ARTICLES

Photo-induced doping effect and dynamic process in monolayer MoSe2

Qian Yang1, 2, Yongzhou Xue1, 2, Hao Chen1, 2, Xiuming Dou1, 2, and Baoquan Sun1, 2,

+ Author Affiliations

 Corresponding author: Xiuming Dou, Email: xmdou04@semi.ac.cn; Baoquan Sun, bqsun@semi.ac.cn

PDF

Turn off MathJax

Abstract: Dynamic processes of electron transfer by optical doping in monolayer MoSe2 at 6 K are investigated via measuring time resolved photoluminescence (PL) traces under different excitation powers. Time-dependent electron transfer process can be analyzed by a power-law distribution of tα with α = 0.1–0.24, depending on the laser excitation power. The average electron transfer time of approximately 27.65 s is obtained in the excitation power range of 0.5 to 100 μW. As the temperature increases from 20 to 44 K, the energy difference between the neutral and charged excitons is observed to decrease.

Key words: photodopingmonolayer MoSe2dynamic processtemperature



[1]
Salehzadeh O, Djavid M, Tran N H, et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett, 2015, 15, 5302 doi: 10.1021/acs.nanolett.5b01665
[2]
Ye Y, Wong Z J, Lu X F, et al. Monolayer excitonic laser. Nat Photon, 2015, 9, 733 doi: 10.1038/nphoton.2015.197
[3]
Wu S, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520, 69 doi: 10.1038/nature14290
[4]
Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol, 2014, 9, 257 doi: 10.1038/nnano.2014.14
[5]
Withers F, del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater, 2015, 14, 301 doi: 10.1038/nmat4205
[6]
Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 2015, 10, 503 doi: 10.1038/nnano.2015.67
[7]
He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 2015, 10, 497 doi: 10.1038/nnano.2015.75
[8]
Roldán R, Silva-Guillén J A, López-Sancho M P, et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se). Ann Der Physik, 2014, 526, 347 doi: 10.1002/andp.201400128
[9]
Currie M, Hanbicki A T, Kioseoglou G, et al. Optical control of charged exciton states in tungsten disulfide. Appl Phys Lett, 2015, 106, 201907 doi: 10.1063/1.4921472
[10]
Singh A, Moody G, Tran K, et al. Trion formation dynamics in monolayer transition metal dichalcogenides. Phys Rev B, 2016, 93, 041401 doi: 10.1103/PhysRevB.93.041401
[11]
Godde T, Schmidt D, Schmutzler J, et al. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. Phys Rev B, 2016, 94, 165301 doi: 10.1103/PhysRevB.94.165301
[12]
Liu T, Xiang D, Zheng Y, et al. Nonvolatile and programmable photodoping in MoTe2 for photoresist-free complementary electronic devices. Adv Mater, 2018, 30, 1804470 doi: 10.1002/adma.201804470
[13]
Quereda J, Ghiasi T S, van der Wal C H, et al. Semiconductor channel-mediated photodoping in h-BN encapsulated monolayer MoSe2 phototransistors. 2D Mater, 2019, 6, 025040 doi: 10.1088/2053-1583/ab0c2d
[14]
Ross J S, Wu S F, Yu H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun, 2013, 4, 1474 doi: 10.1038/ncomms2498
[15]
Cadiz F, Robert C, Wang G, et al. Ultra-low power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides. 2D Mater, 2016, 3, 045008 doi: 10.1088/2053-1583/3/4/045008
[16]
Atkin P, Lau D M, Zhang Q, et al. Laser exposure induced alteration of WS2 monolayers in the presence of ambient moisture. 2D Mater, 2017, 5, 015013 doi: 10.1088/2053-1583/aa91b8
[17]
Liu Z, Amani M, Najmaei S, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun, 2014, 5, 5246 doi: 10.1038/ncomms6246
[18]
Fu X, Li F, Lin J F, et al. Pressure-dependent light emission of charged and neutral excitons in monolayer MoSe2. J Phys Chem Lett, 2017, 8, 3556 doi: 10.1021/acs.jpclett.7b01374
[19]
Pei J, Yang J, Wang X, et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano, 2017, 11, 7468 doi: 10.1021/acsnano.7b03909
[20]
Lundt N, Cherotchenko E, Iff O, et al. The interplay between excitons and trions in a monolayer of MoSe2. Appl Phys Lett, 2018, 112, 031107 doi: 10.1063/1.5019177
[21]
Pelant I, Valenta J. Luminescence spectroscopy of semiconductors. London: Oxford University Press, 2012
[22]
Scher H, Montroll E W. Anomalous transit-time dispersion in amorphous solids. Phys Rev B, 1975, 12, 2455 doi: 10.1103/PhysRevB.12.2455
[23]
Kakalios J, Street R A, Jackson W B. Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon. Phys Rev Lett, 1987, 59, 1037 doi: 10.1063/1.4933331
Fig. 1.  (Color online) (a) Micrograph of transferred monolayer MoSe2 sample (upper part) and as grown monolayer MoSe2 sample (lower part). (b) PL spectra of monolayer MoSe2 measured at 6 K for as grown (red line) and after transferring to a SiO2/Si substrate (black line). (c) Raman spectrum of the transferred sample. (d) PL spectrum of the transferred monolayer MoSe2 measured at an excitation power of 872 μW. The curve can be fitted by using three Gauss functions.

Fig. 2.  (Color online) (a) PL spectra of the transferred monolayer MoSe2 for the first-round measurements with increasing excitation power from 0.2 to 872 μW at 6 K. The corresponding X and X PL peak energies and intensities are summarized in (c) and (e), respectively. (b) PL spectra for the second-round measurements with increasing excitation power from 1 to 760 μW at 6 K after the excitation power up to 872 μW. The corresponding X and X PL peak energies and intensities are summarized in (d) and (f), respectively.

Fig. 3.  (Color online) (a) PL intensity of X as a function of time measured by a modulated cw laser excitation with power from 0.5 to 100 μW. The ordinate is logarithmic and the curves of different power are shifted relatively for clarity. (b) Fitting values of α as a function of excitation power from 0.5 to 100 μW, where α values are derived by linear fitting to the curves by log–log plot, as shown in (c) at 0.5 and (d) 10 μW, respectively.

Fig. 4.  (Color online) (a) The PL spectra of the transferred monolayer MoSe2 with the temperature increased from 6 to 44 K, under the 42 μW laser irradiation. Inset: the ratio of PL peak intensity of X and X as a function of temperature, a linear law is used to fit the experimental data. (b) The energy difference between X and X as a function of temperature.

[1]
Salehzadeh O, Djavid M, Tran N H, et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett, 2015, 15, 5302 doi: 10.1021/acs.nanolett.5b01665
[2]
Ye Y, Wong Z J, Lu X F, et al. Monolayer excitonic laser. Nat Photon, 2015, 9, 733 doi: 10.1038/nphoton.2015.197
[3]
Wu S, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520, 69 doi: 10.1038/nature14290
[4]
Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol, 2014, 9, 257 doi: 10.1038/nnano.2014.14
[5]
Withers F, del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater, 2015, 14, 301 doi: 10.1038/nmat4205
[6]
Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 2015, 10, 503 doi: 10.1038/nnano.2015.67
[7]
He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 2015, 10, 497 doi: 10.1038/nnano.2015.75
[8]
Roldán R, Silva-Guillén J A, López-Sancho M P, et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se). Ann Der Physik, 2014, 526, 347 doi: 10.1002/andp.201400128
[9]
Currie M, Hanbicki A T, Kioseoglou G, et al. Optical control of charged exciton states in tungsten disulfide. Appl Phys Lett, 2015, 106, 201907 doi: 10.1063/1.4921472
[10]
Singh A, Moody G, Tran K, et al. Trion formation dynamics in monolayer transition metal dichalcogenides. Phys Rev B, 2016, 93, 041401 doi: 10.1103/PhysRevB.93.041401
[11]
Godde T, Schmidt D, Schmutzler J, et al. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. Phys Rev B, 2016, 94, 165301 doi: 10.1103/PhysRevB.94.165301
[12]
Liu T, Xiang D, Zheng Y, et al. Nonvolatile and programmable photodoping in MoTe2 for photoresist-free complementary electronic devices. Adv Mater, 2018, 30, 1804470 doi: 10.1002/adma.201804470
[13]
Quereda J, Ghiasi T S, van der Wal C H, et al. Semiconductor channel-mediated photodoping in h-BN encapsulated monolayer MoSe2 phototransistors. 2D Mater, 2019, 6, 025040 doi: 10.1088/2053-1583/ab0c2d
[14]
Ross J S, Wu S F, Yu H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun, 2013, 4, 1474 doi: 10.1038/ncomms2498
[15]
Cadiz F, Robert C, Wang G, et al. Ultra-low power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides. 2D Mater, 2016, 3, 045008 doi: 10.1088/2053-1583/3/4/045008
[16]
Atkin P, Lau D M, Zhang Q, et al. Laser exposure induced alteration of WS2 monolayers in the presence of ambient moisture. 2D Mater, 2017, 5, 015013 doi: 10.1088/2053-1583/aa91b8
[17]
Liu Z, Amani M, Najmaei S, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun, 2014, 5, 5246 doi: 10.1038/ncomms6246
[18]
Fu X, Li F, Lin J F, et al. Pressure-dependent light emission of charged and neutral excitons in monolayer MoSe2. J Phys Chem Lett, 2017, 8, 3556 doi: 10.1021/acs.jpclett.7b01374
[19]
Pei J, Yang J, Wang X, et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano, 2017, 11, 7468 doi: 10.1021/acsnano.7b03909
[20]
Lundt N, Cherotchenko E, Iff O, et al. The interplay between excitons and trions in a monolayer of MoSe2. Appl Phys Lett, 2018, 112, 031107 doi: 10.1063/1.5019177
[21]
Pelant I, Valenta J. Luminescence spectroscopy of semiconductors. London: Oxford University Press, 2012
[22]
Scher H, Montroll E W. Anomalous transit-time dispersion in amorphous solids. Phys Rev B, 1975, 12, 2455 doi: 10.1103/PhysRevB.12.2455
[23]
Kakalios J, Street R A, Jackson W B. Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon. Phys Rev Lett, 1987, 59, 1037 doi: 10.1063/1.4933331
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3684 Times PDF downloads: 57 Times Cited by: 0 Times

    History

    Received: 02 July 2020 Revised: 04 July 2020 Online: Accepted Manuscript: 13 July 2020Uncorrected proof: 15 July 2020Published: 04 August 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qian Yang, Yongzhou Xue, Hao Chen, Xiuming Dou, Baoquan Sun. Photo-induced doping effect and dynamic process in monolayer MoSe2[J]. Journal of Semiconductors, 2020, 41(8): 082004. doi: 10.1088/1674-4926/41/8/082004 Q Yang, Y Z Xue, H Chen, X M Dou, B Q Sun, Photo-induced doping effect and dynamic process in monolayer MoSe2[J]. J. Semicond., 2020, 41(8): 082004. doi: 10.1088/1674-4926/41/8/082004.Export: BibTex EndNote
      Citation:
      Qian Yang, Yongzhou Xue, Hao Chen, Xiuming Dou, Baoquan Sun. Photo-induced doping effect and dynamic process in monolayer MoSe2[J]. Journal of Semiconductors, 2020, 41(8): 082004. doi: 10.1088/1674-4926/41/8/082004

      Q Yang, Y Z Xue, H Chen, X M Dou, B Q Sun, Photo-induced doping effect and dynamic process in monolayer MoSe2[J]. J. Semicond., 2020, 41(8): 082004. doi: 10.1088/1674-4926/41/8/082004.
      Export: BibTex EndNote

      Photo-induced doping effect and dynamic process in monolayer MoSe2

      doi: 10.1088/1674-4926/41/8/082004
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return