COMMENTS AND OPINIONS

Quantum light sources from semiconductor

Disheng Chen1, 2 and Weibo Gao1, 2

+ Author Affiliations

PDF

Turn off MathJax

Abstract: Semiconductor provides a physics-rich environment to host various quantum light sources applicable for quantum information processing. These light sources are capable of deterministic generation of non-classical photon streams that demonstrate antibunching photon statistics, strong indistinguishability, and high-fidelity entanglement. Some of them have even successfully transitioned from proof-of-concept to engineering efforts with steadily improving performance[1]. Here, we briefly summarize recent efforts and progress in the race towards ideal quantum light sources based on semiconductor materials. The focus of this report will be on group III–V semiconductor quantum dots, defects in wide band-gap materials, emitters in two-dimensional van der Waals layered hosts, and carbon nanotubes, as these systems are well-positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques.



[1]
Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10, 631 doi: 10.1038/nphoton.2016.186
[2]
Kuhlmann A V, Prechtel J H, Houel J, et al. Transform-limited single photons from a single quantum dot. Nat Commun, 2015, 6, 8204 doi: 10.1038/ncomms9204
[3]
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290, 2282 doi: 10.1126/science.290.5500.2282
[4]
Santori C, Pelton M, Solomon G, et al. Triggered single photons from a quantum dot. Phys Rev Lett, 2001, 86, 1502 doi: 10.1103/PhysRevLett.86.1502
[5]
Ding X, He Y, Duan Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 2016, 116, 020401 doi: 10.1103/PhysRevLett.116.020401
[6]
Somaschi N, Giesz V, Santis L D, et al. Near-optimal single-photon sources in the solid state. Nat Photon, 2016, 10, 340 doi: 10.1038/nphoton.2016.23
[7]
Nowak A K, Portalupi S L, Giesz V, et al. Deterministic and electrically tunable bright single-photon source. Nat Commun, 2014, 5, 3240 doi: 10.1038/ncomms4240
[8]
Heindel T, Schneider C, Lermer M, et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 2010, 96, 011107 doi: 10.1063/1.3284514
[9]
Nilsson J, Stevenson R M, Chan K H A, et al. Quantum teleportation using a light-emitting diode. Nat Photon, 2013, 7, 311 doi: 10.1038/nphoton.2013.10
[10]
Müller M, Bounouar S, Jöns K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photon, 2014, 8, 224 doi: 10.1038/nphoton.2013.377
[11]
Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501 doi: 10.1038/ncomms15501
[12]
Huber D, Reindl M, Huo Y, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun, 2017, 8, 15506 doi: 10.1038/ncomms15506
[13]
Chen Y, Zhang J, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387 doi: 10.1038/ncomms10387
[14]
Huber D, Reindl M, Covre da Silva S F, et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys Rev Lett, 2018, 121, 033902 doi: 10.1103/PhysRevLett.121.033902
[15]
Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 2019, 122, 113602 doi: 10.1103/PhysRevLett.122.113602
[16]
Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9, 2994 doi: 10.1038/s41467-018-05456-2
[17]
Zaitsev A M. Optical properties of diamond: a data handbook. Berlin: Springer-Verlag, 2001
[18]
Tamarat P, Gaebel T, Rabeau J R, et al. Stark shift control of single optical centers in diamond. Phys Rev Lett, 2006, 97, 083002 doi: 10.1103/PhysRevLett.97.083002
[19]
Fu K M C, Santori C, Barclay P E, et al. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys Rev Lett, 2009, 103, 256404 doi: 10.1103/PhysRevLett.103.256404
[20]
Jelezko F, Popa I, Gruber A, et al. Single spin states in a defect center resolved by optical spectroscopy. Appl Phys Lett, 2002, 81, 2160 doi: 10.1063/1.1507838
[21]
Doherty M W, Manson N B, Delaney P, et al. The nitrogen-vacancy colour centre in diamond. Phys Rep, 2013, 528, 1 doi: 10.1016/j.physrep.2013.02.001
[22]
Hepp C, Müller T, Waselowski V, et al. Electronic structure of the silicon vacancy color center in diamond. Phys Rev Lett, 2014, 112, 036405 doi: 10.1103/PhysRevLett.112.036405
[23]
Rogers L J, Jahnke K D, Teraji T, et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun, 2014, 5, 4739 doi: 10.1038/ncomms5739
[24]
Sipahigil A, Jahnke K D, Rogers L J, et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys Rev Lett, 2014, 113, 113602 doi: 10.1103/PhysRevLett.113.113602
[25]
Neu E, Fischer M, Gsell S, et al. Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium. Phys Rev B, 2011, 84, 205211 doi: 10.1103/PhysRevB.84.205211
[26]
Neu E, Fischer M, Gsell S, et al. Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium. Phys Rev B, 2011, 84, 205211 doi: 10.1103/PhysRevB.84.205211
[27]
Dietrich A, Jahnke K D, Binder J M, et al. Isotopically varying spectral features of silicon-vacancy in diamond. New J Phys, 2014, 16, 113019 doi: 10.1088/1367-2630/16/11/113019
[28]
Rogers L J, Jahnke K D, Doherty M W, et al. Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys Rev B, 2014, 89, 235101 doi: 10.1103/PhysRevB.89.235101
[29]
Zhang J L, Ishiwata H, Babinec T M, et al. Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers. Nano Lett, 2016, 16, 212 doi: 10.1021/acs.nanolett.5b03515
[30]
Sipahigil A, Evans R E, Sukachev D D, et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science, 2016, 354, 847 doi: 10.1126/science.aah6875
[31]
Schroder T, Trusheim M E, Walsh M, et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat Commun, 2017, 8, 15376 doi: 10.1038/ncomms15376
[32]
Riedrich-Möller J, Arend C, Pauly C, et al. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett, 2014, 14, 5281 doi: 10.1021/nl502327b
[33]
Gil B. Low-dimensional nitride semiconductors. Oxford: Oxford University Press, 2002
[34]
Zhou Y, Wang Z, Rasmita A, et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 2018, 4, eaar358 doi: 10.1126/sciadv.aar3580
[35]
Berhane A M, Jeong K Y, Bodrog Z, et al. Bright room-temperature single-photon emission from defects in gallium nitride. Adv Mater, 2017, 29, 1605092 doi: 10.1002/adma.201605092
[36]
Berhane A M, Jeong K Y, Bradac C, et al. Photophysics of GaN single-photon emitters in the visible spectral range. Phys Rev B, 2018, 97, 165202 doi: 10.1103/PhysRevB.97.165202
[37]
Nguyen M, Zhu T, Kianinia M, et al. Effects of microstructure and growth conditions on quantum emitters in gallium nitride. arXiv: 1811.11914, 2018
[38]
Castelletto S, Johnson B C, Ivády V, et al. A silicon carbide room-temperature single-photon source. Nat Mater, 2014, 13, 151 doi: 10.1038/nmat3806
[39]
Widmann M, Lee S Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 2015, 14, 164 doi: 10.1038/nmat4145
[40]
Castelletto S, Johnson B C, Boretti A. Quantum effects in silicon carbide hold promise for novel integrated devices and sensors. Adv Opt Mater, 2013, 1, 609 doi: 10.1002/adom.v1.9
[41]
Lohrmann A, Johnson B C, McCallum J C, et al. A review on single photon sources in silicon carbide. Rep Prog Phys, 2017, 80, 034502 doi: 10.1088/1361-6633/aa5171
[42]
Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nano, 2015, 10, 507 doi: 10.1038/nnano.2015.79
[43]
He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 2015, 10, 497 doi: 10.1038/nnano.2015.75
[44]
Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 2015, 10, 503 doi: 10.1038/nnano.2015.67
[45]
Srivastava A, Sidler M, Allain A V, et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 2015, 10, 491 doi: 10.1038/nnano.2015.60
[46]
Tonndorf P, Schmidt R, Schneider R, et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica, 2015, 2, 347 doi: 10.1364/OPTICA.2.000347
[47]
Branny A, Wang G, Kumar S, et al. Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning. Appl Phys Lett, 2016, 108, 142101 doi: 10.1063/1.4945268
[48]
Chakraborty C, Goodfellow K M, Vamivakas A N. Localized emission from defects in MoSe2 layers. Opt Mater Express, 2016, 6, 2081 doi: 10.1364/OME.6.002081
[49]
Palacios-Berraquero C, Kara D M, Montblanch A R P, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun, 2017, 8, 15093 doi: 10.1038/ncomms15093
[50]
Tonndorf P, Schwarz S, Kern J, et al. Single-photon emitters in GaSe. 2D Mater, 2017, 4, 021010 doi: 10.1088/2053-1583/aa525b
[51]
Toth M, Aharonovich I. Single photon sources in atomically thin materials. Ann Rev Phys Chem, 2019, 70, 123 doi: 10.1146/annurev-physchem-042018-052628
[52]
Tran T T, Bray K, Ford M J, et al . Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol, 2016, 11, 37 doi: 10.1038/nnano.2015.242
[53]
Tran T T, Kianinia M, Nguyen M, et al. Resonant excitation of quantum emitters in hexagonal boron nitride. ACS Photonics, 2018, 5, 295 doi: 10.1021/acsphotonics.7b00977
[54]
Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics, 2016, 10, 262 doi: 10.1038/nphoton.2015.277
[55]
Martinez L J, Pelini T, Waselowski V, et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys Rev B, 2016, 94, 121405 doi: 10.1103/PhysRevB.94.121405
[56]
Tran T T, Elbadawi C, Totonjian D, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 2016, 10, 7331 doi: 10.1021/acsnano.6b03602
[57]
Dietrich A, Bürk M, Steiger E S, et al. Observation of Fourier transform limited lines in hexagonal boron nitride. Phys Rev B, 2018, 98, 081414 doi: 10.1103/PhysRevB.98.081414
[58]
Dietrich A, Doherty M W, Aharonovich I, et al. Persistence of Fourier transform limited lines from a solid state quantum emitter in hexagonal boron nitride. arXiv: 1903.02931, 2019
[59]
Tawfik S A, Ali S, Fronzi M, et al. First-principles investigation of quantum emission from hBN defects. Nanoscale, 2017, 9, 13575 doi: 10.1039/C7NR04270A
[60]
Reimers J R, Sajid A, Kobayashi R, et al. Understanding and calibrating density-functional-theory calculations describing the energy and spectroscopy of defect sites in hexagonal boron nitride. J Chem Theory Comput, 2018, 14, 1602 doi: 10.1021/acs.jctc.7b01072
[61]
Abdi M, Chou J P, Gali A, et al. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics, 2018, 5, 1967 doi: 10.1021/acsphotonics.7b01442
[62]
Gupta S, Yang J H,Yakobson B I . Two-level quantum systems in two-dimensional materials for single photon emission. Nano Lett, 2019, 19, 408 doi: 10.1021/acs.nanolett.8b04159
[63]
He X, Htoon H, Doorn S K, et al. Carbon nanotubes as emerging quantum-light sources. Nat Mater, 2018, 17, 663 doi: 10.1038/s41563-018-0109-2
[64]
Ghosh S, Bachilo S M, Simonette R A, et al. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science, 2010, 330, 1656 doi: 10.1126/science.1196382
[65]
Piao Y, Meany B, Powell L R, et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat Chem, 2013, 5, 840 doi: 10.1038/nchem.1711
[66]
Hartmann N F, Yalcin S E, Adamska L, et al. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes . Nanoscale, 2015, 7, 20521 doi: 10.1039/C5NR06343D
[67]
He X, Hartmann N F, Ma X, et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat Photonics, 2017, 11, 577 doi: 10.1038/nphoton.2017.119
[68]
Ma X, Hartmann N F, Baldwin J K S, et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol, 2015, 10, 671 doi: 10.1038/nnano.2015.136
[69]
Pyatkov F, Fütterling V, Khasminskaya S, et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat Photonics, 2016, 10, 420 doi: 10.1038/nphoton.2016.70
[70]
Khasminskaya S, Pyatkov F, Słowik K, et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat Photonics, 2016, 10, 727 doi: 10.1038/nphoton.2016.178
[71]
Graf A, Held M, Zakharko Y, et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat Mater, 2017, 16, 911 doi: 10.1038/nmat4940
[72]
Sarpkaya I, Zhang Z, Walden-Newman W, et al. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes. Nat Commun, 2013, 4, 2152 doi: 10.1038/ncomms3152
[1]
Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10, 631 doi: 10.1038/nphoton.2016.186
[2]
Kuhlmann A V, Prechtel J H, Houel J, et al. Transform-limited single photons from a single quantum dot. Nat Commun, 2015, 6, 8204 doi: 10.1038/ncomms9204
[3]
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290, 2282 doi: 10.1126/science.290.5500.2282
[4]
Santori C, Pelton M, Solomon G, et al. Triggered single photons from a quantum dot. Phys Rev Lett, 2001, 86, 1502 doi: 10.1103/PhysRevLett.86.1502
[5]
Ding X, He Y, Duan Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 2016, 116, 020401 doi: 10.1103/PhysRevLett.116.020401
[6]
Somaschi N, Giesz V, Santis L D, et al. Near-optimal single-photon sources in the solid state. Nat Photon, 2016, 10, 340 doi: 10.1038/nphoton.2016.23
[7]
Nowak A K, Portalupi S L, Giesz V, et al. Deterministic and electrically tunable bright single-photon source. Nat Commun, 2014, 5, 3240 doi: 10.1038/ncomms4240
[8]
Heindel T, Schneider C, Lermer M, et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 2010, 96, 011107 doi: 10.1063/1.3284514
[9]
Nilsson J, Stevenson R M, Chan K H A, et al. Quantum teleportation using a light-emitting diode. Nat Photon, 2013, 7, 311 doi: 10.1038/nphoton.2013.10
[10]
Müller M, Bounouar S, Jöns K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photon, 2014, 8, 224 doi: 10.1038/nphoton.2013.377
[11]
Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501 doi: 10.1038/ncomms15501
[12]
Huber D, Reindl M, Huo Y, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun, 2017, 8, 15506 doi: 10.1038/ncomms15506
[13]
Chen Y, Zhang J, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387 doi: 10.1038/ncomms10387
[14]
Huber D, Reindl M, Covre da Silva S F, et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys Rev Lett, 2018, 121, 033902 doi: 10.1103/PhysRevLett.121.033902
[15]
Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 2019, 122, 113602 doi: 10.1103/PhysRevLett.122.113602
[16]
Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9, 2994 doi: 10.1038/s41467-018-05456-2
[17]
Zaitsev A M. Optical properties of diamond: a data handbook. Berlin: Springer-Verlag, 2001
[18]
Tamarat P, Gaebel T, Rabeau J R, et al. Stark shift control of single optical centers in diamond. Phys Rev Lett, 2006, 97, 083002 doi: 10.1103/PhysRevLett.97.083002
[19]
Fu K M C, Santori C, Barclay P E, et al. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys Rev Lett, 2009, 103, 256404 doi: 10.1103/PhysRevLett.103.256404
[20]
Jelezko F, Popa I, Gruber A, et al. Single spin states in a defect center resolved by optical spectroscopy. Appl Phys Lett, 2002, 81, 2160 doi: 10.1063/1.1507838
[21]
Doherty M W, Manson N B, Delaney P, et al. The nitrogen-vacancy colour centre in diamond. Phys Rep, 2013, 528, 1 doi: 10.1016/j.physrep.2013.02.001
[22]
Hepp C, Müller T, Waselowski V, et al. Electronic structure of the silicon vacancy color center in diamond. Phys Rev Lett, 2014, 112, 036405 doi: 10.1103/PhysRevLett.112.036405
[23]
Rogers L J, Jahnke K D, Teraji T, et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun, 2014, 5, 4739 doi: 10.1038/ncomms5739
[24]
Sipahigil A, Jahnke K D, Rogers L J, et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys Rev Lett, 2014, 113, 113602 doi: 10.1103/PhysRevLett.113.113602
[25]
Neu E, Fischer M, Gsell S, et al. Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium. Phys Rev B, 2011, 84, 205211 doi: 10.1103/PhysRevB.84.205211
[26]
Neu E, Fischer M, Gsell S, et al. Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium. Phys Rev B, 2011, 84, 205211 doi: 10.1103/PhysRevB.84.205211
[27]
Dietrich A, Jahnke K D, Binder J M, et al. Isotopically varying spectral features of silicon-vacancy in diamond. New J Phys, 2014, 16, 113019 doi: 10.1088/1367-2630/16/11/113019
[28]
Rogers L J, Jahnke K D, Doherty M W, et al. Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys Rev B, 2014, 89, 235101 doi: 10.1103/PhysRevB.89.235101
[29]
Zhang J L, Ishiwata H, Babinec T M, et al. Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers. Nano Lett, 2016, 16, 212 doi: 10.1021/acs.nanolett.5b03515
[30]
Sipahigil A, Evans R E, Sukachev D D, et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science, 2016, 354, 847 doi: 10.1126/science.aah6875
[31]
Schroder T, Trusheim M E, Walsh M, et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat Commun, 2017, 8, 15376 doi: 10.1038/ncomms15376
[32]
Riedrich-Möller J, Arend C, Pauly C, et al. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett, 2014, 14, 5281 doi: 10.1021/nl502327b
[33]
Gil B. Low-dimensional nitride semiconductors. Oxford: Oxford University Press, 2002
[34]
Zhou Y, Wang Z, Rasmita A, et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 2018, 4, eaar358 doi: 10.1126/sciadv.aar3580
[35]
Berhane A M, Jeong K Y, Bodrog Z, et al. Bright room-temperature single-photon emission from defects in gallium nitride. Adv Mater, 2017, 29, 1605092 doi: 10.1002/adma.201605092
[36]
Berhane A M, Jeong K Y, Bradac C, et al. Photophysics of GaN single-photon emitters in the visible spectral range. Phys Rev B, 2018, 97, 165202 doi: 10.1103/PhysRevB.97.165202
[37]
Nguyen M, Zhu T, Kianinia M, et al. Effects of microstructure and growth conditions on quantum emitters in gallium nitride. arXiv: 1811.11914, 2018
[38]
Castelletto S, Johnson B C, Ivády V, et al. A silicon carbide room-temperature single-photon source. Nat Mater, 2014, 13, 151 doi: 10.1038/nmat3806
[39]
Widmann M, Lee S Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 2015, 14, 164 doi: 10.1038/nmat4145
[40]
Castelletto S, Johnson B C, Boretti A. Quantum effects in silicon carbide hold promise for novel integrated devices and sensors. Adv Opt Mater, 2013, 1, 609 doi: 10.1002/adom.v1.9
[41]
Lohrmann A, Johnson B C, McCallum J C, et al. A review on single photon sources in silicon carbide. Rep Prog Phys, 2017, 80, 034502 doi: 10.1088/1361-6633/aa5171
[42]
Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nano, 2015, 10, 507 doi: 10.1038/nnano.2015.79
[43]
He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 2015, 10, 497 doi: 10.1038/nnano.2015.75
[44]
Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 2015, 10, 503 doi: 10.1038/nnano.2015.67
[45]
Srivastava A, Sidler M, Allain A V, et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 2015, 10, 491 doi: 10.1038/nnano.2015.60
[46]
Tonndorf P, Schmidt R, Schneider R, et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica, 2015, 2, 347 doi: 10.1364/OPTICA.2.000347
[47]
Branny A, Wang G, Kumar S, et al. Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning. Appl Phys Lett, 2016, 108, 142101 doi: 10.1063/1.4945268
[48]
Chakraborty C, Goodfellow K M, Vamivakas A N. Localized emission from defects in MoSe2 layers. Opt Mater Express, 2016, 6, 2081 doi: 10.1364/OME.6.002081
[49]
Palacios-Berraquero C, Kara D M, Montblanch A R P, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun, 2017, 8, 15093 doi: 10.1038/ncomms15093
[50]
Tonndorf P, Schwarz S, Kern J, et al. Single-photon emitters in GaSe. 2D Mater, 2017, 4, 021010 doi: 10.1088/2053-1583/aa525b
[51]
Toth M, Aharonovich I. Single photon sources in atomically thin materials. Ann Rev Phys Chem, 2019, 70, 123 doi: 10.1146/annurev-physchem-042018-052628
[52]
Tran T T, Bray K, Ford M J, et al . Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol, 2016, 11, 37 doi: 10.1038/nnano.2015.242
[53]
Tran T T, Kianinia M, Nguyen M, et al. Resonant excitation of quantum emitters in hexagonal boron nitride. ACS Photonics, 2018, 5, 295 doi: 10.1021/acsphotonics.7b00977
[54]
Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics, 2016, 10, 262 doi: 10.1038/nphoton.2015.277
[55]
Martinez L J, Pelini T, Waselowski V, et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys Rev B, 2016, 94, 121405 doi: 10.1103/PhysRevB.94.121405
[56]
Tran T T, Elbadawi C, Totonjian D, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 2016, 10, 7331 doi: 10.1021/acsnano.6b03602
[57]
Dietrich A, Bürk M, Steiger E S, et al. Observation of Fourier transform limited lines in hexagonal boron nitride. Phys Rev B, 2018, 98, 081414 doi: 10.1103/PhysRevB.98.081414
[58]
Dietrich A, Doherty M W, Aharonovich I, et al. Persistence of Fourier transform limited lines from a solid state quantum emitter in hexagonal boron nitride. arXiv: 1903.02931, 2019
[59]
Tawfik S A, Ali S, Fronzi M, et al. First-principles investigation of quantum emission from hBN defects. Nanoscale, 2017, 9, 13575 doi: 10.1039/C7NR04270A
[60]
Reimers J R, Sajid A, Kobayashi R, et al. Understanding and calibrating density-functional-theory calculations describing the energy and spectroscopy of defect sites in hexagonal boron nitride. J Chem Theory Comput, 2018, 14, 1602 doi: 10.1021/acs.jctc.7b01072
[61]
Abdi M, Chou J P, Gali A, et al. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics, 2018, 5, 1967 doi: 10.1021/acsphotonics.7b01442
[62]
Gupta S, Yang J H,Yakobson B I . Two-level quantum systems in two-dimensional materials for single photon emission. Nano Lett, 2019, 19, 408 doi: 10.1021/acs.nanolett.8b04159
[63]
He X, Htoon H, Doorn S K, et al. Carbon nanotubes as emerging quantum-light sources. Nat Mater, 2018, 17, 663 doi: 10.1038/s41563-018-0109-2
[64]
Ghosh S, Bachilo S M, Simonette R A, et al. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science, 2010, 330, 1656 doi: 10.1126/science.1196382
[65]
Piao Y, Meany B, Powell L R, et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat Chem, 2013, 5, 840 doi: 10.1038/nchem.1711
[66]
Hartmann N F, Yalcin S E, Adamska L, et al. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes . Nanoscale, 2015, 7, 20521 doi: 10.1039/C5NR06343D
[67]
He X, Hartmann N F, Ma X, et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat Photonics, 2017, 11, 577 doi: 10.1038/nphoton.2017.119
[68]
Ma X, Hartmann N F, Baldwin J K S, et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol, 2015, 10, 671 doi: 10.1038/nnano.2015.136
[69]
Pyatkov F, Fütterling V, Khasminskaya S, et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat Photonics, 2016, 10, 420 doi: 10.1038/nphoton.2016.70
[70]
Khasminskaya S, Pyatkov F, Słowik K, et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat Photonics, 2016, 10, 727 doi: 10.1038/nphoton.2016.178
[71]
Graf A, Held M, Zakharko Y, et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat Mater, 2017, 16, 911 doi: 10.1038/nmat4940
[72]
Sarpkaya I, Zhang Z, Walden-Newman W, et al. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes. Nat Commun, 2013, 4, 2152 doi: 10.1038/ncomms3152
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3467 Times PDF downloads: 150 Times Cited by: 0 Times

    History

    Received: Revised: Online: Accepted Manuscript: 25 June 2019Uncorrected proof: 27 June 2019Published: 05 July 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Disheng Chen, Weibo Gao. Quantum light sources from semiconductor[J]. Journal of Semiconductors, 2019, 40(7): 070301. doi: 10.1088/1674-4926/40/7/070301 D S Chen, W B Gao, Quantum light sources from semiconductor[J]. J. Semicond., 2019, 40(7): 070301. doi: 10.1088/1674-4926/40/7/070301.Export: BibTex EndNote
      Citation:
      Disheng Chen, Weibo Gao. Quantum light sources from semiconductor[J]. Journal of Semiconductors, 2019, 40(7): 070301. doi: 10.1088/1674-4926/40/7/070301

      D S Chen, W B Gao, Quantum light sources from semiconductor[J]. J. Semicond., 2019, 40(7): 070301. doi: 10.1088/1674-4926/40/7/070301.
      Export: BibTex EndNote

      Quantum light sources from semiconductor

      doi: 10.1088/1674-4926/40/7/070301
      More Information
      • Author Bio:

        Weibo Gao Weibo Gao is currently assistant professor (provost’s chair in physics) in physics and applied physics division in Nanyang Technological University. His current interests include single photon emitters, quantum information application with color centers in wide-band gap material, light-matter interactions and transport properties with two-dimensional materials

      • Published Date: 2019-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return