J. Semicond. > 2019, Volume 40 > Issue 9 > 090401

NEWS AND VIEWS

Exciton–polaritons in semiconductors

Qing Zhang1, and Xinfeng Liu2,

+ Author Affiliations

 Corresponding author: Qing Zhang, Email: Q_zhang@pku.edu.cn; Xinfeng Liu, liuxf@nanoctr.cn

DOI: 10.1088/1674-4926/40/9/090401

PDF

Turn off MathJax

In 1951, Huang firstly proposed the concept of polariton and derived its dispersion relation by combing lattice vibration in ionic crystals with electromagnetic waves using classic electromagnetic theory, which was primarily aimed to explain light retardation effect (see Fig. 1)[1]. Hopfield et al. extended Huang’s theory to exciton−photon interaction in crystals, experimentally demonstrated Raman scattering by phonon polaritons and formally proposed the name of “polariton” from “polarization” and “photon”[2, 3]. Since then, polariton has been widely studied in fundamental and application research fields.

Figure  1.  The principle of the interaction between photons and lattice vibration.

Polariton is half-matter, half-light quasi-particle that forms when the energy transfer rate between polarized particles in matter (e.g. exciton, phonon, plasmon, magneton) and photons is faster than their dissipative rate. Inheriting from the matter which is massive and controllable as well as the photon which is massless and inactive, polariton exhibits a light mass and interactive behavior, and hence creates an idea platform to explore quantum electromagnetic dynamics in solid-state matters and develop high-speed, low-loss devices.

With revolution and rapid advances in semiconductor and microfabrication technologies, exciton–polariton (EP) has aroused great attentions from worldwide scientists in particular when Bose–Einstein condensation (BEC) of EP was realized in GaAs and CdTe quantum wells under optical pump in 2000s[4, 5]. Researchers consider that the EP–BECs make photons controllable by slowing their velocity, and hence could be applicable to develop optical chips with higher computing speed and lower energy consumption in comparison to electronic devices. Considerable efforts have been made, and till so far room temperature EPs have been realized in a variety of inorganic and organic semiconductors[69]. Moreover, electrically-driven BECs from InGaAs and EPs from organic semiconductors compound, such as 9,10-bis(phenylethynyl)anthracene, have been achieved at room temperature[10, 11]. Very recently, photo-transistors applying EP–BECs have been established, and new concepts such as parity-time-symmetry are introduced to extend the capability of light manipulation as well as lower threshold of semiconductor lasers[1214].

To date, on the one hand, the research in EPs of these well-established semiconductors is still blooming, and continuous efforts are devoted to push laboratory devices to industry-friendly products. The central issues include low consumption, reliability and mass fabrication, etc. On the other hand, this area grows rapidly with the emergence of new materials including two dimensional semiconductors and metallic halide perovskites, etc.[1521]. The perovskites combine the advantages of inorganic and organic semiconductors, exhibiting high exciton oscillator strength, long-range bipolar carrier transport, high defect tolerance, easy-tuning of band gap as well as low-cost fabrication processes[2224]. In the last few years, several groups from Singapore, China and U.S.A. have reported EPs and EP−BEC effects at room temperature as well as continuous wave pumped EP lasing from the perovskite family[1518, 25]. Despite of structure instability, perovskite raises the possibility to develop flexible, low cost, and low energy consumption EP devices.



[1]
Huang K. Lattice vibrations and optical waves in ionic crystals. Nature, 1951, 167, 779 doi: 10.1038/167779b0
[2]
Henry C, Hopfield J. Raman scattering by polaritons. Phys Rev Lett, 1965, 15, 964 doi: 10.1103/PhysRevLett.15.964
[3]
Hopfield J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev, 1958, 112, 1555 doi: 10.1103/PhysRev.112.1555
[4]
Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443, 409 doi: 10.1038/nature05131
[5]
Deng H, Weihs G, Santori C, et al. Condensation of semiconductor microcavity exciton polaritons. Science, 2002, 298, 199 doi: 10.1126/science.1074464
[6]
Christopoulos S, Von Högersthal G B H, Grundy A, et al. Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett, 2007, 98, 126405 doi: 10.1103/PhysRevLett.98.126405
[7]
Byrnes T, Kim N Y, Yamamoto Y. Exciton–polariton condensates. Nat Phys, 2014, 10, 803 doi: 10.1038/nphys3143
[8]
Kéna-Cohen S, Forrest S. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photon, 2010, 4, 371 doi: 10.1038/nphoton.2010.86
[9]
Plumhof J D, Stöferle T, Mai L, et al. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat Mater, 2013, 13, 247 doi: 10.1038/nmat3825
[10]
Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser. Nature, 2013, 497, 348 doi: 10.1038/nature12036
[11]
Cui Q H, Peng Q, Luo Y, et al. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci Adv, 2018, 4, eaap9861 doi: 10.1126/sciadv.aap9861
[12]
Ballarini D, De Giorgi M, Cancellieri E, et al. All-optical polariton transistor. Nat Commun, 2013, 4, 1778 doi: 10.1038/ncomms2734
[13]
Gao T, Eldridge P S, Liew T C H, et al. Polariton condensate transistor switch. Phys Rev B, 2012, 85, 235102 doi: 10.1103/PhysRevB.85.235102
[14]
Lien J Y, Chen Y N, Ishida N, et al. Multistability and condensation of exciton–polaritons below threshold. Phys Rev B, 2015, 91, 024511 doi: 10.1103/PhysRevB.91.024511
[15]
Evans T J, Schlaus A, Fu Y, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater, 2018, 6, 1700982 doi: 10.1002/adom.201700982
[16]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[17]
Zhang S, Shang Q, Du W, et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv Opt Mater, 2018, 6, 1701032 doi: 10.1002/adom.201701032
[18]
Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 2018, 18, 3335 doi: 10.1021/acs.nanolett.7b04847
[19]
Dufferwiel S, Schwarz S, Withers F, et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun, 2015, 6, 8579 doi: 10.1038/ncomms9579
[20]
Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun, 2016, 7, 13328 doi: 10.1038/ncomms13328
[21]
Low T, Chaves A, Caldwell J D, et al. Polaritons in layered two-dimensional materials. Nat Mater, 2017, 16, 182 doi: 10.1038/nmat4792
[22]
Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 2015, 10, 391 doi: 10.1038/nnano.2015.90
[23]
Sutherland B R, Sargent E H. Perovskite photonic sources. Nat Photon, 2016, 10, 295 doi: 10.1038/nphoton.2016.62
[24]
Zhang Q, Su R, Du W, et al. Advances in small perovskite-based lasers. Small Methods, 2017, 1, 1700163 doi: 10.1002/smtd.201700163
[25]
Fieramosca A, Polimeno L, Ardizzone V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci Adv, 2019, 5, eaav9967 doi: 10.1126/sciadv.aav9967
Fig. 1.  The principle of the interaction between photons and lattice vibration.

[1]
Huang K. Lattice vibrations and optical waves in ionic crystals. Nature, 1951, 167, 779 doi: 10.1038/167779b0
[2]
Henry C, Hopfield J. Raman scattering by polaritons. Phys Rev Lett, 1965, 15, 964 doi: 10.1103/PhysRevLett.15.964
[3]
Hopfield J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev, 1958, 112, 1555 doi: 10.1103/PhysRev.112.1555
[4]
Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443, 409 doi: 10.1038/nature05131
[5]
Deng H, Weihs G, Santori C, et al. Condensation of semiconductor microcavity exciton polaritons. Science, 2002, 298, 199 doi: 10.1126/science.1074464
[6]
Christopoulos S, Von Högersthal G B H, Grundy A, et al. Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett, 2007, 98, 126405 doi: 10.1103/PhysRevLett.98.126405
[7]
Byrnes T, Kim N Y, Yamamoto Y. Exciton–polariton condensates. Nat Phys, 2014, 10, 803 doi: 10.1038/nphys3143
[8]
Kéna-Cohen S, Forrest S. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photon, 2010, 4, 371 doi: 10.1038/nphoton.2010.86
[9]
Plumhof J D, Stöferle T, Mai L, et al. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat Mater, 2013, 13, 247 doi: 10.1038/nmat3825
[10]
Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser. Nature, 2013, 497, 348 doi: 10.1038/nature12036
[11]
Cui Q H, Peng Q, Luo Y, et al. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci Adv, 2018, 4, eaap9861 doi: 10.1126/sciadv.aap9861
[12]
Ballarini D, De Giorgi M, Cancellieri E, et al. All-optical polariton transistor. Nat Commun, 2013, 4, 1778 doi: 10.1038/ncomms2734
[13]
Gao T, Eldridge P S, Liew T C H, et al. Polariton condensate transistor switch. Phys Rev B, 2012, 85, 235102 doi: 10.1103/PhysRevB.85.235102
[14]
Lien J Y, Chen Y N, Ishida N, et al. Multistability and condensation of exciton–polaritons below threshold. Phys Rev B, 2015, 91, 024511 doi: 10.1103/PhysRevB.91.024511
[15]
Evans T J, Schlaus A, Fu Y, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater, 2018, 6, 1700982 doi: 10.1002/adom.201700982
[16]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[17]
Zhang S, Shang Q, Du W, et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv Opt Mater, 2018, 6, 1701032 doi: 10.1002/adom.201701032
[18]
Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 2018, 18, 3335 doi: 10.1021/acs.nanolett.7b04847
[19]
Dufferwiel S, Schwarz S, Withers F, et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun, 2015, 6, 8579 doi: 10.1038/ncomms9579
[20]
Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun, 2016, 7, 13328 doi: 10.1038/ncomms13328
[21]
Low T, Chaves A, Caldwell J D, et al. Polaritons in layered two-dimensional materials. Nat Mater, 2017, 16, 182 doi: 10.1038/nmat4792
[22]
Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 2015, 10, 391 doi: 10.1038/nnano.2015.90
[23]
Sutherland B R, Sargent E H. Perovskite photonic sources. Nat Photon, 2016, 10, 295 doi: 10.1038/nphoton.2016.62
[24]
Zhang Q, Su R, Du W, et al. Advances in small perovskite-based lasers. Small Methods, 2017, 1, 1700163 doi: 10.1002/smtd.201700163
[25]
Fieramosca A, Polimeno L, Ardizzone V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci Adv, 2019, 5, eaav9967 doi: 10.1126/sciadv.aav9967
1

n-Type acceptor–acceptor polymer semiconductors

Yongqiang Shi, Liming Ding

Journal of Semiconductors, 2021, 42(10): 100202. doi: 10.1088/1674-4926/42/10/100202

2

Quantum light source devices of In(Ga)As semiconductor self-assembled quantum dots

Xiaowu He, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, et al.

Journal of Semiconductors, 2019, 40(7): 071902. doi: 10.1088/1674-4926/40/7/071902

3

Giant spin injection into semiconductor and THz pulse emission

Zheng Feng

Journal of Semiconductors, 2019, 40(7): 070201. doi: 10.1088/1674-4926/40/7/070201

4

Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

Jiazhen Sheng, Ki-Lim Han, TaeHyun Hong, Wan-Ho Choi, Jin-Seong Park, et al.

Journal of Semiconductors, 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008

5

ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis

Utsa Das, Partha P. Pal

Journal of Semiconductors, 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001

6

Studies of Water V. Five Phonons in Protonic Semiconductor Lattice Model of Pure Liquid Water

Binbin Jie, Chihtang Sah

Journal of Semiconductors, 2017, 38(7): 071001. doi: 10.1088/1674-4926/38/7/071001

7

Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang, et al.

Journal of Semiconductors, 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

8

First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure

Sandong Guo

Journal of Semiconductors, 2015, 36(5): 053002. doi: 10.1088/1674-4926/36/5/053002

9

Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies

Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, et al.

Journal of Semiconductors, 2014, 35(8): 084003. doi: 10.1088/1674-4926/35/8/084003

10

Microstructural properties of over-doped GaN-based diluted magnetic semiconductors grown by MOCVD

Tao Zhikuo, Zhang Rong, Xiu Xiangqian, Cui Xugao, Li Li, et al.

Journal of Semiconductors, 2012, 33(7): 073002. doi: 10.1088/1674-4926/33/7/073002

11

A theoretical model of the femtosecond laser ablation of semiconductors considering inverse bremsstrahlung absorption

Lin Xiaohui, Zhang Chibin, Ren Weisong, Jiang Shuyun, Ouyang Quanhui, et al.

Journal of Semiconductors, 2012, 33(4): 046002. doi: 10.1088/1674-4926/33/4/046002

12

Neurocomputing van der Pauw function for the measurement of a semiconductor's resistivity without use of the learning rate of weight vector regulation

Li Hongli, Sun Yicai, Wang Wei, Harry Hutchinson

Journal of Semiconductors, 2011, 32(12): 122002. doi: 10.1088/1674-4926/32/12/122002

13

Approximate Graphic Method for Solving Fermi Level and Majority Carrier Density of Semiconductors with Multiple Donors and Multiple Acceptors

Ken K. Chin

Journal of Semiconductors, 2011, 32(6): 062001. doi: 10.1088/1674-4926/32/6/062001

14

The Complete Semiconductor Transistor and Its Incomplete Forms

Jie Binbin, Sah Chih-Tang

Journal of Semiconductors, 2009, 30(6): 061001. doi: 10.1088/1674-4926/30/6/061001

15

Sensitive properties of In-based compound semiconductor oxide to Cl2 gas

Zhao Wenjie, Shi Yunbo, Xiu Debin, Lei Tingping, Feng Qiaohua, et al.

Journal of Semiconductors, 2009, 30(3): 034010. doi: 10.1088/1674-4926/30/3/034010

16

S-Band 1mm SiC MESFET with 2W Output on Semi-Insulated SiC Substrate

Cai Shujun, Pan Hongshu, Chen Hao, Li Liang, Zhao Zhenping, et al.

Chinese Journal of Semiconductors , 2006, 27(2): 266-269.

17

Temperature Dependence of Vacuum Rabi Splitting in a Single Quantum Dot-Semiconductor Microcavity

Zhu Kadi, Li Waisang

Chinese Journal of Semiconductors , 2006, 27(3): 489-493.

18

Electronic Structure of Semiconductor Nanocrystals

Li Jingbo, Wang Linwang, Wei Suhuai

Chinese Journal of Semiconductors , 2006, 27(2): 191-196.

19

Terahertz Semiconductor Quantum Well Devices

Liu H C, Luo H, Ban D, Wachter M, Song C Y, et al.

Chinese Journal of Semiconductors , 2006, 27(4): 627-634.

20

Passively Mode Locked Diode-End-Pumped Yb∶YAB Laser with High Reflectivity Type Semiconductor Saturable Absorption Mirror

Wang Yonggang, Ma Xiaoyu, Xue Yinghong, Sun Hong,Zhang Zhigang,and Wang Qingyue

Chinese Journal of Semiconductors , 2005, 26(2): 250-253.

1. Chen, Y., Shi, Y., Gan, Y. et al. Unraveling the Ultrafast Coherent Dynamics of Exciton Polariton Propagation at Room Temperature. Nano Letters, 2023, 23(18): 8704-8711. doi:10.1021/acs.nanolett.3c02547
2. Zhu, Z., Zhang, S., Du, W. et al. Polaritons and polariton condensates in perovskites. Metal Halide Perovskites for Generation, Manipulation and Detection of Light, 2023. doi:10.1016/B978-0-323-91661-5.00015-5
3. Zheng, X., Guo, W., Tong, C. et al. Exciton distribution-induced efficiency droop in green microscale light-emitting diodes at cryogenic temperatures. Applied Physics Letters, 2022, 121(20): 201109. doi:10.1063/5.0117476
4. Xu, K.-X., Lai, J.-M., Gao, Y.-F. et al. High-order Raman scattering mediated by self-trapped exciton in halide double perovskite. Physical Review B, 2022, 106(8): 085205. doi:10.1103/PhysRevB.106.085205
5. Shang, Q., Li, M., Zhao, L. et al. Role of the Exciton-Polariton in a Continuous-Wave Optically Pumped CsPbBr3Perovskite Laser. Nano Letters, 2020, 20(9): 6636-6643. doi:10.1021/acs.nanolett.0c02462
6. Wang, Q., Zhong, Y., Zhao, L. et al. Lasers Based on Two-Dimensional Layered Materials | [基于二维层状材料的激光器]. Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47(7): 0701008. doi:10.3788/CJL202047.0701008
  • Search

    Advanced Search >>

    GET CITATION

    Qing Zhang, Xinfeng Liu. Exciton–polaritons in semiconductors[J]. Journal of Semiconductors, 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401
    Q Zhang, X F Liu, Exciton–polaritons in semiconductors[J]. J. Semicond., 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4261 Times PDF downloads: 310 Times Cited by: 6 Times

    History

    Received: Revised: Online: Accepted Manuscript: 28 August 2019Uncorrected proof: 28 August 2019Published: 01 September 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qing Zhang, Xinfeng Liu. Exciton–polaritons in semiconductors[J]. Journal of Semiconductors, 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401 ****Q Zhang, X F Liu, Exciton–polaritons in semiconductors[J]. J. Semicond., 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401.
      Citation:
      Qing Zhang, Xinfeng Liu. Exciton–polaritons in semiconductors[J]. Journal of Semiconductors, 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401 ****
      Q Zhang, X F Liu, Exciton–polaritons in semiconductors[J]. J. Semicond., 2019, 40(9): 090401. doi: 10.1088/1674-4926/40/9/090401.

      Exciton–polaritons in semiconductors

      DOI: 10.1088/1674-4926/40/9/090401
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return