REVIEWS

Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates

Wenqi Wei1, Qi Feng1, Zihao Wang1, 2, Ting Wang1, 2, and Jianjun Zhang1, 2

+ Author Affiliations

 Corresponding author: Ting Wang, Email: wangting@iphy.ac.cn

PDF

Turn off MathJax

Abstract: Direct epitaxial growth III–V quantum dot (QD) structures on CMOS-compatible silicon substrates is considered as one of the most promising approaches to achieve low-cost and high-yield Si-based lasers for silicon photonic integration. However, epitaxial growth of III–V materials on Si encounters the following three major challenges: high density of threading dislocations, antiphase boundaries and thermal cracks, which significantly degrade the crystal quality and potential device performance. In this review, we will focus on some recent results related to InAs/GaAs quantum dot lasers on Si (001) substrates by III–V/IV hybrid epitaxial growth via (111)-faceted Si hollow structures. Moreover, by using the step-graded epitaxial growth process the emission wavelength of InAs QDs can be extended from O-band to C/L-band. High-performance InAs/GaAs QD micro-disk lasers with sub-milliwatts threshold on Si (001) substrates are fabricated and characterized. The above results pave a promising path towards the on-chip lasers for optical interconnect applications.

Key words: quantum dotssilicon photonicsepitaxial growthsemiconductor lasers



[1]
Asghari M, Krishnamoorthy A V. Silicon photonics: Energy-efficient communication. Nat Photonics, 2011, 5(5), 268 doi: 10.1038/nphoton.2011.68
[2]
Rickman A. The commercialization of silicon photonics. Nat Photonics, 2014, 8(8), 579 doi: 10.1038/nphoton.2014.175
[3]
Vahdat A, Liu H, Zhao X, et al. The emerging optical data center. Optical Fiber Communication Conference, 2011, OTuH2
[4]
Bauters J F, Davenport M L, Heck M J R, et al. Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express, 2013, 21(1), 544 doi: 10.1364/OE.21.000544
[5]
Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8(5), 667 doi: 10.1002/lpor.201300183
[6]
Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15(21), 13965 doi: 10.1364/OE.15.013965
[7]
Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20(2), 1096 doi: 10.1364/OE.20.001096
[8]
Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photonics, 2010, 4(8), 518 doi: 10.1038/nphoton.2010.179
[9]
Xiao X, Xu H, Li X, et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt Express, 2013, 21(4), 4116 doi: 10.1364/OE.21.004116
[10]
Zheng X, Shubin I, Li G, et al. A tunable 1 × 4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects. Opt Express, 2010, 18(5), 5151 doi: 10.1364/OE.18.005151
[11]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4(8), 511 doi: 10.1038/nphoton.2010.167
[12]
Rong H, Liu A, Jones R, et al. An all-silicon Raman laser. Nature, 2005, 433(7023), 292 doi: 10.1038/nature03273
[13]
Camacho-Aguilera R E, Cai Y, Patel N, et al. An electrically pumped germanium laser. Opt Express, 2012, 20(10), 11316 doi: 10.1364/OE.20.011316
[14]
Liu J, Sun X, Pan D, et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express, 2007, 15(18), 11272 doi: 10.1364/OE.15.011272
[15]
Liu A Y, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top in Quantum Electron, 2018, 24(6), 1 doi: 10.1109/JSTQE.2018.2854542
[16]
Tanabe K, Watanabe K, Arakawa Y. III–V/Si hybrid photonic devices by direct fusion bonding. Sci Rep, 2012, 2, 349 doi: 10.1038/srep00349
[17]
Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6(5), e16260 doi: 10.1038/lsa.2016.260
[18]
Zhou Z, Yin B, Michel J. On-chip light sources for silicon photonics. Light: Sci Appl, 2015, 4(11), e358 doi: 10.1038/lsa.2015.131
[19]
Wang Z, Abbasi A, Dave U, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11(4), 1700063 doi: 10.1002/lpor.201700063
[20]
Liu C W, Östling M, Hannon J B. New materials for post-Si computing. MRS Bulletin, 2014, 39(8), 658 doi: 10.1557/mrs.2014.162
[21]
Wu J, Chen S, Seeds A, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D, 2015, 48(36), 363001 doi: 10.1088/0022-3727/48/36/363001
[22]
Tang M, Chen S, Wu J, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 2014, 22(10), 11528 doi: 10.1364/OE.22.011528
[23]
Wang J, Hu H Y, Deng C, et al. Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition. Chin Phys B, 2015, 24(2), 028101 doi: 10.1088/1674-1056/24/2/028101
[24]
Li Q, Lau K M. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 2017, 63(4), 105 doi: 10.1016/j.pcrysgrow.2017.10.001
[25]
Faucher J, Masuda T, Lee M L. Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge. J Vac Sci Technol B, 2016, 34(4), 041203 doi: 10.1116/1.4945659
[26]
Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33(12), 123002 doi: 10.1088/1361-6641/aae6a5
[27]
Brammertz G, Mols Y, Degroote S, et al. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates. J Appl Phys, 2006, 99(9), 093514 doi: 10.1063/1.2194111
[28]
Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. Appl Mater, 2016, 4(4), 046101 doi: 10.1063/1.4945586
[29]
Akiyama M, Kawarada Y, Kaminishi K. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD. Jpn J Appl Phys, 1984, 23(11A), L843 doi: DOI:10.7567/SSDM.1983.B-6-3
[30]
Chadi D J. Stabilities of single-layer and bilayer steps on Si (001) surfaces. Phys Rev Lett, 1987, 59(15), 1691 doi: 10.1103/PhysRevLett.59.1691
[31]
Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12), 11381 doi: 10.1364/OE.19.011381
[32]
Lee A, Jiang Q, Tang M, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 2012, 20(20), 22181 doi: 10.1364/OE.20.022181
[33]
Liao M, Chen S, Huo S, et al. Monolithically integrated electrically pumped continuous-wave III–V quantum dot light sources on silicon. IEEE J Sel Top Quantum Electron, 2017, 23(6), 1 doi: 10.1109/JSTQE.2017.2693025
[34]
Chen S, Liao M, Tang M, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25(5), 4632 doi: 10.1364/OE.25.004632
[35]
Norman J, Kennedy M J, Selvidge J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt Express, 2017, 25(4), 3927 doi: 10.1364/OE.25.003927
[36]
Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 2011, 315(1), 37 doi: 10.1016/j.jcrysgro.2010.10.036
[37]
Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42(2), 338 doi: 10.1364/OL.42.000338
[38]
Jung D, Zhang Z, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2017, 5(3), 1094 doi: 10.1021/acsphotonics.7b01387
[39]
Kwoen J, Jang B, Lee J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express, 2018, 26(9), 11568 doi: 10.1364/OE.26.011568
[40]
Yang V K, Groenert M, Leitz C W, et al. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J Appl Phys, 2003, 93(7), 3859 doi: 10.1063/1.1558963
[41]
Wei W Q, Wang J H, Gong Y, et al. C/L-band emission of InAs QDs monolithically grown on Ge substrate. Opt Mater Express, 2017, 7(8), 2955 doi: 10.1364/OME.7.002955
[42]
Wei W Q, Wang J H, Zhang B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett, 2018, 113(5), 053107 doi: 10.1063/1.5043169
[43]
Feng Q, Wei W, Zhang B, et al. O-band and C/L-band III–V quantum dot lasers monolithically grown on Ge and Si substrate. Appl Sci, 2019, 9(3), 385 doi: 10.3390/app9030385
[44]
Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5(7), 416 doi: 10.1038/nphoton.2011.120
[45]
Kaspar P, Brenot R, Le Liepvre A, et al. Packaged hybrid III–V/silicon SOA. The European Conference on Optical Communication (ECOC), 2014, 1
[46]
Ledentsov N N, Kovsh A R, Zhukov A E, et al. High performance quantum dot lasers on GaAs substrates operating in 1.5 μm range. Electron Lett, 2003, 39(15), 1126 doi: 10.1049/el:20030753
[47]
Wang T, Lee A, Tutu F, et al. The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates. Appl Phys Lett, 2012, 100(5), 052113 doi: 10.1063/1.3682314
[48]
Lee A, Liu H, Seeds A. Semiconductor III–V lasers monolithically grown on Si substrates. Semicond Sci Technol, 2012, 28(1), 015027 doi: 10.1088/0268-1242/28/1/015027
[49]
Lee A D, Jiang Q, Tang M, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19(4), 1901107 doi: 10.1109/JSTQE.2013.2247979
[50]
Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104(4), 041104 doi: 10.1063/1.4863223
[51]
Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10(5), 307 doi: 10.1038/nphoton.2016.21
[52]
Wan Y, Li Q, Geng Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 2015, 107(8), 081106 doi: 10.1063/1.4929441
[53]
Wan Y, Li Q, Liu A Y, et al. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources. Appl Phys Lett, 2016, 109(1), 011104 doi: 10.1063/1.4955456
[54]
Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106(7), 072105 doi: 10.1063/1.4913432
[55]
Shi B, Zhu S, Li Q, et al. Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photonics, 2017, 4(2), 204 doi: 10.1021/acsphotonics.6b00731
[56]
Shi B, Zhu S, Li Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 2017, 110(12), 121109 doi: 10.1063/1.4979120
[57]
Zhu S, Shi B, Wan Y, et al. 1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks. Opt Lett, 2017, 42(4), 679 doi: 10.1364/OL.42.000679
[58]
Wan Y, Jung D, Shang C, et al. Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers. ACS Photonics, 2018, 6(2), 279 doi: 10.1021/acsphotonics.8b01341
[59]
Zhang B, Wei W Q, Wang J H, et al. 1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy. Opt Express, 2019, 27(14), 19348 doi: 10.1364/OE.27.019348
[60]
McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60(3), 289 doi: 10.1063/1.106688
[61]
Wan Y, Li Q, Liu A Y, et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt Lett, 2016, 41(7), 1664 doi: 10.1364/OL.41.001664
[62]
Li Q, Wan Y, Liu A Y, et al. 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Opt Express, 2016, 24(18), 21038 doi: 10.1364/OE.24.021038
[63]
Wan Y, Norman J, Li Q, et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optia, 2017, 4(8), 940 doi: 10.1364/OPTICA.4.000940
[64]
Siegman A E. Lasers. University Science Books, Mill Valley, CA, 1986
Fig. 1.  (Color online) (a) The plot of bandgap energy and wavelength versus lattice constant and misfit between III–V and group IV [20]. The electron and hole mobilities in units of cm2/(V·s) are also shown below the chemical symbols. (b) Cross-sectional TEM image on the interface between GaAs and silicon.

Fig. 2.  (Color online) (a) Schematic showing polar/nonpolar interface between GaAs and Ge. Mono-atomic steps on Ge surface result in APBs, planes of As–As or Ga–Ga bonds. The antiphase domains (APBs) can also self-annihilate (left) or rise to the epi-layer surface (right). Diatomic steps on the Ge surface (center) do not result in APB formation[25]. (b) Surface AFM image of GaAs grown on Si (001) substrate, which indicates a high density of APBs.

Fig. 3.  Optical microscope image of the thermal cracks on III–V/Si surface.

Fig. 4.  (Color online) (a) 5 × 5 μm2 AFM image of 250 nm GaAs buffer layer epitaxial growth on Ge substrate. (b) Cross-sectional TEM image at the interface of GaAs and Ge.

Fig. 5.  (Color online) (a) The schematic of 5-layer InAs/GaAs QD structure grown on Ge substrate for O-band wavelength emission. (b) RT PL spectra of InAs/GaAs QDs on GaAs/Ge substrate and GaAs substrate, respectively. Inset: Zoomed-in cross-sectional TEM image of InAs/GaAs QDs on GaAs/Ge substrate.

Fig. 6.  (Color online) (a) 5 × 5 μm2 AFM image of InGaAs metamorphic buffer layer epitaxially grown on GaAs/Ge substrate. (b) The cross-sectional TEM image of the epitaxial structures on Ge. The arrow shows the growth direction. (c) High-magnification TEM image of a truncated InAs/InGaAs QD. (d) RT PL spectra of InAs/InGaAs QDs grown on both Ge substrate and GaAs substrate. Inset: 1 × 1 μm2 AFM image of InAs QDs on Ge substrate.

Fig. 7.  (Color online) (a), (b) and (c) Cross-sectional SEM images of U-shape patterned Si substrate, homoepitaxy of 550 nm Si on (111)-faceted Si hollow substrate, and III–V buffer layers on (111)-faceted Si hollow substrate, respectively. All the images are taken along the [110] axis. (d) 10 × 10 μm2 AFM image of III–V buffer layers on Si substrate.

Fig. 8.  (Color online) (a) Cross-sectional TEM image of GaAs on (111)-faceted Si hollow substrate, taken along [110] axis. (b) Plan-view ECCI to show TDs on GaAs/Si template. (c) Plan-view TEM image of GaAs surface on Si.

Fig. 9.  (Color online) (a) RT PL spectra of InAs/GaAs QDs grown on both GaAs and GaAs/Si (001) substrates, for O-band emission. Inset: 1 × 1 μm2 AFM image of InAs/GaAs QDs on GaAs/Si substrate. (b) RT PL spectra of InAs/InGaAs QDs grown on both GaAs and GaAs/Si (001) substrates, for C/L-band emission. Inset: 1 × 1 μm2 AFM image of surface InAs/InGaAs QDs on GaAs/Si substrate.

Fig. 10.  (Color online) Schematic diagrams of (a) microdisk laser structure and (b) microdisk laser on GaAs/Si (001) substrate. (c) and (d) Tilted SEM images of microdisk lasers on GaAs (001) and GaAs/Si (001) substrates, respectively.

Fig. 11.  (Color online) Integrated intensity of microdisk lasers versus the power of pump laser on (a) GaAs substrate and (c) Si (001) substrate, respectively. Inset: the log–log plot of ‘L–L curve’. PL spectra of microdisk lasers on (b) GaAs substrate and (d) Si (001) substrate, respectively, under different pump powers.

[1]
Asghari M, Krishnamoorthy A V. Silicon photonics: Energy-efficient communication. Nat Photonics, 2011, 5(5), 268 doi: 10.1038/nphoton.2011.68
[2]
Rickman A. The commercialization of silicon photonics. Nat Photonics, 2014, 8(8), 579 doi: 10.1038/nphoton.2014.175
[3]
Vahdat A, Liu H, Zhao X, et al. The emerging optical data center. Optical Fiber Communication Conference, 2011, OTuH2
[4]
Bauters J F, Davenport M L, Heck M J R, et al. Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express, 2013, 21(1), 544 doi: 10.1364/OE.21.000544
[5]
Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8(5), 667 doi: 10.1002/lpor.201300183
[6]
Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15(21), 13965 doi: 10.1364/OE.15.013965
[7]
Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20(2), 1096 doi: 10.1364/OE.20.001096
[8]
Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photonics, 2010, 4(8), 518 doi: 10.1038/nphoton.2010.179
[9]
Xiao X, Xu H, Li X, et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt Express, 2013, 21(4), 4116 doi: 10.1364/OE.21.004116
[10]
Zheng X, Shubin I, Li G, et al. A tunable 1 × 4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects. Opt Express, 2010, 18(5), 5151 doi: 10.1364/OE.18.005151
[11]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4(8), 511 doi: 10.1038/nphoton.2010.167
[12]
Rong H, Liu A, Jones R, et al. An all-silicon Raman laser. Nature, 2005, 433(7023), 292 doi: 10.1038/nature03273
[13]
Camacho-Aguilera R E, Cai Y, Patel N, et al. An electrically pumped germanium laser. Opt Express, 2012, 20(10), 11316 doi: 10.1364/OE.20.011316
[14]
Liu J, Sun X, Pan D, et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express, 2007, 15(18), 11272 doi: 10.1364/OE.15.011272
[15]
Liu A Y, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top in Quantum Electron, 2018, 24(6), 1 doi: 10.1109/JSTQE.2018.2854542
[16]
Tanabe K, Watanabe K, Arakawa Y. III–V/Si hybrid photonic devices by direct fusion bonding. Sci Rep, 2012, 2, 349 doi: 10.1038/srep00349
[17]
Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6(5), e16260 doi: 10.1038/lsa.2016.260
[18]
Zhou Z, Yin B, Michel J. On-chip light sources for silicon photonics. Light: Sci Appl, 2015, 4(11), e358 doi: 10.1038/lsa.2015.131
[19]
Wang Z, Abbasi A, Dave U, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11(4), 1700063 doi: 10.1002/lpor.201700063
[20]
Liu C W, Östling M, Hannon J B. New materials for post-Si computing. MRS Bulletin, 2014, 39(8), 658 doi: 10.1557/mrs.2014.162
[21]
Wu J, Chen S, Seeds A, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D, 2015, 48(36), 363001 doi: 10.1088/0022-3727/48/36/363001
[22]
Tang M, Chen S, Wu J, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 2014, 22(10), 11528 doi: 10.1364/OE.22.011528
[23]
Wang J, Hu H Y, Deng C, et al. Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition. Chin Phys B, 2015, 24(2), 028101 doi: 10.1088/1674-1056/24/2/028101
[24]
Li Q, Lau K M. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 2017, 63(4), 105 doi: 10.1016/j.pcrysgrow.2017.10.001
[25]
Faucher J, Masuda T, Lee M L. Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge. J Vac Sci Technol B, 2016, 34(4), 041203 doi: 10.1116/1.4945659
[26]
Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33(12), 123002 doi: 10.1088/1361-6641/aae6a5
[27]
Brammertz G, Mols Y, Degroote S, et al. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates. J Appl Phys, 2006, 99(9), 093514 doi: 10.1063/1.2194111
[28]
Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. Appl Mater, 2016, 4(4), 046101 doi: 10.1063/1.4945586
[29]
Akiyama M, Kawarada Y, Kaminishi K. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD. Jpn J Appl Phys, 1984, 23(11A), L843 doi: DOI:10.7567/SSDM.1983.B-6-3
[30]
Chadi D J. Stabilities of single-layer and bilayer steps on Si (001) surfaces. Phys Rev Lett, 1987, 59(15), 1691 doi: 10.1103/PhysRevLett.59.1691
[31]
Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12), 11381 doi: 10.1364/OE.19.011381
[32]
Lee A, Jiang Q, Tang M, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 2012, 20(20), 22181 doi: 10.1364/OE.20.022181
[33]
Liao M, Chen S, Huo S, et al. Monolithically integrated electrically pumped continuous-wave III–V quantum dot light sources on silicon. IEEE J Sel Top Quantum Electron, 2017, 23(6), 1 doi: 10.1109/JSTQE.2017.2693025
[34]
Chen S, Liao M, Tang M, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25(5), 4632 doi: 10.1364/OE.25.004632
[35]
Norman J, Kennedy M J, Selvidge J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt Express, 2017, 25(4), 3927 doi: 10.1364/OE.25.003927
[36]
Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 2011, 315(1), 37 doi: 10.1016/j.jcrysgro.2010.10.036
[37]
Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42(2), 338 doi: 10.1364/OL.42.000338
[38]
Jung D, Zhang Z, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2017, 5(3), 1094 doi: 10.1021/acsphotonics.7b01387
[39]
Kwoen J, Jang B, Lee J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express, 2018, 26(9), 11568 doi: 10.1364/OE.26.011568
[40]
Yang V K, Groenert M, Leitz C W, et al. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J Appl Phys, 2003, 93(7), 3859 doi: 10.1063/1.1558963
[41]
Wei W Q, Wang J H, Gong Y, et al. C/L-band emission of InAs QDs monolithically grown on Ge substrate. Opt Mater Express, 2017, 7(8), 2955 doi: 10.1364/OME.7.002955
[42]
Wei W Q, Wang J H, Zhang B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett, 2018, 113(5), 053107 doi: 10.1063/1.5043169
[43]
Feng Q, Wei W, Zhang B, et al. O-band and C/L-band III–V quantum dot lasers monolithically grown on Ge and Si substrate. Appl Sci, 2019, 9(3), 385 doi: 10.3390/app9030385
[44]
Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5(7), 416 doi: 10.1038/nphoton.2011.120
[45]
Kaspar P, Brenot R, Le Liepvre A, et al. Packaged hybrid III–V/silicon SOA. The European Conference on Optical Communication (ECOC), 2014, 1
[46]
Ledentsov N N, Kovsh A R, Zhukov A E, et al. High performance quantum dot lasers on GaAs substrates operating in 1.5 μm range. Electron Lett, 2003, 39(15), 1126 doi: 10.1049/el:20030753
[47]
Wang T, Lee A, Tutu F, et al. The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates. Appl Phys Lett, 2012, 100(5), 052113 doi: 10.1063/1.3682314
[48]
Lee A, Liu H, Seeds A. Semiconductor III–V lasers monolithically grown on Si substrates. Semicond Sci Technol, 2012, 28(1), 015027 doi: 10.1088/0268-1242/28/1/015027
[49]
Lee A D, Jiang Q, Tang M, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19(4), 1901107 doi: 10.1109/JSTQE.2013.2247979
[50]
Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104(4), 041104 doi: 10.1063/1.4863223
[51]
Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10(5), 307 doi: 10.1038/nphoton.2016.21
[52]
Wan Y, Li Q, Geng Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 2015, 107(8), 081106 doi: 10.1063/1.4929441
[53]
Wan Y, Li Q, Liu A Y, et al. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources. Appl Phys Lett, 2016, 109(1), 011104 doi: 10.1063/1.4955456
[54]
Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106(7), 072105 doi: 10.1063/1.4913432
[55]
Shi B, Zhu S, Li Q, et al. Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photonics, 2017, 4(2), 204 doi: 10.1021/acsphotonics.6b00731
[56]
Shi B, Zhu S, Li Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 2017, 110(12), 121109 doi: 10.1063/1.4979120
[57]
Zhu S, Shi B, Wan Y, et al. 1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks. Opt Lett, 2017, 42(4), 679 doi: 10.1364/OL.42.000679
[58]
Wan Y, Jung D, Shang C, et al. Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers. ACS Photonics, 2018, 6(2), 279 doi: 10.1021/acsphotonics.8b01341
[59]
Zhang B, Wei W Q, Wang J H, et al. 1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy. Opt Express, 2019, 27(14), 19348 doi: 10.1364/OE.27.019348
[60]
McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60(3), 289 doi: 10.1063/1.106688
[61]
Wan Y, Li Q, Liu A Y, et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt Lett, 2016, 41(7), 1664 doi: 10.1364/OL.41.001664
[62]
Li Q, Wan Y, Liu A Y, et al. 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Opt Express, 2016, 24(18), 21038 doi: 10.1364/OE.24.021038
[63]
Wan Y, Norman J, Li Q, et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optia, 2017, 4(8), 940 doi: 10.1364/OPTICA.4.000940
[64]
Siegman A E. Lasers. University Science Books, Mill Valley, CA, 1986
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4009 Times PDF downloads: 87 Times Cited by: 0 Times

    History

    Received: 13 July 2019 Revised: 09 September 2019 Online: Accepted Manuscript: 19 September 2019Uncorrected proof: 24 September 2019Corrected proof: 17 October 2019Published: 01 October 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates[J]. Journal of Semiconductors, 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303 W Q Wei, Q Feng, Z H Wang, T Wang, J J Zhang, Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates[J]. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303.Export: BibTex EndNote
      Citation:
      Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates[J]. Journal of Semiconductors, 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303

      W Q Wei, Q Feng, Z H Wang, T Wang, J J Zhang, Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates[J]. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303.
      Export: BibTex EndNote

      Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates

      doi: 10.1088/1674-4926/40/10/101303
      More Information
      • Corresponding author: Ting Wang, Email: wangting@iphy.ac.cn
      • Received Date: 2019-07-13
      • Revised Date: 2019-09-09
      • Published Date: 2019-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return