on III-nitrides for deep-UV opto-electronics. Appl Phys Lett, 2018, 112(2): 021105 doi: 10.1063/1.5010683
[35]
Deng X Y, Weis C, Bluhm H, et al. Adsorption of water on Cu2O and Al2O3 thin films. J Phys Chem C, 2008, 112: 9668 doi: 10.1021/jp800944r
[36]
Wang J Q, Wu W H, Feng W M. Introduction to electron spectroscopy (XPS/XAES/UPS). Beijing. National Defence of Industry Press, 1992
[37]
Duan T L, Pan J S, Ang D S. Investigation of surface band bending of Ga-face GaN by angle-resolved X-ray photoelectron spectroscopy. ECS J Solid State Sci Technol, 2016, 5(9): P514 doi: 10.1149/2.0261609jss
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4833 Times PDF downloads: 237 Times Cited by: 0 Times

    History

    Received: 31 July 2018 Revised: 28 November 2018 Online: Accepted Manuscript: 20 December 2018Uncorrected proof: 21 December 2018Published: 07 January 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hui Hao, Xiao Chen, Zhengcheng Li, Yang Shen, Hu Wang, Yanfei Zhao, Rong Huang, Tong Liu, Jian Liang, Yuxin An, Qing Peng, Sunan Ding. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment[J]. Journal of Semiconductors, 2019, 40(1): 012806. doi: 10.1088/1674-4926/40/1/012806 H Hao, X Chen, Z C Li, Y Shen, H Wang, Y F Zhao, R Huang, T Liu, J Liang, Y X An, Q Peng, S A Ding, Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment[J]. J. Semicond., 2019, 40(1): 012806. doi: 10.1088/1674-4926/40/1/012806.Export: BibTex EndNote
      Citation:
      Hui Hao, Xiao Chen, Zhengcheng Li, Yang Shen, Hu Wang, Yanfei Zhao, Rong Huang, Tong Liu, Jian Liang, Yuxin An, Qing Peng, Sunan Ding. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment[J]. Journal of Semiconductors, 2019, 40(1): 012806. doi: 10.1088/1674-4926/40/1/012806

      H Hao, X Chen, Z C Li, Y Shen, H Wang, Y F Zhao, R Huang, T Liu, J Liang, Y X An, Q Peng, S A Ding, Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment[J]. J. Semicond., 2019, 40(1): 012806. doi: 10.1088/1674-4926/40/1/012806.
      Export: BibTex EndNote

      Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment

      doi: 10.1088/1674-4926/40/1/012806
      More Information
      • Corresponding author: Email: adingsun2014@sinano.ac.cn
      • Received Date: 2018-07-31
      • Revised Date: 2018-11-28
      • Published Date: 2019-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return