REVIEWS

Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate

Cheng Wang1, and Yueguang Zhou1, 2, 3

+ Author Affiliations

 Corresponding author: Cheng Wang, wangcheng1@shanghaitech.edu.cn

PDF

Turn off MathJax

Abstract: Growing semiconductor laser sources on silicon is a crucial but challenging technology for developing photonic integrated circuits (PICs). InAs/GaAs quantum dot (Qdot) lasers have successfully circumvented the mismatch problem between III–V materials and Ge or Si, and have demonstrated efficient laser emission. In this paper, we review dynamical characteristics of Qdot lasers epitaxially grown on Ge or Si, in comparison with those of Qdot lasers on native GaAs substrate. We discuss properties of linewidth broadening factor, laser noise and its sensitivity to optical feedback, intensity modulation, as well as mode locking operation. The investigation of these dynamical characteristics is beneficial for guiding the design of PICs in optical communications and optical computations.

Key words: quantum dot laserlaser noisemodulation dynamicsmode lockingphotonic integrated circuits



[1]
Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12(6), 1678 doi: 10.1109/JSTQE.2006.883151
[2]
Lin X, Riveson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks. Science, 2018, 361(6406), 1004 doi: 10.1126/science.aat8084
[3]
Cardenas J, Poitras C B, Robinson J T, et al. Low loss etchless silicon photonic waveguides. Opt Express, 2009, 17(6), 4752 doi: 10.1364/OE.17.004752
[4]
Vivien L, Osmond J, Fédéli J M, et al. 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Express, 2009, 17(8), 6252 doi: 10.1364/OE.17.006252
[5]
Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photon, 2010, 4(8), 518 doi: 10.1038/nphoton.2010.179
[6]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photon, 2010, 4(8), 511 doi: 10.1038/nphoton.2010.167
[7]
Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 2016, 4(4), 046101 doi: 10.1063/1.4945586
[8]
Liu A Y, Herrick R W, Ueda O, et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J Sel Top Quantum Electron, 2015, 21(6), 690 doi: 10.1109/JSTQE.2015.2418226
[9]
Tanabe K, Rae T, Watanabe K, et al. High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding. Appl Phys Express, 2013, 6(8), 082703 doi: 10.7567/APEX.6.082703
[10]
Urino Y, Hatori N, Mizutani K, et al. First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C. J Lightw Technol, 2015, 33(6), 1223 doi: 10.1109/JLT.2014.2380811
[11]
Uvin S, Kumari S, Groote A D, et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 2018, 26(14), 18302 doi: 10.1364/OE.26.018302
[12]
Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 2011, 5(7), 416 doi: 10.1038/nphoton.2011.120
[13]
Norman J C, Jung D, Wan Y, et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 2018, 3(3), 030901 doi: 10.1063/1.5021345
[14]
Jung D, Herrick R, Norman J, et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl Phys Lett, 2018, 112(15), 153507 doi: 10.1063/1.5026147
[15]
O’Brien D, Hegarty S P, Huyet G, et al. Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers. Electron Lett, 2003, 39(25), 1819 doi: 10.1049/el:20031153
[16]
Deppe D G, Shavritranuruk K, Ozgur G, et al. Quantum dot laser diode with low threshold and low internal loss. Electron Lett, 2009, 45(1), 54 doi: 10.1049/el:20092873
[17]
Sugawara M, Usami M. Quantum dot devices handling the heat. Nat Photon, 2009, 3(1), 30 doi: 10.1038/nphoton.2008.267
[18]
Lee A, Jiang Q, Tang M, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 2012, 20(20), 22181 doi: 10.1364/OE.20.022181
[19]
Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photon, 2016, 10(10), 307 doi: 10.1038/nphoton.2016.21
[20]
Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42(2), 338 doi: 10.1364/OL.42.000338
[21]
Tischler M A, Katsuyama T, El-Masry N A, et al. Defect reduction in GaAs epitaxial layers using a GaAsP–InGaAs strained-layer superlattice. Appl Phys Lett, 1985, 46(3), 294 doi: 10.1063/1.95663
[22]
Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104(4), 041104 doi: 10.1063/1.4863223
[23]
Lee A D, Jiang Q, Tang M, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19(4), 1901107 doi: 10.1109/JSTQE.2013.2247979
[24]
Liu A Y, Srinivasan S, Norman J, et al. Quantum dot lasers for silicon photonics. Photon Res, 2015, 3(5), B1 doi: 10.1364/PRJ.3.0000B1
[25]
Norman J C, Jung D, Zhang Z, et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron, 2019, 55(2), 1 doi: 10.1109/JQE.2019.2901508
[26]
Wang C, Zhuang J P, Grillot F, et al. Contribution of off-resonant states to the phase noise of quantum dot lasers. Opt Express, 2016, 24(26), 29872 doi: 10.1364/OE.24.029872
[27]
Sears K, Buda M, Tan H, et al. Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition. J Appl Phys, 2007, 101(1), 013112 doi: 10.1063/1.2409612
[28]
Bimberg D, Grundmann M, Ledentsov N N. Quantum dot heterostructures. Hoboken: John Wiley & Sons, 1999
[29]
Linder K K, Phillips J, Oasaimeh O, et al. Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates. Appl Phys Lett, 1999, 74(10), 1355 doi: 10.1063/1.123548
[30]
Coldren L A, Corzine S W, Mashanovitch M L. Diode lasers and photonic integrated circuits. Hoboken: John Wiley & Sons, 2012
[31]
Osinski M, Buus J. Linewidth broadening factor in semiconductor lasers–An overview. IEEE J Quantum Electron, 1987, 23(1), 9 doi: 10.1109/JQE.1987.1073204
[32]
Hwang S K, Liang D H. Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers. Appl Phys Lett, 2006, 89(6), 061120 doi: 10.1063/1.2335978
[33]
Melnik S, Huyet G. The linewidth enhancement factor α of quantum dot semiconductor lasers. Opt Express, 2006, 14(7), 2950 doi: 10.1364/OE.14.002950
[34]
Gioannini M, Montrosset I. Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers. IEEE J Quantum Electron, 2007, 43(10), 941 doi: 10.1109/JQE.2007.904306
[35]
Globisch B, Otto C, Scholl E, et al. Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys Rev E, 2012, 86(4), 046201 doi: 10.1103/PhysRevE.86.046201
[36]
Bimberg D, Kirstaedter N, Ledentsov N N, et al. InGaAs–GaAs quantum-dot lasers. IEEE J Sel Top Quantum Electron, 1997, 3(2), 196 doi: 10.1109/2944.605656
[37]
Newell T C, Bossert D J, Stintz A, et al. Gain and linewidth enhancement factor in InAs quantum-dot laser diodes. IEEE Photon Technol Lett, 1999, 11(12), 1527 doi: 10.1109/68.806834
[38]
Dagens B, Markus A, Chen J X, et al. Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser. Electron Lett, 2005, 41(6), 323 doi: 10.1049/el:20057956
[39]
Mi Z, Bhattacharya P. DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001). IEEE J Quantum Electron, 2006, 42(12), 1224 doi: 10.1109/JQE.2006.883497
[40]
Martinez A, Merghem K, Bouchoule S, et al. Dynamic properties of InAs/InP (311)B quantum dot Fabry-Perot lasers emitting at 1.52 μm. Appl Phys Lett, 2008, 93(2), 021101 doi: 10.1063/1.2957479
[41]
Bhowmick S, Baten M Z, Frost T, et al. High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser. IEEE J Quantum Electron, 2014, 50(1), 7 doi: 10.1109/JQE.2013.2290943
[42]
Gioannini M, Sevega A, Montrosset I. Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers. Opt Quantum Electron, 2006, 38(4–6), 381 doi: 10.1007/s11082-006-0038-1
[43]
Zhou Y G, Zhao X Y, Cao C F, et al. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium. Opt Express, 2018, 26(21), 28131 doi: 10.1364/OE.26.028131
[44]
Ahmed M, Yamada M, Saito M. Numerical modeling of intensity and phase noise in semiconductor lasers. IEEE J Quantum Electron, 2001, 37(12), 1600 doi: 10.1109/3.970907
[45]
Fronen R J, Vandamme L K J. Low-frequency intensity noise in semiconductor lasers. IEEE J Quantum Electron, 1988, 24(5), 724 doi: 10.1109/3.188
[46]
Capua A, Rozenfeld L, Mikhelashvili V, et al. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt Express, 2007, 15(9), 5388 doi: 10.1364/OE.15.005388
[47]
Duan J, Wang X G, Zhou Y G, et al. Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J Quantum Electron, 2018, 54(6), 1 doi: 10.1109/JQE.2018.2880452
[48]
Ohtsubo J. Semiconductor lasers: Stability, Instability and Chaos. New York: Springer, 2012
[49]
O'Brien D, Hegarty S P, Huyet G, et al. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt Lett, 2004, 29(10), 1072 doi: 10.1364/OL.29.001072
[50]
Binder J O, Cormack G D. Mode selection and stability of a semiconductor laser with weak optical feedback. IEEE J Quantum Electron, 1989, 25(11), 2255 doi: 10.1109/3.42053
[51]
Helms J, Petermann K. A simple analytic expression for the stable operation range of laser diode with optical feedback. IEEE J Quantum Electron, 1990, 26(5), 833 doi: 10.1109/3.55523
[52]
Tromborg B, Mork J. Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers. IEEE J Quantum Electron, 1990, 26(4), 642 doi: 10.1109/3.53380
[53]
Wang C, Schires K, Osinski M, et al. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking. Sci Rep, 2016, 6, 27825 doi: 10.1038/srep27825
[54]
Zhou Y G, Duan J, Huang H, et al. Intensity noise and pulse oscillation of an InAs/GaAs quantum dot laser on germanium. IEEE J Sel Top Quantum Electron, 2019, 25(6), 1 doi: 10.1109/JSTQE.2019.2917548
[55]
Duan J, Huang H, Jung D, et al. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl Phys Lett, 2018, 112(25), 251111 doi: 10.1063/1.5025879
[56]
Jung D, Norman J, Kennedy M J, et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl Phys Lett, 2017, 111(12), 122107 doi: 10.1063/1.4993226
[57]
Jungho K, Hui S, Minin S, et al. Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers. IEEE Photon Technol Lett, 2006, 18(9), 1022 doi: 10.1109/LPT.2006.873456
[58]
Zhou Y G, Zhou C, Cao C F, et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt Express, 2017, 25(23), 28817 doi: 10.1364/OE.25.028817
[59]
Feiste U. Optimization of modulation bandwidth in DBR lasers with detuned bragg reflectors. IEEE J Quantum Electron, 1998, 34(12), 2371 doi: 10.1109/3.736110
[60]
Laakso A, Dumitrescu M. Modified rate equation model including the photon-photon resonance. Opt Quantum Electron, 2011, 42(11–13), 785 doi: 10.1007/s11082-011-9483-6
[61]
Liu A Y, Komljenovic T, Davenport M L, et al. Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt Express, 2017, 25(9), 9535 doi: 10.1364/OE.25.009535
[62]
Schunk N, Petermann K. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J Quantum Electron, 1988, 24(7), 1242 doi: 10.1109/3.960
[63]
Duan J, Huang H, Dong B, et al. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon Technol Lett, 2019, 31(5), 345 doi: 10.1109/LPT.2019.2895049
[64]
Liao M, Chen S, Liu Z, et al. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon Res, 2018, 6(11), 1062 doi: 10.1364/PRJ.6.001062
[65]
Huang H, Duan J, Jung D, et al. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J Opt Soc Am B, 2018, 35(11), 2780 doi: 10.1364/JOSAB.35.002780
[66]
Kageyama T, Vo Q H, Watanabe K, et al. Large modulation bandwidth (13.1 GHz) of 1.3 μm-range quantum dot lasers with high dot density and thin barrier layer. Compound Semiconductor Week, 2016, MoC3-4
[67]
Ishida M, Matsuda M, Tanaka Y, et al. Temperature-stable 25-Gbps direct-modulation in 1.3-μm InAs/GaAs quantum dot lasers. Conference on Lasers and Electro-Optics, 2012, CM1l.2
[68]
Abdollahinia A, Banyoudeh S, Rippien A, et al. Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers. Opt Express, 2018, 26(5), 6056 doi: 10.1364/OE.26.006056
[69]
Banyoudeh S, Abdollahinia A, Eyal O, et al. Temperature-insensitive high-speed directly modulated 1.55-μm quantum dot lasers. IEEE Photon Technol Lett, 2016, 28(21), 2451 doi: 10.1109/LPT.2016.2600508
[70]
Hantschmann C, Vasilev P P, Wonfor A, et al. Understanding the bandwidth limitations in monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. J Lightw Technol, 2019, 37(3), 949 doi: 10.1109/JLT.2018.2884025
[71]
Inoue D, Jung D, Norman J, et al. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt Express, 2018, 26(6), 7022 doi: 10.1364/OE.26.007022
[72]
Thompson M G, Rae A R, Mo X, et al. InGaAs quantum-dot mode-locked laser diodes. IEEE J Sel Top Quantum Electron, 2009, 15(3), 661 doi: 10.1109/JSTQE.2008.2012265
[73]
Liu S, Norman J C, Jung D, et al. Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si. Appl Phys Lett, 2018, 113(4), 041108 doi: 10.1063/1.5043200
[74]
Simonis G J, Purchase K G. Optical generation, distribution, and control of microwaves using laser heterodyne. IEEE Trans Microwave Theory Tech, 1990, 38(5), 667 doi: 10.1109/22.54938
[75]
Stöhr A, Akrout A, Buß R, et al. 60 GHz radio-over-fiber technologies for broadband wireless services. J Opt Netw, 2009, 8(5), 471 doi: 10.1364/JON.8.000471
[76]
Delfyett P J, Hartman D H, Ahmad S Z. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightw Technol, 1991, 9(12), 1646 doi: 10.1109/50.108709
[77]
Ohno T, Sato K, Iga R, et al. Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode. Electron Lett, 2004, 40(4), 265 doi: 10.1049/el:20040180
[78]
Rafailov E U, Cataluna M A, Sibbett W. Mode-locked quantum-dot lasers. Nature Photon, 2007, 1(7), 395 doi: 10.1038/nphoton.2007.120
[79]
Liu S, Wu X, Jung D, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity. Optica, 2019, 6(2), 128 doi: 10.1364/OPTICA.6.000128
[80]
Carpintero G, Thompson M G, Penty R V, et al. Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode. IEEE Photon Technol Lett, 2009, 21(6), 389 doi: 10.1109/LPT.2008.2011918
[81]
Davenport M L, Liu S, Bowers J E. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon Res, 2018, 6(5), 468 doi: 10.1364/PRJ.6.000468
[82]
Renaudier J, Brenot R, Dagens B, et al. 45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Perot semiconductor lasers at 1.5 μm. Electron Lett, 2005, 41(18), 1007 doi: 10.1049/el:20052173
[83]
Liu J, Liu Z, Raymond S, et al. Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser. Opt Lett, 2008, 33(15), 1702 doi: 10.1364/OL.33.001702
[84]
Liu S, Jung D, Norman J C, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron Lett, 2018, 54(7), 432 doi: 10.1049/el.2017.4639
[85]
Rossetti M, Tianhong X, Bardella P, et al. Impact of gain saturation on passive mode locking regimes in quantum dot lasers with straight and tapered waveguides. IEEE J Quantum Electron, 2011, 47(11), 1404 doi: 10.1109/JQE.2011.2167131
[86]
Rossetti M, Bardella P, Montrosset I. Time-domain travelling-wave model for quantum dot passively mode-locked lasers. IEEE J Quantum Electron, 2011, 47(2), 139 doi: 10.1109/JQE.2010.2055550
[87]
Bardella P, Columbo L L, Gioannini M. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study. Opt Express, 2017, 25(21), 26234 doi: 10.1364/OE.25.026234
[88]
Wang Y, Chen S, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 2018, 5(5), 528 doi: 10.1364/OPTICA.5.000528
[89]
Su H, Lester L F. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. J Phys D, 2005, 38(13), 2112 doi: 10.1088/0022-3727/38/13/006
[90]
Lu Z G, Poole P J, Liu J R, et al. High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser. Electron Lett, 2011, 47(14), 818 doi: 10.1049/el.2011.0946
[91]
Becker A, Sichkovskyi V, Bjelica M, et al. Narrow-linewidth 1.5-μm quantum dot distributed feedback lasers. Proc SPIE, 2016, 97670Q
[92]
Septon T, Gosh S, Becker A, et al. Spectral characteristics of narrow linewidth InAs/InP quantum dot distributed feedback lasers. 26th International Semiconductor Laser Conference, 2018, TuD4
[93]
Duan J, Huang H, Lu Z G, et al. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Appl Phys Lett, 2018, 112(12), 121102 doi: 10.1063/1.5022480
[94]
Septon T, Gosh S, Becker A, et al. Narrow linewidth InAs/InP quantum dot DFB laser. Optical Fiber Communication Conference, 2019, W3A.8
[95]
Wan Y, Li Q, Geng Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 2015, 107(8), 081106 doi: 10.1063/1.4929441
[96]
Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106(7), 072105 doi: 10.1063/1.4913432
[97]
Zhu S, Shi B, Li Q, et al. 1.5 μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon. Appl Phys Lett, 2018, 113(22), 221103 doi: 10.1063/1.5055803
[98]
Wan Y, Li Q, Liu A Y, et al. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl Phys Lett, 2016, 108(22), 221101 doi: 10.1063/1.4952600
[99]
Wan Y, Li Q, Liu A Y, et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt Lett, 2016, 41(7), 1664 doi: 10.1364/OL.41.001664
[100]
Wan Y, Jung D, Norman J, et al. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si. Opt Express, 2017, 25(22), 26853 doi: 10.1364/OE.25.026853
[101]
Wan Y, Norman J, Li Q, et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, 4(8), 940 doi: 10.1364/OPTICA.4.000940
[102]
Shi B, Zhu S, Li Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 2017, 110(12), 121109 doi: 10.1063/1.4979120
[103]
Shi B, Zhu S, Li Q, et al. Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photonics, 2017, 4(2), 204 doi: 10.1021/acsphotonics.6b00731
[104]
Han Y, Li Q, Zhu S, et al. Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths. Appl Phys Lett, 2017, 111(21), 212101 doi: 10.1063/1.5005173
[105]
Han Y, Ng W K, Ma C, et al. Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands. Optica, 2018, 5(8), 918 doi: 10.1364/OPTICA.5.000918
[106]
Han Y, Li Q, Ng K W, et al. InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands. Nanotechnology, 2018, 29(22), 225601 doi: 10.1088/1361-6528/aab53b
[107]
Han Y, Ng W K, Xue Y, et al. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. Opt Lett, 2019, 44(4), 767 doi: 10.1364/OL.44.000767
Fig. 1.  (Color online) Nonradiative recombination effects on the threshold current and the carrier numbers in GS, ES, and RS at the threshold, respectively.

Fig. 2.  (Color online) Nonradiative recombination effects on the LBF. (Reproduced from Ref. [43].)

Fig. 3.  (Color online) Non-radiative recombination effects on (a) the RIN spectrum, (b) the FN spectrum, and (c) the low-frequency RIN and the peak FN.

Fig. 4.  (Color online) Non-radiative recombination effects on (a) the intensity modulation response, and (b) the 3-dB modulation bandwidth and the damping factor.

Fig. 5.  (Color online) Non-radiative recombination effects on the critical feedback level. (Reproduced from Ref. [43].)

Fig. 6.  (Color online) Sub-threshold LBF of Ge-based Qdot lasers with a cavity length of (a) 4.4 mm and (b) 2.2 mm. Both lasers have a ridge width of 4.0 μm, and a lasing threshold of 60 mA.

Fig. 7.  (Color online) LBFs of Si-based undoped (closed circle) and p-doped (triangle) Qdot lasers. (Reproduced from Ref. [55].)

Fig. 8.  (Color online) RINs of (a) Ge-based Qdot laser (Ith = 300 mA), and (b) GaAs-based Qdot laser (Ith = 120 mA). (Reproduced from Ref. [58].)

Fig. 9.  (Color online) Optical feedback effects on the normalized intensity noise power of (a) Ge-based laser (Ith = 75 mA), and (b) GaAs-based laser (Ith = 60 mA), with respect to the free-running cases. The noise power is averaged in the frequency range of 10–100 MHz. (Reproduced from Ref. [43].)

Fig. 10.  (Color online) Effects of optical feedback on RINs of (a) a Qdot laser epitaxially grown on Si (Ith = 38 mA), and of (b) a Qwell laser heterogeneously integrated on Si (Ith = 32 mA). (Reproduced from Ref. [61].)

Fig. 11.  (Color online) Optical feedback effects on (a, b) the optical power distribution of two cavity modes, and (c, d) on the electrical power distribution. (a) and (c) are for a Si-based Qdot laser (Ith = 26.5 mA), (b) and (d) are for a InP-based Qwell laser (Ith = 28 mA). (Reproduced from Ref. [63].)

Fig. 12.  (Color online) Intensity modulation responses of two Si-based Qdot lasers. The threshold current of device 1 is 18.9 mA, and is 19.1 mA for device 2. The cavity length is 2.5 mm. (Reproduced from Ref. [70].)

Fig. 13.  (Color online) Intensity modulation responses of (a) undoped and (b) p-doped Qdot lasers on Si. (c) Eye diagrams of the p-doped laser, under non-return-to-zero modulation. The cavity length is 0.58 mm. (Reproduced from Ref. [71].)

Fig. 14.  (Color online) (a) Schematic structure of a mode-locked Qdot laser on Si with a repetition rate of 9.0 GHz. (b) SNR of the fundamental RF peak. (c) Mode-locking pulse width as functions of forward bias current and reverse bias voltage. The threshold current is 90 mA without biasing the absorber section. (Reproduced from Ref. [73].)

Fig. 15.  (Color online) Si-based mode-locked Qdot laser with a repetition rate of 20 GHz. (a) Autocorrelation pulse shape. (b) RF spectrum. (c) RF lineshape. (d) Single-sideband phase noise. The threshold current is 42 mA without biasing the absorber section. (Reproduced from Ref. [79].)

Table 1.   Qdot laser parameters used for the simulation.

SymbolDescriptionValue
$\tau _{\rm{ES}}^{\rm{RS}}$RS to ES capture time6.3 ps
$\tau _{\rm{GS}}^{\rm{ES}}$ES to GS relaxation time2.9 ps
$\tau _{\rm{RS}}^{\rm{ES}}$ES to RS escape time2.7 ns
$\tau _{\rm{ES}}^{\rm{GS}}$GS to ES escape time10.4 ps
$\tau _{\rm{RS}}^{{\rm{spon}}}$RS spontaneous emission time0.5 ns
$\tau _{\rm{ES}}^{{\rm{spon}}}$ES spontaneous emission time0.5 ns
$\tau _{\rm{GS}}^{{\rm{spon}}}$GS spontaneous emission time1.2 ns
$\tau _{\rm{p}}$Photon lifetime4.1 ps
${T_2}$Polarization dephasing time0.1 ps
${\beta _{\rm{sp}}}$Spontaneous emission factor1.0 × 10–4
${a_{\rm{GS}}}$GS differential gain5.0 × 10–15 cm2
${a_{\rm{ES}}}$ES differential gain10 × 10–15 cm2
${a_{\rm{RS}}}$RS differential gain2.5 × 10–15 cm2
$\xi $Gain compression factor2.0 × 10–16 cm3
$\Gamma_{\rm p}$Optical confinement factor0.06
${\alpha _{\rm{GS}}}$GS contribution to LBF0.50
$N_{\rm{B}}$Total dot number107
${D_{\rm{RS}}}$Total RS state number4.8 × 106
$V_{\rm{B}}$Active region volume5.0 × 10–11 cm3
${V_{\rm{RS}}}$RS region volume1.0 × 10–16 cm3
DownLoad: CSV
[1]
Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12(6), 1678 doi: 10.1109/JSTQE.2006.883151
[2]
Lin X, Riveson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks. Science, 2018, 361(6406), 1004 doi: 10.1126/science.aat8084
[3]
Cardenas J, Poitras C B, Robinson J T, et al. Low loss etchless silicon photonic waveguides. Opt Express, 2009, 17(6), 4752 doi: 10.1364/OE.17.004752
[4]
Vivien L, Osmond J, Fédéli J M, et al. 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Express, 2009, 17(8), 6252 doi: 10.1364/OE.17.006252
[5]
Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photon, 2010, 4(8), 518 doi: 10.1038/nphoton.2010.179
[6]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photon, 2010, 4(8), 511 doi: 10.1038/nphoton.2010.167
[7]
Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 2016, 4(4), 046101 doi: 10.1063/1.4945586
[8]
Liu A Y, Herrick R W, Ueda O, et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J Sel Top Quantum Electron, 2015, 21(6), 690 doi: 10.1109/JSTQE.2015.2418226
[9]
Tanabe K, Rae T, Watanabe K, et al. High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding. Appl Phys Express, 2013, 6(8), 082703 doi: 10.7567/APEX.6.082703
[10]
Urino Y, Hatori N, Mizutani K, et al. First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C. J Lightw Technol, 2015, 33(6), 1223 doi: 10.1109/JLT.2014.2380811
[11]
Uvin S, Kumari S, Groote A D, et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 2018, 26(14), 18302 doi: 10.1364/OE.26.018302
[12]
Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 2011, 5(7), 416 doi: 10.1038/nphoton.2011.120
[13]
Norman J C, Jung D, Wan Y, et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 2018, 3(3), 030901 doi: 10.1063/1.5021345
[14]
Jung D, Herrick R, Norman J, et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl Phys Lett, 2018, 112(15), 153507 doi: 10.1063/1.5026147
[15]
O’Brien D, Hegarty S P, Huyet G, et al. Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers. Electron Lett, 2003, 39(25), 1819 doi: 10.1049/el:20031153
[16]
Deppe D G, Shavritranuruk K, Ozgur G, et al. Quantum dot laser diode with low threshold and low internal loss. Electron Lett, 2009, 45(1), 54 doi: 10.1049/el:20092873
[17]
Sugawara M, Usami M. Quantum dot devices handling the heat. Nat Photon, 2009, 3(1), 30 doi: 10.1038/nphoton.2008.267
[18]
Lee A, Jiang Q, Tang M, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 2012, 20(20), 22181 doi: 10.1364/OE.20.022181
[19]
Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photon, 2016, 10(10), 307 doi: 10.1038/nphoton.2016.21
[20]
Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42(2), 338 doi: 10.1364/OL.42.000338
[21]
Tischler M A, Katsuyama T, El-Masry N A, et al. Defect reduction in GaAs epitaxial layers using a GaAsP–InGaAs strained-layer superlattice. Appl Phys Lett, 1985, 46(3), 294 doi: 10.1063/1.95663
[22]
Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104(4), 041104 doi: 10.1063/1.4863223
[23]
Lee A D, Jiang Q, Tang M, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19(4), 1901107 doi: 10.1109/JSTQE.2013.2247979
[24]
Liu A Y, Srinivasan S, Norman J, et al. Quantum dot lasers for silicon photonics. Photon Res, 2015, 3(5), B1 doi: 10.1364/PRJ.3.0000B1
[25]
Norman J C, Jung D, Zhang Z, et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron, 2019, 55(2), 1 doi: 10.1109/JQE.2019.2901508
[26]
Wang C, Zhuang J P, Grillot F, et al. Contribution of off-resonant states to the phase noise of quantum dot lasers. Opt Express, 2016, 24(26), 29872 doi: 10.1364/OE.24.029872
[27]
Sears K, Buda M, Tan H, et al. Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition. J Appl Phys, 2007, 101(1), 013112 doi: 10.1063/1.2409612
[28]
Bimberg D, Grundmann M, Ledentsov N N. Quantum dot heterostructures. Hoboken: John Wiley & Sons, 1999
[29]
Linder K K, Phillips J, Oasaimeh O, et al. Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates. Appl Phys Lett, 1999, 74(10), 1355 doi: 10.1063/1.123548
[30]
Coldren L A, Corzine S W, Mashanovitch M L. Diode lasers and photonic integrated circuits. Hoboken: John Wiley & Sons, 2012
[31]
Osinski M, Buus J. Linewidth broadening factor in semiconductor lasers–An overview. IEEE J Quantum Electron, 1987, 23(1), 9 doi: 10.1109/JQE.1987.1073204
[32]
Hwang S K, Liang D H. Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers. Appl Phys Lett, 2006, 89(6), 061120 doi: 10.1063/1.2335978
[33]
Melnik S, Huyet G. The linewidth enhancement factor α of quantum dot semiconductor lasers. Opt Express, 2006, 14(7), 2950 doi: 10.1364/OE.14.002950
[34]
Gioannini M, Montrosset I. Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers. IEEE J Quantum Electron, 2007, 43(10), 941 doi: 10.1109/JQE.2007.904306
[35]
Globisch B, Otto C, Scholl E, et al. Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys Rev E, 2012, 86(4), 046201 doi: 10.1103/PhysRevE.86.046201
[36]
Bimberg D, Kirstaedter N, Ledentsov N N, et al. InGaAs–GaAs quantum-dot lasers. IEEE J Sel Top Quantum Electron, 1997, 3(2), 196 doi: 10.1109/2944.605656
[37]
Newell T C, Bossert D J, Stintz A, et al. Gain and linewidth enhancement factor in InAs quantum-dot laser diodes. IEEE Photon Technol Lett, 1999, 11(12), 1527 doi: 10.1109/68.806834
[38]
Dagens B, Markus A, Chen J X, et al. Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser. Electron Lett, 2005, 41(6), 323 doi: 10.1049/el:20057956
[39]
Mi Z, Bhattacharya P. DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001). IEEE J Quantum Electron, 2006, 42(12), 1224 doi: 10.1109/JQE.2006.883497
[40]
Martinez A, Merghem K, Bouchoule S, et al. Dynamic properties of InAs/InP (311)B quantum dot Fabry-Perot lasers emitting at 1.52 μm. Appl Phys Lett, 2008, 93(2), 021101 doi: 10.1063/1.2957479
[41]
Bhowmick S, Baten M Z, Frost T, et al. High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser. IEEE J Quantum Electron, 2014, 50(1), 7 doi: 10.1109/JQE.2013.2290943
[42]
Gioannini M, Sevega A, Montrosset I. Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers. Opt Quantum Electron, 2006, 38(4–6), 381 doi: 10.1007/s11082-006-0038-1
[43]
Zhou Y G, Zhao X Y, Cao C F, et al. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium. Opt Express, 2018, 26(21), 28131 doi: 10.1364/OE.26.028131
[44]
Ahmed M, Yamada M, Saito M. Numerical modeling of intensity and phase noise in semiconductor lasers. IEEE J Quantum Electron, 2001, 37(12), 1600 doi: 10.1109/3.970907
[45]
Fronen R J, Vandamme L K J. Low-frequency intensity noise in semiconductor lasers. IEEE J Quantum Electron, 1988, 24(5), 724 doi: 10.1109/3.188
[46]
Capua A, Rozenfeld L, Mikhelashvili V, et al. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt Express, 2007, 15(9), 5388 doi: 10.1364/OE.15.005388
[47]
Duan J, Wang X G, Zhou Y G, et al. Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J Quantum Electron, 2018, 54(6), 1 doi: 10.1109/JQE.2018.2880452
[48]
Ohtsubo J. Semiconductor lasers: Stability, Instability and Chaos. New York: Springer, 2012
[49]
O'Brien D, Hegarty S P, Huyet G, et al. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt Lett, 2004, 29(10), 1072 doi: 10.1364/OL.29.001072
[50]
Binder J O, Cormack G D. Mode selection and stability of a semiconductor laser with weak optical feedback. IEEE J Quantum Electron, 1989, 25(11), 2255 doi: 10.1109/3.42053
[51]
Helms J, Petermann K. A simple analytic expression for the stable operation range of laser diode with optical feedback. IEEE J Quantum Electron, 1990, 26(5), 833 doi: 10.1109/3.55523
[52]
Tromborg B, Mork J. Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers. IEEE J Quantum Electron, 1990, 26(4), 642 doi: 10.1109/3.53380
[53]
Wang C, Schires K, Osinski M, et al. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking. Sci Rep, 2016, 6, 27825 doi: 10.1038/srep27825
[54]
Zhou Y G, Duan J, Huang H, et al. Intensity noise and pulse oscillation of an InAs/GaAs quantum dot laser on germanium. IEEE J Sel Top Quantum Electron, 2019, 25(6), 1 doi: 10.1109/JSTQE.2019.2917548
[55]
Duan J, Huang H, Jung D, et al. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl Phys Lett, 2018, 112(25), 251111 doi: 10.1063/1.5025879
[56]
Jung D, Norman J, Kennedy M J, et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl Phys Lett, 2017, 111(12), 122107 doi: 10.1063/1.4993226
[57]
Jungho K, Hui S, Minin S, et al. Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers. IEEE Photon Technol Lett, 2006, 18(9), 1022 doi: 10.1109/LPT.2006.873456
[58]
Zhou Y G, Zhou C, Cao C F, et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt Express, 2017, 25(23), 28817 doi: 10.1364/OE.25.028817
[59]
Feiste U. Optimization of modulation bandwidth in DBR lasers with detuned bragg reflectors. IEEE J Quantum Electron, 1998, 34(12), 2371 doi: 10.1109/3.736110
[60]
Laakso A, Dumitrescu M. Modified rate equation model including the photon-photon resonance. Opt Quantum Electron, 2011, 42(11–13), 785 doi: 10.1007/s11082-011-9483-6
[61]
Liu A Y, Komljenovic T, Davenport M L, et al. Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt Express, 2017, 25(9), 9535 doi: 10.1364/OE.25.009535
[62]
Schunk N, Petermann K. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J Quantum Electron, 1988, 24(7), 1242 doi: 10.1109/3.960
[63]
Duan J, Huang H, Dong B, et al. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon Technol Lett, 2019, 31(5), 345 doi: 10.1109/LPT.2019.2895049
[64]
Liao M, Chen S, Liu Z, et al. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon Res, 2018, 6(11), 1062 doi: 10.1364/PRJ.6.001062
[65]
Huang H, Duan J, Jung D, et al. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J Opt Soc Am B, 2018, 35(11), 2780 doi: 10.1364/JOSAB.35.002780
[66]
Kageyama T, Vo Q H, Watanabe K, et al. Large modulation bandwidth (13.1 GHz) of 1.3 μm-range quantum dot lasers with high dot density and thin barrier layer. Compound Semiconductor Week, 2016, MoC3-4
[67]
Ishida M, Matsuda M, Tanaka Y, et al. Temperature-stable 25-Gbps direct-modulation in 1.3-μm InAs/GaAs quantum dot lasers. Conference on Lasers and Electro-Optics, 2012, CM1l.2
[68]
Abdollahinia A, Banyoudeh S, Rippien A, et al. Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers. Opt Express, 2018, 26(5), 6056 doi: 10.1364/OE.26.006056
[69]
Banyoudeh S, Abdollahinia A, Eyal O, et al. Temperature-insensitive high-speed directly modulated 1.55-μm quantum dot lasers. IEEE Photon Technol Lett, 2016, 28(21), 2451 doi: 10.1109/LPT.2016.2600508
[70]
Hantschmann C, Vasilev P P, Wonfor A, et al. Understanding the bandwidth limitations in monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. J Lightw Technol, 2019, 37(3), 949 doi: 10.1109/JLT.2018.2884025
[71]
Inoue D, Jung D, Norman J, et al. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt Express, 2018, 26(6), 7022 doi: 10.1364/OE.26.007022
[72]
Thompson M G, Rae A R, Mo X, et al. InGaAs quantum-dot mode-locked laser diodes. IEEE J Sel Top Quantum Electron, 2009, 15(3), 661 doi: 10.1109/JSTQE.2008.2012265
[73]
Liu S, Norman J C, Jung D, et al. Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si. Appl Phys Lett, 2018, 113(4), 041108 doi: 10.1063/1.5043200
[74]
Simonis G J, Purchase K G. Optical generation, distribution, and control of microwaves using laser heterodyne. IEEE Trans Microwave Theory Tech, 1990, 38(5), 667 doi: 10.1109/22.54938
[75]
Stöhr A, Akrout A, Buß R, et al. 60 GHz radio-over-fiber technologies for broadband wireless services. J Opt Netw, 2009, 8(5), 471 doi: 10.1364/JON.8.000471
[76]
Delfyett P J, Hartman D H, Ahmad S Z. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightw Technol, 1991, 9(12), 1646 doi: 10.1109/50.108709
[77]
Ohno T, Sato K, Iga R, et al. Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode. Electron Lett, 2004, 40(4), 265 doi: 10.1049/el:20040180
[78]
Rafailov E U, Cataluna M A, Sibbett W. Mode-locked quantum-dot lasers. Nature Photon, 2007, 1(7), 395 doi: 10.1038/nphoton.2007.120
[79]
Liu S, Wu X, Jung D, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity. Optica, 2019, 6(2), 128 doi: 10.1364/OPTICA.6.000128
[80]
Carpintero G, Thompson M G, Penty R V, et al. Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode. IEEE Photon Technol Lett, 2009, 21(6), 389 doi: 10.1109/LPT.2008.2011918
[81]
Davenport M L, Liu S, Bowers J E. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon Res, 2018, 6(5), 468 doi: 10.1364/PRJ.6.000468
[82]
Renaudier J, Brenot R, Dagens B, et al. 45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Perot semiconductor lasers at 1.5 μm. Electron Lett, 2005, 41(18), 1007 doi: 10.1049/el:20052173
[83]
Liu J, Liu Z, Raymond S, et al. Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser. Opt Lett, 2008, 33(15), 1702 doi: 10.1364/OL.33.001702
[84]
Liu S, Jung D, Norman J C, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron Lett, 2018, 54(7), 432 doi: 10.1049/el.2017.4639
[85]
Rossetti M, Tianhong X, Bardella P, et al. Impact of gain saturation on passive mode locking regimes in quantum dot lasers with straight and tapered waveguides. IEEE J Quantum Electron, 2011, 47(11), 1404 doi: 10.1109/JQE.2011.2167131
[86]
Rossetti M, Bardella P, Montrosset I. Time-domain travelling-wave model for quantum dot passively mode-locked lasers. IEEE J Quantum Electron, 2011, 47(2), 139 doi: 10.1109/JQE.2010.2055550
[87]
Bardella P, Columbo L L, Gioannini M. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study. Opt Express, 2017, 25(21), 26234 doi: 10.1364/OE.25.026234
[88]
Wang Y, Chen S, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 2018, 5(5), 528 doi: 10.1364/OPTICA.5.000528
[89]
Su H, Lester L F. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. J Phys D, 2005, 38(13), 2112 doi: 10.1088/0022-3727/38/13/006
[90]
Lu Z G, Poole P J, Liu J R, et al. High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser. Electron Lett, 2011, 47(14), 818 doi: 10.1049/el.2011.0946
[91]
Becker A, Sichkovskyi V, Bjelica M, et al. Narrow-linewidth 1.5-μm quantum dot distributed feedback lasers. Proc SPIE, 2016, 97670Q
[92]
Septon T, Gosh S, Becker A, et al. Spectral characteristics of narrow linewidth InAs/InP quantum dot distributed feedback lasers. 26th International Semiconductor Laser Conference, 2018, TuD4
[93]
Duan J, Huang H, Lu Z G, et al. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Appl Phys Lett, 2018, 112(12), 121102 doi: 10.1063/1.5022480
[94]
Septon T, Gosh S, Becker A, et al. Narrow linewidth InAs/InP quantum dot DFB laser. Optical Fiber Communication Conference, 2019, W3A.8
[95]
Wan Y, Li Q, Geng Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 2015, 107(8), 081106 doi: 10.1063/1.4929441
[96]
Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106(7), 072105 doi: 10.1063/1.4913432
[97]
Zhu S, Shi B, Li Q, et al. 1.5 μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon. Appl Phys Lett, 2018, 113(22), 221103 doi: 10.1063/1.5055803
[98]
Wan Y, Li Q, Liu A Y, et al. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl Phys Lett, 2016, 108(22), 221101 doi: 10.1063/1.4952600
[99]
Wan Y, Li Q, Liu A Y, et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt Lett, 2016, 41(7), 1664 doi: 10.1364/OL.41.001664
[100]
Wan Y, Jung D, Norman J, et al. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si. Opt Express, 2017, 25(22), 26853 doi: 10.1364/OE.25.026853
[101]
Wan Y, Norman J, Li Q, et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, 4(8), 940 doi: 10.1364/OPTICA.4.000940
[102]
Shi B, Zhu S, Li Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 2017, 110(12), 121109 doi: 10.1063/1.4979120
[103]
Shi B, Zhu S, Li Q, et al. Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photonics, 2017, 4(2), 204 doi: 10.1021/acsphotonics.6b00731
[104]
Han Y, Li Q, Zhu S, et al. Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths. Appl Phys Lett, 2017, 111(21), 212101 doi: 10.1063/1.5005173
[105]
Han Y, Ng W K, Ma C, et al. Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands. Optica, 2018, 5(8), 918 doi: 10.1364/OPTICA.5.000918
[106]
Han Y, Li Q, Ng K W, et al. InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands. Nanotechnology, 2018, 29(22), 225601 doi: 10.1088/1361-6528/aab53b
[107]
Han Y, Ng W K, Xue Y, et al. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. Opt Lett, 2019, 44(4), 767 doi: 10.1364/OL.44.000767
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3652 Times PDF downloads: 95 Times Cited by: 0 Times

    History

    Received: 23 May 2019 Revised: 12 July 2019 Online: Accepted Manuscript: 02 September 2019Uncorrected proof: 04 September 2019Published: 01 October 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Cheng Wang, Yueguang Zhou. Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate[J]. Journal of Semiconductors, 2019, 40(10): 101306. doi: 10.1088/1674-4926/40/10/101306 C Wang, Y G Zhou, Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate[J]. J. Semicond., 2019, 40(10): 101306. doi: 10.1088/1674-4926/40/10/101306.Export: BibTex EndNote
      Citation:
      Cheng Wang, Yueguang Zhou. Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate[J]. Journal of Semiconductors, 2019, 40(10): 101306. doi: 10.1088/1674-4926/40/10/101306

      C Wang, Y G Zhou, Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate[J]. J. Semicond., 2019, 40(10): 101306. doi: 10.1088/1674-4926/40/10/101306.
      Export: BibTex EndNote

      Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate

      doi: 10.1088/1674-4926/40/10/101306
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return