REVIEWS

Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide

Can Cui1, Xiaosong Hu2 and Liaoyong Wen2,

+ Author Affiliations

 Corresponding author: Liaoyong Wen, wenliaoyong@westlake.edu.cn

PDF

Turn off MathJax

Abstract: The exploitation of renewable energy as well as the elimination of the harmful impact of excessive carbon emission are worldwide concerns for sustainable development of the ecological environment on earth. To address that, the technologies regarding energy conversion systems, such as water splitting and electroreduction of carbon dioxide, have attracted significant attention for a few decades. Yet, to date, the production of green fuels and/or high energy density chemicals like hydrogen, methane, and ethanol, are still suffering from many drawbacks including high energy consumption, low selectivity, and sluggish reaction rate. In this regard, nanostructured bimetallic materials that is capable of taking the full benefits of the coupling effects between different elements/components with structure modification in nanoscale are considered as a promising strategy for high-performance electrocatalysts. Herein, this review aims to outline the important progress of these nanostructured bimetallic electrocatalysts. It starts with the introduction of some important fundamental background knowledge about the reaction mechanism to understand how these reactions happen. Subsequently, we summarize the most recent progress regarding how the nanostructured bimetallic electrocatalysts manipulate the activity and selectivity of catalytic reactions in the order of bimetallic alloying effect, interface/substrate effect of bi-component electrocatalyst, and nanostructuring effect.

Key words: bimetallic electrocatalystsnanostructureswater splittingelectroreduction of carbon dioxide



[1]
Fu G, Lee J M. Ternary metal sulfides for electrocatalytic energy conversion. J Mater Chem A, 2019, 7, 9386 doi: 10.1039/C9TA01438A
[2]
Tahir M, Pan L, Idrees F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136 doi: 10.1016/j.nanoen.2017.05.022
[3]
Li X, Hao X, Abudula A, et al. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J Mater Chem A, 2016, 4, 11973 doi: 10.1039/C6TA02334G
[4]
Gao D, Arán-Ais R M, Jeon H S, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal, 2019, 2, 198 doi: 10.1038/s41929-019-0235-5
[5]
Birdja Y Y, Pérez-Gallent E, Figueiredo M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy, 2019, 4, 732 doi: 10.1038/s41560-019-0450-y
[6]
Shao Q, Wang P, Huang X. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv Funct Mater, 2019, 29, 1806419 doi: 10.1002/adfm.201806419
[7]
Niether C, Faure S, Bordet A, et al. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles. Nat Energy, 2018, 3, 476 doi: 10.1038/s41560-018-0132-1
[8]
Wang Y, Yan D, El Hankari S, et al. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv Sci, 2018, 5, 1800064 doi: 10.1002/advs.201800064
[9]
Gong M, Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res, 2014, 8, 23 doi: 10.1007/s12274-014-0591-z
[10]
Yan Y, Xia B Y, Zhao B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A, 2016, 4, 17587 doi: 10.1039/C6TA08075H
[11]
Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed, 2017, 56, 11326 doi: 10.1002/anie.201612214
[12]
Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev, 2019, 119, 7610 doi: 10.1021/acs.chemrev.8b00705
[13]
Gao M Y, Yang C, Zhang Q B, et al. Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. J Mater Chem A, 2017, 5, 5797 doi: 10.1039/C6TA10812A
[14]
Cheng C, Zheng F, Zhang C, et al. High-efficiency bifunctional electrocatalyst based on 3D freestanding Cu foam in situ armored CoNi alloy nanosheet arrays for overall water splitting. J Power Sources, 2019, 427, 184 doi: 10.1016/j.jpowsour.2019.04.071
[15]
Ghosh S, Basu R N. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale, 2018, 10, 11241 doi: 10.1039/C8NR01032C
[16]
Xiao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv Energy Mater, 2015, 5, 1500985 doi: 10.1002/aenm.201500985
[17]
Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev, 2015, 44, 2060 doi: 10.1039/C4CS00470A
[18]
Zheng Y, Jiao Y, Jaroniec M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment. Angew Chem Int Ed, 2015, 54, 52 doi: 10.1002/anie.201407031
[19]
Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152, 23 doi: 10.1002/chin.200524023
[20]
Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev, 2010, 110, 6474 doi: 10.1021/cr100246c
[21]
Dau H, Limberg C, Reier T, et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem, 2010, 2, 724 doi: 10.1002/cctc.201000126
[22]
Wu L K, Wu W Y, Xia J, et al. A nanostructured nickel-cobalt alloy with an oxide layer for an efficient oxygen evolution reaction. J Mater Chem A, 2017, 5, 10669 doi: 10.1039/C7TA02754K
[23]
Liu K, Zhang C, Sun Y, et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano, 2018, 12, 158 doi: 10.1021/acsnano.7b04646
[24]
Liang C, Zou P, Nairan A, et al. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalyst for large current density water splitting. Energy Environ Sci, 2020, 13, 86 doi: 10.1039/C9EE02388G
[25]
Mccrory C C L, Jung S, Peters J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc, 2013, 135, 16977 doi: 10.1021/ja407115p
[26]
Tang C, Wang H F, Zhu X L, et al. Advances in hybrid electrocatalysts for oxygen evolution reactions: Rational integration of NiFe layered double hydroxides and nanocarbon. Part Part Syst Charact, 2016, 33, 473 doi: 10.1002/ppsc.201600004
[27]
Man I C, Su H Y, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 2011, 3, 1159 doi: 10.1002/cctc.201000397
[28]
Qazi U Y, Yuan C Z, Ullah N, et al. One-step growth of iron-nickel bimetallic nanoparticles on FeNi alloy foils: Highly efficient advanced electrodes for the oxygen evolution reaction. ACS Appl Mater Interfaces, 2017, 9, 28627 doi: 10.1021/acsami.7b08922
[29]
Hu Q, Liu X, Zhu B, et al. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy, 2018, 50, 212 doi: 10.1016/j.nanoen.2018.05.033
[30]
Fan J, Chen Z, Shi H, et al. In situ grown, self-supported iron-cobalt-nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation. Chem Commun, 2016, 52, 4290 doi: 10.1039/C5CC09699E
[31]
Jin Y, Yue X, Shu C, et al. Three-dimensional porous MoNi4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. J Mater Chem A, 2017, 5, 2508 doi: 10.1039/C6TA10802D
[32]
Ma Y, Dai X, Liu M, et al. Strongly coupled feni alloys/NiFe2O4@carbonitride layers-assembled microboxes for enhanced oxygen evolution reaction. ACS Appl Mater Interfaces, 2016, 8, 34396 doi: 10.1021/acsami.6b11821
[33]
Chung D Y, Lopes P P, Martins P F, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat Energy, 2020, 5, 222 doi: 10.1038/s41560-020-0576-y
[34]
Saha S, Ganguli A K. FeCoNi alloy as noble metal-free electrocatalyst for oxygen evolution reaction (OER). ChemistrySelect, 2017, 2, 1630 doi: 10.1002/slct.201601243
[35]
Zhang P, Li L, Nordlund D, et al. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nat Commun, 2018, 9, 381 doi: 10.1038/s41467-017-02429-9
[36]
Zhang J, Shao Q, Wang P, et al. Catalytic hydrogen production by janus CuAg nanostructures. ChemNanoMat, 2018, 4, 477 doi: 10.1002/cnma.201800057
[37]
Song Q, Xue Z, Liu C, et al. A general strategy to optimize gas evolution reaction via assembled striped-pattern superlattices. J Am Chem Soc, 2019, 142, 1857 doi: 10.1021/jacs.9b10388
[38]
Garcés-Pineda F A, Blasco-Ahicart M, Nieto-Castro D, et al. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy, 2019, 4, 519 doi: 10.1038/s41560-019-0404-4
[39]
Ganesan P, Sivanantham A, Shanmugam S. Nanostructured nickel-cobalt-titanium alloy grown on titanium substrate as efficient electrocatalyst for alkaline water electrolysis. ACS Appl Mater Interfaces, 2017, 9, 12416 doi: 10.1021/acsami.7b00353
[40]
Zhu X, Jin T, Tian C, et al. In situ coupling strategy for the preparation of FeCo alloys and Co4N hybrid for highly efficient oxygen evolution. Adv Mater, 2017, 29, 1704091 doi: 10.1002/adma.201704091
[41]
Subbaraman R, Tripkovic D, Chang K C, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater, 2012, 11, 550 doi: 10.1038/nmat3313
[42]
Wang F, Kusada K, Wu D, et al. Solid-solution alloy nanoparticles of the immiscible iridium–copper system with a wide composition range for enhanced electrocatalytic applications. Angew Chem Int Ed, 2018, 57, 4505 doi: 10.1002/anie.201800650
[43]
Zhao Y, Luo M, Chu S, et al. 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media. Nano Energy, 2019, 59, 146 doi: 10.1016/j.nanoen.2019.02.020
[44]
Gupta S, Qiao L, Zhao S, et al. Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Adv Energy Mater, 2016, 6, 1601198 doi: 10.1002/aenm.201601198
[45]
Cui X, Ren P, Deng D, et al. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ Sci, 2016, 9, 123 doi: 10.1039/C5EE03316K
[46]
Yang Y, Lin Z, Gao S, et al. Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catal, 2017, 7, 469 doi: 10.1021/acscatal.6b02573
[47]
Wang C, Yang H, Zhang Y, et al. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew Chem Int Ed, 2019, 58, 6099 doi: 10.1002/anie.201902446
[48]
Anantharaj S, Karthick K, Venkatesh M, et al. Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy, 2017, 39, 30 doi: 10.1016/j.nanoen.2017.06.027
[49]
Xiang Q, Li F, Chen W, et al. In situ vertical growth of Fe-Ni layered double-hydroxide arrays on Fe-Ni alloy foil: Interfacial layer enhanced electrocatalyst with small overpotential for oxygen evolution reaction. ACS Energy Lett, 2018, 3, 2357 doi: 10.1021/acsenergylett.8b01466
[50]
Ge X, Chen L, Zhang L, et al. Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production. Adv Mater, 2014, 26, 3100 doi: 10.1002/adma.201305678
[51]
Fester J, Makoveev A, Grumelli D, et al. The structure of the cobalt oxide/au catalyst interface in electrochemical water splitting. Angew Chem, 2018, 130, 12069 doi: 10.1002/ange.201804417
[52]
Ng J W D, García-Melchor M, Bajdich M, et al. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy, 2016, 1, 16053 doi: 10.1038/nenergy.2016.53
[53]
Chakthranont P, Kibsgaard J, Gallo A, et al. Effects of gold substrates on the intrinsic and extrinsic activity of high-loading nickel-based oxyhydroxide oxygen evolution catalysts. ACS Catal, 2017, 7, 5399 doi: 10.1021/acscatal.7b01070
[54]
Zhao S, Jin R, Abroshan H, et al. Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 Interface. J Am Chem Soc, 2017, 139, 1077 doi: 10.1021/jacs.6b12529
[55]
Gorlin Y, Chung C J, Benck J D, et al. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation. J Am Chem Soc, 2014, 136, 4920 doi: 10.1021/ja407581w
[56]
Ci S, Mao S, Hou Y, et al. Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. J Mater Chem A, 2015, 3, 7986 doi: 10.1039/C5TA00894H
[57]
Wen L, Wang Z, Mi Y, et al. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small, 2015, 11, 3408 doi: 10.1002/smll.201500120
[58]
Wen L, Xu R, Cui C, et al. Template-guided programmable janus heteronanostructure arrays for efficient plasmonic photocatalysis. Nano Lett, 2018, 18, 4914 doi: 10.1021/acs.nanolett.8b01675
[59]
Kang J, Hirata A, Qiu H J, et al. Self-grown oxy-hydroxide@nanoporous metal electrode for high-performance supercapacitors. Adv Mater, 2014, 26, 269 doi: 10.1002/adma.201302975
[60]
Yu L, Zhou H, Sun J, et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ Sci, 2017, 10, 1820 doi: 10.1039/C7EE01571B
[61]
Zhu X, Amal R, Lu X. N,P co-coordinated manganese atoms in mesoporous carbon for electrochemical oxygen reduction. Small, 2019, 15, 1804524 doi: 10.1002/smll.201804524
[62]
Zhu X, Tan X, Wu K H, et al. N,P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J Mater Chem A, 2019, 7, 14732 doi: 10.1039/C9TA03011E
[63]
Dang Y, He J, Wu T, et al. Constructing bifunctional 3D holey and ultrathin CoP nanosheets for efficient overall water splitting. ACS Appl Mater Interfaces, 2019, 11, 29879 doi: 10.1021/acsami.9b08238
[64]
Li M, Liu T, Bo X, et al. A novel flower-like architecture of FeCo@NC-functionalized ultra-thin carbon nanosheets as a highly efficient 3D bifunctional electrocatalyst for full water splitting. J Mater Chem A, 2017, 5, 5413 doi: 10.1039/C6TA09976A
[65]
Zhu X, Zhang D, Chen C J, et al. Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy, 2020, 71, 104597 doi: 10.1016/j.nanoen.2020.104597
[66]
Jin J, Yu J, Guo D, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small, 2015, 11, 5262 doi: 10.1002/smll.201500926
[67]
Bandarenka A S, Varela AS, Karamad M, et al. Design of an active site towards optimal electrocatalysis: Overlayers, surface alloys and near-surface alloys of Cu/Pt(111). Angew Chem Int Ed, 2012, 51, 11845 doi: 10.1002/anie.201205314
[68]
Faber M S, Dziedzic R, Lukowski M A, et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc, 2014, 136, 10053 doi: 10.1021/ja504099w
[69]
Huang C L, Chuah X F, Hsieh C T, et al. NiFe alloy nanotube arrays as highly efficient bifunctional electrocatalysts for overall water splitting at high current densities. ACS Appl Mater Interfaces, 2019, 11, 24096 doi: 10.1021/acsami.9b05919
[70]
Xu H, Shi Z X, Tong Y X, et al. Porous microrod arrays constructed by carbon-confined NiCo@NiCoO2 core@shell nanoparticles as efficient electrocatalysts for oxygen evolution. Adv Mater, 2018, 30, 1705442 doi: 10.1002/adma.201705442
[71]
Hou Y, Cui S, Wen Z, et al. Strongly coupled 3D hybrids of n-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis. Small, 2015, 11, 5940 doi: 10.1002/smll.201502297
[72]
Zhang X, Zhao Y F, Zhao Y X, et al. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater, 2019, 9, 1900881 doi: 10.1002/aenm.201900881
[73]
Popczun E J, McKone J R, Read C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc, 2013, 135, 9267 doi: 10.1021/ja403440e
[74]
Gao M, Sheng W, Zhuang Z, et al. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc, 2014, 136, 7077 doi: 10.1021/ja502128j
[75]
Kim S, Ahn C, Cho Y, et al. Suppressing buoyant force: New avenue for long-term durability of oxygen evolution catalysts. Nano Energy, 2018, 54, 184 doi: 10.1016/j.nanoen.2018.10.009
[76]
Kuhl K P, Cave E R, Abram D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci, 2012, 5, 7050 doi: 10.1039/c2ee21234j
[77]
Yang H Z, Shang L, Zhang Q H, et al. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun, 2019, 10, 4585 doi: 10.1038/s41467-019-12510-0
[78]
Wang W, Shang L, Chang G J, et al. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv Mater, 2019, 31, 1808276 doi: 10.1002/adma.201808276
[79]
Yoo J S, Christensen R, Vegge T, et al. Theoretical Insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. ChemSusChem, 2016, 9, 358 doi: 10.1002/cssc.201501197
[80]
Bagger A, Ju W, Varela A S, et al. Electrochemical CO2 reduction: A classification problem. ChemPhysChem, 2017, 18, 3266 doi: 10.1002/cphc.201700736
[81]
Peterson A A, Nørskov J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett, 2012, 3, 251 doi: 10.1021/jz201461p
[82]
Kuhl K P, Hatsukade T, Cave E R, et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc, 2014, 136, 14107 doi: 10.1021/ja505791r
[83]
Peterson A A, Abild-Pedersen F, Studt F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci, 2010, 3, 1311 doi: 10.1039/c0ee00071j
[84]
Ooka H, Figueiredo M C, Koper M T M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir, 2017, 33, 9307 doi: 10.1021/acs.langmuir.7b00696
[85]
He J, Johnson N J J, Huang A, et al. Electrocatalytic alloys for CO2 reduction. ChemSusChem, 2018, 11, 48 doi: 10.1002/cssc.201701825
[86]
Chen D, Wang Y L, Liu D Y, et al. Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys. Carbon Energy, 2020, 2, 443 doi: 10.1002/cey2.38
[87]
Schouten K J P, Kwon Y, Van Der Ham C J M, et al. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci, 2011, 2, 1902 doi: 10.1039/c1sc00277e
[88]
Hori Y, Takahashi R, Yoshinami Y, et al. Electrochemical reduction of CO at a copper electrode. J Phys Chem B, 1997, 101, 7075 doi: 10.1021/jp970284i
[89]
Cook R L, Macduff R C, Sammells A F. Evidence for formaldehyde, formic acid, and acetaldehyde as possible intermediates during electrochemical carbon dioxide reduction at copper. J Electrochem Soc, 1989, 136, 1982 doi: 10.1149/1.2097110
[90]
Montoya J H, Shi C, Chan K, et al. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett, 2015, 6, 2032 doi: 10.1021/acs.jpclett.5b00722
[91]
Schouten K J P, Qin Z, Gallent E P, et al. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc, 2012, 134, 9864 doi: 10.1021/ja302668n
[92]
Fan Q, Zhang M, Jia M, et al. Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater Today Energy, 2018, 10, 280 doi: 10.1016/j.mtener.2018.10.003
[93]
Calvinho K U D, Laursen A B, Yap K M K, et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ Sci, 2018, 11, 2550 doi: 10.1039/C8EE00936H
[94]
Kortlever R, Peters I, Balemans C, et al. Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons. Chem Commun, 2016, 52, 10229 doi: 10.1039/C6CC03717H
[95]
Torelli D A, Francis S A, Crompton J C, et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal, 2016, 6, 2100 doi: 10.1021/acscatal.5b02888
[96]
Garza A J, Bell A T, Head-Gordon M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal, 2018, 8, 1490 doi: 10.1021/acscatal.7b03477
[97]
Resasco J, Chen L D, Clark E, et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J Am Chem Soc, 2017, 139, 11277 doi: 10.1021/jacs.7b06765
[98]
Ledezma-Yanez I, Gallent E P, Koper M T M, et al. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal Today, 2016, 262, 90 doi: 10.1016/j.cattod.2015.09.029
[99]
Clark E L, Bell A T. Direct observation of the local reaction environment during the electrochemical reduction of CO2. J Am Chem Soc, 2018, 140, 7012 doi: 10.1021/jacs.8b04058
[100]
Kortlever R, Shen J, Schouten K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett, 2015, 6, 4073 doi: 10.1021/acs.jpclett.5b01559
[101]
Tang W, Peterson A A, Varela A S, et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys, 2012, 14, 76 doi: 10.1039/C1CP22700A
[102]
Loiudice A, Lobaccaro P, Kamali E A, et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew Chem, 2016, 128, 5883 doi: 10.1002/ange.201601582
[103]
Ma M, Trześniewski B J, Xie J, et al. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew Chem, 2016, 128, 9900 doi: 10.1002/ange.201604654
[104]
Rosen B A, Salehi-khojin A, Thorson M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science, 2011, 334, 643 doi: 10.1126/science.1209786
[105]
Liu M, Pang Y, Zhang B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382 doi: 10.1038/nature19060
[106]
Asadi M, Kim K, Liu C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science, 2016, 353, 467 doi: 10.1126/science.aaf4767
[107]
Gao S, Lin Y, Jiao X, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature, 2016, 529, 68 doi: 10.1038/nature16455
[108]
White J L, Baruch M F, Pander J E, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem Rev, 2015, 115, 12888 doi: 10.1021/acs.chemrev.5b00370
[109]
Choi S Y, Jeong S K, Kim H J, et al. Electrochemical reduction of carbon dioxide to formate on tin-lead alloys. ACS Sustain Chem Eng, 2016, 4, 1311 doi: 10.1021/acssuschemeng.5b01336
[110]
Lee C H, Kanan M W. Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catal, 2015, 5, 465 doi: 10.1021/cs5017672
[111]
MacHunda R L, Ju H, Lee J. Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode. Curr Appl Phys, 2011, 11, 986 doi: 10.1016/j.cap.2011.01.003
[112]
Luc W, Collins C, Wang S, et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc, 2017, 139, 1885 doi: 10.1021/jacs.6b10435
[113]
Bai X, Chen W, Zhao C, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew Chem Int Ed, 2017, 56, 12219 doi: 10.1002/anie.201707098
[114]
Kortlever R, Peters I, Koper S, et al. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt nanoparticles. ACS Catal, 2015, 5, 3916 doi: 10.1021/acscatal.5b00602
[115]
Hahn C, Abram D N, Hansen H A, et al. Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. J Mater Chem A, 2015, 3, 20185 doi: 10.1039/C5TA04863J
[116]
Min X, Kanan M W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: High mass activity at low overpotential and identification of the deactivation pathway. J Am Chem Soc, 2015, 137, 4701 doi: 10.1021/ja511890h
[117]
da Silva S G, Silva J C M, Buzzo G S, et al. PdAu/C electrocatalysts as anodes for direct formate fuel cell. Electrocatalysis, 2015, 6, 442 doi: 10.1007/s12678-015-0262-1
[118]
Xu Z, Lai E, Shao-Horn Y, et al. Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun, 2012, 48, 5626 doi: 10.1039/c2cc31576a
[119]
Hirunsit P. Electroreduction of carbon dioxide to methane on copper, copper-silver, and copper-gold catalysts: A DFT study. J Phys Chem C, 2013, 117, 8262 doi: 10.1021/jp400937e
[120]
Kim D, Resasco J, Yu Y, et al. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun, 2014, 5, 4948 doi: 10.1038/ncomms5948
[121]
Rasul S, Anjum D H, Jedidi A, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem, 2015, 127, 2174 doi: 10.1002/ange.201410233
[122]
Sarfraz S, Garcia-Esparza AT, Jedidi A, et al. Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal, 2016, 6, 2842 doi: 10.1021/acscatal.6b00269
[123]
Li M, Wang J, Li P, et al. Mesoporous palladium-copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO. J Mater Chem A, 2016, 4, 4776 doi: 10.1039/C6TA00487C
[124]
Yin Z, Gao D, Yao S, et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy, 2016, 27, 35 doi: 10.1016/j.nanoen.2016.06.035
[125]
Kim D, Xie C, Becknell N, et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc, 2017, 139, 8329 doi: 10.1021/jacs.7b03516
[126]
Bernal M, Bagger A, Scholten F, et al. CO2 electroreduction on copper-cobalt nanoparticles: Size and composition effect. Nano Energy, 2018, 53, 27 doi: 10.1016/j.nanoen.2018.08.027
[127]
Chen D, Yao Q, Cui P, et al. Tailoring the selectivity of bimetallic copper-palladium nanoalloys for electrocatalytic reduction of CO2 to CO. ACS Appl. Energy Mater, 2018, 1, 883 doi: 10.1021/acsaem.7b00320
[128]
Hori Y, Takahashi I, Koga O, et al. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B, 2002, 106, 15 doi: 10.1021/jp013478d
[129]
Jia F, Yu X, Zhang L. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst. J Power Sources, 2014, 252, 85 doi: 10.1016/j.jpowsour.2013.12.002
[130]
Guo X, Zhang Y, Deng C, et al. Composition dependent activity of Cu-Pt nanocrystals for electrochemical reduction of CO2. Chem Commun, 2015, 51, 1345 doi: 10.1039/C4CC08175G
[131]
Ren D, Ang B S H, Yeo B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal, 2016, 6, 8239 doi: 10.1021/acscatal.6b02162
[132]
Clark E L, Hahn C, Jaramillo T F, et al. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J Am Chem Soc, 2017, 139, 15848 doi: 10.1021/jacs.7b08607
[133]
Ma S, Sadakiyo M, Heim M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J Am Chem Soc, 2017, 139, 47 doi: 10.1021/jacs.6b10740
[134]
Gao D, Zhang Y, Zhou Z, et al. Enhancing CO2 electroreduction with the metal-oxide interface. J Am Chem Soc, 2017, 139, 5652 doi: 10.1021/jacs.7b00102
[135]
Rogers C, Perkins W S, Veber G, et al. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J Am Chem Soc, 2017, 139, 4052 doi: 10.1021/jacs.6b12217
[136]
Lee S, Park G, Lee J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal, 2017, 7, 8594 doi: 10.1021/acscatal.7b02822
[137]
Huang J, Mensi M, Oveisi E, et al. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J Am Chem Soc, 2019, 141, 2490 doi: 10.1021/jacs.8b12381
[138]
Guntern Y T, Pankhurst J R, Vávra J, et al. Nanocrystal/metal–organic framework hybrids as electrocatalytic platforms for CO2 conversion. Angew Chem Int Ed, 2019, 58, 12632 doi: 10.1002/anie.201905172
[139]
Yuan J, Yang M P, Zhi W Y, et al. Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts. J CO2 Util, 2019, 33, 452 doi: 10.1016/j.jcou.2019.07.014
[140]
Carlos G M, Etosha R C, Stephanie A N, et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat Catal, 2018, 1, 764 doi: 10.1038/s41929-018-0139-9
[141]
Peter B O, Patrick W, Tania M B, et al. Cascade reaction in nanozymes: spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J Am Chem Soc, 2019, 141, 36 doi: 10.1021/jacs.9b07310
[142]
Wang X L, de Araújo J F, Ju W, et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat Nanotechnol, 2019, 14, 1063 doi: 10.1038/s41565-019-0551-6
[143]
Haochen Z, Xiaoxia C, Jingguang G C, et al. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat Commun, 2019, 10, 3340 doi: 10.1038/s41467-019-11292-9
[144]
Varela A S, Schlaup C, Jovanov Z P, et al. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J Phys Chem C, 2013, 117, 20500 doi: 10.1021/jp406913f
[145]
Sen S, Liu D, Palmore G T R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal, 2014, 4, 3091 doi: 10.1021/cs500522g
[146]
Roberts F S, Kuhl K P, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem, 2015, 127, 5268 doi: 10.1002/ange.201412214
[147]
Reske R, Duca M, Oezaslan M, et al. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J Phys Chem Lett, 2013, 4, 2410 doi: 10.1021/jz401087q
[148]
Wakerley D, Lamaison S, Ozanam F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat Mater, 2019, 18, 1222 doi: 10.1038/s41563-019-0445-x
[149]
Liu J, Fu J, Zhou Y, et al. Controlled synthesis of EDTA modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multi-carbon products. Nano Lett, 2020, 20, 7 doi: 10.1021/acs.nanolett.0c00639
[150]
Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J Am Chem Soc, 2017, 139, 3774 doi: 10.1021/jacs.6b13287
[151]
Zhu S, Jiang B, Cai W B, et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J Am Chem Soc, 2017, 139, 15664 doi: 10.1021/jacs.7b10462
[152]
Wuttig A, Yoon Y, Ryu J, et al. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J Am Chem Soc, 2017, 139, 17109 doi: 10.1021/jacs.7b08345
Fig. 1.  (a) Volcano plot for the HER on metal electrodes in acidic media[20]. Reprinted with permission, Copyright 2010, American Chemical Society. (b) Activity trends for OER as a function of $ \mathrm{\Delta }{G}_{{\mathrm{O}}^{{*}}}-\mathrm{\Delta }{G}_{\mathrm{O}{\mathrm{H}}^{{*}}} $ for rutile and anatase oxides. The activity is expressed by the value of overpotential to achieve a certain value of current density[17]. Reprinted with permission, Copyright 2011, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Fig. 2.  (Color online) (a) Microstructure and interfaces of the molybdenum sulfide@NPG. (b) HER polarization curves of NPG, MoS2@GCE, and MoS2@NPG[50]. Reprinted with permission, Copyright 2014, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Cross-sectional SEM image of the NiCeOx–Au film. (d) Activity difference between NiCeO x supported on either Au-coated or bare GC disk, as well as OER performance of NiCeOx–Au compared to those benchmarking catalysts reported. (e) Representation of the theoretical overpotential as a function of the difference in O* and HO* adsorption Gibbs energies. (f) DFT+U calculations illustrates the support effects on modifying performance of NiCeOx–Au[52]. Reprinted with permission, Copyright 2016, Springer Nature. (g) Comparison of activity and (h) impedance spectra for Ni-based electrodes with various mass loading and composition. (i) In situ XAS of NiOOH and NiCeOOH on GC and Au substrates[53]. Reprinted with permission, Copyright 2017, American Chemical Society. (j) Adsorption sites and adsorption energies of OH on FeNi LDH and FeNi LDH with hydroxide interfacial layer, respectively. (k) Mass activity and (l) stability test of the FeNi LDH on foils at 1.5 V vs RHE for 10 h[49]. Reprinted with permission, Copyright 2018, American Chemical Society.

Fig. 3.  (Color online) (a) SEM image of an α-Ni(OH)2 hollow sphere and a digital photo of the nanosheet-assembled α-Ni(OH)2 hollow spheres deposited on glassy carbon. (b) Comparison of CVs recorded at 100th cycle for bare GC electrode and modified GC electrodes comprising the α- and β-Ni(OH)2 nanocrystals, RuO2, and 20 wt% Pt/C and the corresponding Tafel slope[74]. Reprinted with permission, Copyright 2014, American Chemical Society. (c) SEM and TEM images for Cu@NiFe LDH for morphology characterization[60]. Reprinted with permission, Copyright 2017, Royal Society of Chemistry. (d) Polarization curves of CoS2 film and CoS2 nanowire/microwire array towards the morphology-dependent enhancement of both performance and stability. Bottom sketch describe the effect of morphology changing of CoS2 towards the bubble evolution[68]. Reprinted with permission, Copyright 2014, American Chemical Society. (e) Illustration of 3D-nanomesh nickel electrode and the long-term stability tests of Ni foam, the 3D-nanomesh Ni electrode and the 3D-nanomesh NiFe electrode[75]. Reprinted with permission, Copyright 2018, Elsevier.

Fig. 4.  (Color online) (a) SEM image of the large area SP superlattices and inserted photograph of the SP superlattices with dimensions 0.7 × 0.7 cm2. (b) High-magnification SEM image of the long-rang-ordered Pt nanocrystals and TEM image of the nanocrystal superlattice. (c) Polarization curves of Pt SP5, Pt SP10, Pt SP20, Pt SP50, Pt NP film, Pt/C film and Pt foil electrocatalysts, the current density was normalized by geometry area. (d) Stability testing on Pt SP5 for 11 h. (e) Stability testing on Pt NP films. (f) Schematic illustration of the growth of gas bubbles on a flat film electrode. (g) Schematic illustration of the stability difference between flat film and SP electrode. (h–j) Snapshots of digital videos taken during electrolysis at 10 mA/cm2, magnified observations and schematic illustration of single bubble behavior on (h) Pt SP5, (i) Pt SP20 and (j) Pt NP film. (k) it curves with a stable and straight curve in the case of Pt SP5 and serrated curves on the Pt SP20 and Pt NP films[37]. Reprinted with permission, Copyright 2019, American Chemical Society.

Fig. 5.  (Color online) Possible mechanistic pathways of CO2 reduction to C1 and C2 products[12]. Reprinted with permission, Copyright 2019, American Chemical Society.

Fig. 6.  (Color online) (a) Microstructural analysis and bulk compositions of the catalysts. (b) Calculated reaction energy profiles for CO2 electroreduction to form CO (top) and HCOOH (bottom) on the PdSnO2 surface[113]. Reprinted with permission, Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Surface valence band photoemission spectra of Au–Cu bimetallic nanoparticles. (d) Schematic showing the proposed mechanism for CO2 reduction on the catalyst surface of Au–Cu bimetallic nanoparticles[120]. Reprinted with permission, Copyright 2014, Springer Nature. (e) The sketch of atomic ordering transformation of AuCu nanoparticles and the corresponding structural investigation. (f) Computational results of CO2 reduction on AuCu surfaces. (g) The illustration of CuPd nanoalloys with different structures and the corresponding comparison of FE[125]. Reprinted with permission, Copyright 2017, American Chemical Society. (h) The SEM image of NixGay alloying and the terminal products[95]. Reprinted with permission, Copyright 2016, American Chemical Society.

Fig. 7.  (Color online) (a) A schematic illustration of the Ag3Sn core-shell structure. (b) CO2 reduction Faradaic efficiencies of AgSn/SnOx. (c) The most favorable free energy pathways of CO and HCOOH formation on SnO with Ov and –(O)H*, respectively[112]. Reprinted with permission, Copyright 2017, American Chemical Society. (d) Schematic and TEM characterization of the three types of Ag/Cu nanocrystals. (e) The schematic illustration and activity comparison of Ag NPs, Cu NPs, and AgCu alloy with various composition ratio[137]. Reprinted with permission, Copyright 2019, American Chemical Society. (f) Interaction between CeOx/Au(111) and CO2 (g) DFT calculations of CO2RR at 0 V vs RHE on Au(111) and Ce3O7H7/Au(111) surfaces[134]. Reprinted with permission, Copyright 2017, American Chemical Society. (h) Schematic illustration of the synthesis process and the corresponding morphology and composition characterization of the Ag@Al-PMOF. (i) FEs and total current densities for Ag NCs and Ag@Al-PMOF hybrids with different MOF thicknesses[138]. Reprinted with permission, Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Fig. 8.  (Color online) (a) Schematic illustration of the structure of Cu nanofoams and the terminal products. (b) Product distribution as a function of applied potential during the electrochemical reduction of CO2[145]. Reprinted with permission, Copyright 2014, American Chemical Society. (c) SEM images of the Cu cube surface and cyclic voltammograms of Cu cube and polycrystalline cupper surface towards formation of H2, methane and ethylene[146]. Reprinted with permission, Copyright 2015, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Schematic showing the Cu overlayer structure-dependency over the formation of hydrocarbons. (e) Ratios of RFSs for CH4/C2H4 on different thicknesses of the Cu layer deposited on a pure Pt substrate obtained from the CO2 reduction experiments[147]. Reprinted with permission, Copyright 2013, American Chemical Society.

Fig. 9.  (Color online) (a) This is illustrated on a diving bell spider for subaquatic breathing. (b) A hydrophobic dendritic Cu surface for aqueous CO2 reduction. (c) The contact angle measurements of the wettable and hydrophobic dendrite. (d) SEM image of the hydrophobic dendrite. (e) Illustration of the hydrophobic dendrite gaining a solid–liquid interface on the application of a negative potential. (f) CPE product FEs from the wettable and hydrophobic dendrite at various potentials. (g) The proposed role of hydrophobicity in promoting CO2 reduction over proton reduction[140]. Reprinted with permission, Copyright 2019, Springer Nature. (h) SEM images of EDTA modified porous hollow cupper sphere. (i) FE of all the reduction products for H-Cu MPs at various potentials. (j) Free energy profiles for the CO dimerization reaction on surfaces with or without EDTA modification[149]. Reprinted with permission, Copyright 2020, American Chemical Society.

[1]
Fu G, Lee J M. Ternary metal sulfides for electrocatalytic energy conversion. J Mater Chem A, 2019, 7, 9386 doi: 10.1039/C9TA01438A
[2]
Tahir M, Pan L, Idrees F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136 doi: 10.1016/j.nanoen.2017.05.022
[3]
Li X, Hao X, Abudula A, et al. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J Mater Chem A, 2016, 4, 11973 doi: 10.1039/C6TA02334G
[4]
Gao D, Arán-Ais R M, Jeon H S, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal, 2019, 2, 198 doi: 10.1038/s41929-019-0235-5
[5]
Birdja Y Y, Pérez-Gallent E, Figueiredo M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy, 2019, 4, 732 doi: 10.1038/s41560-019-0450-y
[6]
Shao Q, Wang P, Huang X. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv Funct Mater, 2019, 29, 1806419 doi: 10.1002/adfm.201806419
[7]
Niether C, Faure S, Bordet A, et al. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles. Nat Energy, 2018, 3, 476 doi: 10.1038/s41560-018-0132-1
[8]
Wang Y, Yan D, El Hankari S, et al. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv Sci, 2018, 5, 1800064 doi: 10.1002/advs.201800064
[9]
Gong M, Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res, 2014, 8, 23 doi: 10.1007/s12274-014-0591-z
[10]
Yan Y, Xia B Y, Zhao B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A, 2016, 4, 17587 doi: 10.1039/C6TA08075H
[11]
Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed, 2017, 56, 11326 doi: 10.1002/anie.201612214
[12]
Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev, 2019, 119, 7610 doi: 10.1021/acs.chemrev.8b00705
[13]
Gao M Y, Yang C, Zhang Q B, et al. Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. J Mater Chem A, 2017, 5, 5797 doi: 10.1039/C6TA10812A
[14]
Cheng C, Zheng F, Zhang C, et al. High-efficiency bifunctional electrocatalyst based on 3D freestanding Cu foam in situ armored CoNi alloy nanosheet arrays for overall water splitting. J Power Sources, 2019, 427, 184 doi: 10.1016/j.jpowsour.2019.04.071
[15]
Ghosh S, Basu R N. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale, 2018, 10, 11241 doi: 10.1039/C8NR01032C
[16]
Xiao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv Energy Mater, 2015, 5, 1500985 doi: 10.1002/aenm.201500985
[17]
Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev, 2015, 44, 2060 doi: 10.1039/C4CS00470A
[18]
Zheng Y, Jiao Y, Jaroniec M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment. Angew Chem Int Ed, 2015, 54, 52 doi: 10.1002/anie.201407031
[19]
Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152, 23 doi: 10.1002/chin.200524023
[20]
Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev, 2010, 110, 6474 doi: 10.1021/cr100246c
[21]
Dau H, Limberg C, Reier T, et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem, 2010, 2, 724 doi: 10.1002/cctc.201000126
[22]
Wu L K, Wu W Y, Xia J, et al. A nanostructured nickel-cobalt alloy with an oxide layer for an efficient oxygen evolution reaction. J Mater Chem A, 2017, 5, 10669 doi: 10.1039/C7TA02754K
[23]
Liu K, Zhang C, Sun Y, et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano, 2018, 12, 158 doi: 10.1021/acsnano.7b04646
[24]
Liang C, Zou P, Nairan A, et al. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalyst for large current density water splitting. Energy Environ Sci, 2020, 13, 86 doi: 10.1039/C9EE02388G
[25]
Mccrory C C L, Jung S, Peters J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc, 2013, 135, 16977 doi: 10.1021/ja407115p
[26]
Tang C, Wang H F, Zhu X L, et al. Advances in hybrid electrocatalysts for oxygen evolution reactions: Rational integration of NiFe layered double hydroxides and nanocarbon. Part Part Syst Charact, 2016, 33, 473 doi: 10.1002/ppsc.201600004
[27]
Man I C, Su H Y, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 2011, 3, 1159 doi: 10.1002/cctc.201000397
[28]
Qazi U Y, Yuan C Z, Ullah N, et al. One-step growth of iron-nickel bimetallic nanoparticles on FeNi alloy foils: Highly efficient advanced electrodes for the oxygen evolution reaction. ACS Appl Mater Interfaces, 2017, 9, 28627 doi: 10.1021/acsami.7b08922
[29]
Hu Q, Liu X, Zhu B, et al. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy, 2018, 50, 212 doi: 10.1016/j.nanoen.2018.05.033
[30]
Fan J, Chen Z, Shi H, et al. In situ grown, self-supported iron-cobalt-nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation. Chem Commun, 2016, 52, 4290 doi: 10.1039/C5CC09699E
[31]
Jin Y, Yue X, Shu C, et al. Three-dimensional porous MoNi4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. J Mater Chem A, 2017, 5, 2508 doi: 10.1039/C6TA10802D
[32]
Ma Y, Dai X, Liu M, et al. Strongly coupled feni alloys/NiFe2O4@carbonitride layers-assembled microboxes for enhanced oxygen evolution reaction. ACS Appl Mater Interfaces, 2016, 8, 34396 doi: 10.1021/acsami.6b11821
[33]
Chung D Y, Lopes P P, Martins P F, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat Energy, 2020, 5, 222 doi: 10.1038/s41560-020-0576-y
[34]
Saha S, Ganguli A K. FeCoNi alloy as noble metal-free electrocatalyst for oxygen evolution reaction (OER). ChemistrySelect, 2017, 2, 1630 doi: 10.1002/slct.201601243
[35]
Zhang P, Li L, Nordlund D, et al. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nat Commun, 2018, 9, 381 doi: 10.1038/s41467-017-02429-9
[36]
Zhang J, Shao Q, Wang P, et al. Catalytic hydrogen production by janus CuAg nanostructures. ChemNanoMat, 2018, 4, 477 doi: 10.1002/cnma.201800057
[37]
Song Q, Xue Z, Liu C, et al. A general strategy to optimize gas evolution reaction via assembled striped-pattern superlattices. J Am Chem Soc, 2019, 142, 1857 doi: 10.1021/jacs.9b10388
[38]
Garcés-Pineda F A, Blasco-Ahicart M, Nieto-Castro D, et al. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy, 2019, 4, 519 doi: 10.1038/s41560-019-0404-4
[39]
Ganesan P, Sivanantham A, Shanmugam S. Nanostructured nickel-cobalt-titanium alloy grown on titanium substrate as efficient electrocatalyst for alkaline water electrolysis. ACS Appl Mater Interfaces, 2017, 9, 12416 doi: 10.1021/acsami.7b00353
[40]
Zhu X, Jin T, Tian C, et al. In situ coupling strategy for the preparation of FeCo alloys and Co4N hybrid for highly efficient oxygen evolution. Adv Mater, 2017, 29, 1704091 doi: 10.1002/adma.201704091
[41]
Subbaraman R, Tripkovic D, Chang K C, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater, 2012, 11, 550 doi: 10.1038/nmat3313
[42]
Wang F, Kusada K, Wu D, et al. Solid-solution alloy nanoparticles of the immiscible iridium–copper system with a wide composition range for enhanced electrocatalytic applications. Angew Chem Int Ed, 2018, 57, 4505 doi: 10.1002/anie.201800650
[43]
Zhao Y, Luo M, Chu S, et al. 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media. Nano Energy, 2019, 59, 146 doi: 10.1016/j.nanoen.2019.02.020
[44]
Gupta S, Qiao L, Zhao S, et al. Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Adv Energy Mater, 2016, 6, 1601198 doi: 10.1002/aenm.201601198
[45]
Cui X, Ren P, Deng D, et al. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ Sci, 2016, 9, 123 doi: 10.1039/C5EE03316K
[46]
Yang Y, Lin Z, Gao S, et al. Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catal, 2017, 7, 469 doi: 10.1021/acscatal.6b02573
[47]
Wang C, Yang H, Zhang Y, et al. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew Chem Int Ed, 2019, 58, 6099 doi: 10.1002/anie.201902446
[48]
Anantharaj S, Karthick K, Venkatesh M, et al. Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy, 2017, 39, 30 doi: 10.1016/j.nanoen.2017.06.027
[49]
Xiang Q, Li F, Chen W, et al. In situ vertical growth of Fe-Ni layered double-hydroxide arrays on Fe-Ni alloy foil: Interfacial layer enhanced electrocatalyst with small overpotential for oxygen evolution reaction. ACS Energy Lett, 2018, 3, 2357 doi: 10.1021/acsenergylett.8b01466
[50]
Ge X, Chen L, Zhang L, et al. Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production. Adv Mater, 2014, 26, 3100 doi: 10.1002/adma.201305678
[51]
Fester J, Makoveev A, Grumelli D, et al. The structure of the cobalt oxide/au catalyst interface in electrochemical water splitting. Angew Chem, 2018, 130, 12069 doi: 10.1002/ange.201804417
[52]
Ng J W D, García-Melchor M, Bajdich M, et al. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy, 2016, 1, 16053 doi: 10.1038/nenergy.2016.53
[53]
Chakthranont P, Kibsgaard J, Gallo A, et al. Effects of gold substrates on the intrinsic and extrinsic activity of high-loading nickel-based oxyhydroxide oxygen evolution catalysts. ACS Catal, 2017, 7, 5399 doi: 10.1021/acscatal.7b01070
[54]
Zhao S, Jin R, Abroshan H, et al. Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 Interface. J Am Chem Soc, 2017, 139, 1077 doi: 10.1021/jacs.6b12529
[55]
Gorlin Y, Chung C J, Benck J D, et al. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation. J Am Chem Soc, 2014, 136, 4920 doi: 10.1021/ja407581w
[56]
Ci S, Mao S, Hou Y, et al. Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. J Mater Chem A, 2015, 3, 7986 doi: 10.1039/C5TA00894H
[57]
Wen L, Wang Z, Mi Y, et al. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small, 2015, 11, 3408 doi: 10.1002/smll.201500120
[58]
Wen L, Xu R, Cui C, et al. Template-guided programmable janus heteronanostructure arrays for efficient plasmonic photocatalysis. Nano Lett, 2018, 18, 4914 doi: 10.1021/acs.nanolett.8b01675
[59]
Kang J, Hirata A, Qiu H J, et al. Self-grown oxy-hydroxide@nanoporous metal electrode for high-performance supercapacitors. Adv Mater, 2014, 26, 269 doi: 10.1002/adma.201302975
[60]
Yu L, Zhou H, Sun J, et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ Sci, 2017, 10, 1820 doi: 10.1039/C7EE01571B
[61]
Zhu X, Amal R, Lu X. N,P co-coordinated manganese atoms in mesoporous carbon for electrochemical oxygen reduction. Small, 2019, 15, 1804524 doi: 10.1002/smll.201804524
[62]
Zhu X, Tan X, Wu K H, et al. N,P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J Mater Chem A, 2019, 7, 14732 doi: 10.1039/C9TA03011E
[63]
Dang Y, He J, Wu T, et al. Constructing bifunctional 3D holey and ultrathin CoP nanosheets for efficient overall water splitting. ACS Appl Mater Interfaces, 2019, 11, 29879 doi: 10.1021/acsami.9b08238
[64]
Li M, Liu T, Bo X, et al. A novel flower-like architecture of FeCo@NC-functionalized ultra-thin carbon nanosheets as a highly efficient 3D bifunctional electrocatalyst for full water splitting. J Mater Chem A, 2017, 5, 5413 doi: 10.1039/C6TA09976A
[65]
Zhu X, Zhang D, Chen C J, et al. Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy, 2020, 71, 104597 doi: 10.1016/j.nanoen.2020.104597
[66]
Jin J, Yu J, Guo D, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small, 2015, 11, 5262 doi: 10.1002/smll.201500926
[67]
Bandarenka A S, Varela AS, Karamad M, et al. Design of an active site towards optimal electrocatalysis: Overlayers, surface alloys and near-surface alloys of Cu/Pt(111). Angew Chem Int Ed, 2012, 51, 11845 doi: 10.1002/anie.201205314
[68]
Faber M S, Dziedzic R, Lukowski M A, et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc, 2014, 136, 10053 doi: 10.1021/ja504099w
[69]
Huang C L, Chuah X F, Hsieh C T, et al. NiFe alloy nanotube arrays as highly efficient bifunctional electrocatalysts for overall water splitting at high current densities. ACS Appl Mater Interfaces, 2019, 11, 24096 doi: 10.1021/acsami.9b05919
[70]
Xu H, Shi Z X, Tong Y X, et al. Porous microrod arrays constructed by carbon-confined NiCo@NiCoO2 core@shell nanoparticles as efficient electrocatalysts for oxygen evolution. Adv Mater, 2018, 30, 1705442 doi: 10.1002/adma.201705442
[71]
Hou Y, Cui S, Wen Z, et al. Strongly coupled 3D hybrids of n-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis. Small, 2015, 11, 5940 doi: 10.1002/smll.201502297
[72]
Zhang X, Zhao Y F, Zhao Y X, et al. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater, 2019, 9, 1900881 doi: 10.1002/aenm.201900881
[73]
Popczun E J, McKone J R, Read C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc, 2013, 135, 9267 doi: 10.1021/ja403440e
[74]
Gao M, Sheng W, Zhuang Z, et al. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc, 2014, 136, 7077 doi: 10.1021/ja502128j
[75]
Kim S, Ahn C, Cho Y, et al. Suppressing buoyant force: New avenue for long-term durability of oxygen evolution catalysts. Nano Energy, 2018, 54, 184 doi: 10.1016/j.nanoen.2018.10.009
[76]
Kuhl K P, Cave E R, Abram D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci, 2012, 5, 7050 doi: 10.1039/c2ee21234j
[77]
Yang H Z, Shang L, Zhang Q H, et al. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun, 2019, 10, 4585 doi: 10.1038/s41467-019-12510-0
[78]
Wang W, Shang L, Chang G J, et al. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv Mater, 2019, 31, 1808276 doi: 10.1002/adma.201808276
[79]
Yoo J S, Christensen R, Vegge T, et al. Theoretical Insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. ChemSusChem, 2016, 9, 358 doi: 10.1002/cssc.201501197
[80]
Bagger A, Ju W, Varela A S, et al. Electrochemical CO2 reduction: A classification problem. ChemPhysChem, 2017, 18, 3266 doi: 10.1002/cphc.201700736
[81]
Peterson A A, Nørskov J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett, 2012, 3, 251 doi: 10.1021/jz201461p
[82]
Kuhl K P, Hatsukade T, Cave E R, et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc, 2014, 136, 14107 doi: 10.1021/ja505791r
[83]
Peterson A A, Abild-Pedersen F, Studt F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci, 2010, 3, 1311 doi: 10.1039/c0ee00071j
[84]
Ooka H, Figueiredo M C, Koper M T M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir, 2017, 33, 9307 doi: 10.1021/acs.langmuir.7b00696
[85]
He J, Johnson N J J, Huang A, et al. Electrocatalytic alloys for CO2 reduction. ChemSusChem, 2018, 11, 48 doi: 10.1002/cssc.201701825
[86]
Chen D, Wang Y L, Liu D Y, et al. Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys. Carbon Energy, 2020, 2, 443 doi: 10.1002/cey2.38
[87]
Schouten K J P, Kwon Y, Van Der Ham C J M, et al. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci, 2011, 2, 1902 doi: 10.1039/c1sc00277e
[88]
Hori Y, Takahashi R, Yoshinami Y, et al. Electrochemical reduction of CO at a copper electrode. J Phys Chem B, 1997, 101, 7075 doi: 10.1021/jp970284i
[89]
Cook R L, Macduff R C, Sammells A F. Evidence for formaldehyde, formic acid, and acetaldehyde as possible intermediates during electrochemical carbon dioxide reduction at copper. J Electrochem Soc, 1989, 136, 1982 doi: 10.1149/1.2097110
[90]
Montoya J H, Shi C, Chan K, et al. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett, 2015, 6, 2032 doi: 10.1021/acs.jpclett.5b00722
[91]
Schouten K J P, Qin Z, Gallent E P, et al. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc, 2012, 134, 9864 doi: 10.1021/ja302668n
[92]
Fan Q, Zhang M, Jia M, et al. Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater Today Energy, 2018, 10, 280 doi: 10.1016/j.mtener.2018.10.003
[93]
Calvinho K U D, Laursen A B, Yap K M K, et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ Sci, 2018, 11, 2550 doi: 10.1039/C8EE00936H
[94]
Kortlever R, Peters I, Balemans C, et al. Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons. Chem Commun, 2016, 52, 10229 doi: 10.1039/C6CC03717H
[95]
Torelli D A, Francis S A, Crompton J C, et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal, 2016, 6, 2100 doi: 10.1021/acscatal.5b02888
[96]
Garza A J, Bell A T, Head-Gordon M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal, 2018, 8, 1490 doi: 10.1021/acscatal.7b03477
[97]
Resasco J, Chen L D, Clark E, et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J Am Chem Soc, 2017, 139, 11277 doi: 10.1021/jacs.7b06765
[98]
Ledezma-Yanez I, Gallent E P, Koper M T M, et al. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal Today, 2016, 262, 90 doi: 10.1016/j.cattod.2015.09.029
[99]
Clark E L, Bell A T. Direct observation of the local reaction environment during the electrochemical reduction of CO2. J Am Chem Soc, 2018, 140, 7012 doi: 10.1021/jacs.8b04058
[100]
Kortlever R, Shen J, Schouten K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett, 2015, 6, 4073 doi: 10.1021/acs.jpclett.5b01559
[101]
Tang W, Peterson A A, Varela A S, et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys, 2012, 14, 76 doi: 10.1039/C1CP22700A
[102]
Loiudice A, Lobaccaro P, Kamali E A, et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew Chem, 2016, 128, 5883 doi: 10.1002/ange.201601582
[103]
Ma M, Trześniewski B J, Xie J, et al. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew Chem, 2016, 128, 9900 doi: 10.1002/ange.201604654
[104]
Rosen B A, Salehi-khojin A, Thorson M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science, 2011, 334, 643 doi: 10.1126/science.1209786
[105]
Liu M, Pang Y, Zhang B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382 doi: 10.1038/nature19060
[106]
Asadi M, Kim K, Liu C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science, 2016, 353, 467 doi: 10.1126/science.aaf4767
[107]
Gao S, Lin Y, Jiao X, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature, 2016, 529, 68 doi: 10.1038/nature16455
[108]
White J L, Baruch M F, Pander J E, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem Rev, 2015, 115, 12888 doi: 10.1021/acs.chemrev.5b00370
[109]
Choi S Y, Jeong S K, Kim H J, et al. Electrochemical reduction of carbon dioxide to formate on tin-lead alloys. ACS Sustain Chem Eng, 2016, 4, 1311 doi: 10.1021/acssuschemeng.5b01336
[110]
Lee C H, Kanan M W. Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catal, 2015, 5, 465 doi: 10.1021/cs5017672
[111]
MacHunda R L, Ju H, Lee J. Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode. Curr Appl Phys, 2011, 11, 986 doi: 10.1016/j.cap.2011.01.003
[112]
Luc W, Collins C, Wang S, et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc, 2017, 139, 1885 doi: 10.1021/jacs.6b10435
[113]
Bai X, Chen W, Zhao C, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew Chem Int Ed, 2017, 56, 12219 doi: 10.1002/anie.201707098
[114]
Kortlever R, Peters I, Koper S, et al. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt nanoparticles. ACS Catal, 2015, 5, 3916 doi: 10.1021/acscatal.5b00602
[115]
Hahn C, Abram D N, Hansen H A, et al. Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. J Mater Chem A, 2015, 3, 20185 doi: 10.1039/C5TA04863J
[116]
Min X, Kanan M W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: High mass activity at low overpotential and identification of the deactivation pathway. J Am Chem Soc, 2015, 137, 4701 doi: 10.1021/ja511890h
[117]
da Silva S G, Silva J C M, Buzzo G S, et al. PdAu/C electrocatalysts as anodes for direct formate fuel cell. Electrocatalysis, 2015, 6, 442 doi: 10.1007/s12678-015-0262-1
[118]
Xu Z, Lai E, Shao-Horn Y, et al. Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun, 2012, 48, 5626 doi: 10.1039/c2cc31576a
[119]
Hirunsit P. Electroreduction of carbon dioxide to methane on copper, copper-silver, and copper-gold catalysts: A DFT study. J Phys Chem C, 2013, 117, 8262 doi: 10.1021/jp400937e
[120]
Kim D, Resasco J, Yu Y, et al. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun, 2014, 5, 4948 doi: 10.1038/ncomms5948
[121]
Rasul S, Anjum D H, Jedidi A, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem, 2015, 127, 2174 doi: 10.1002/ange.201410233
[122]
Sarfraz S, Garcia-Esparza AT, Jedidi A, et al. Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal, 2016, 6, 2842 doi: 10.1021/acscatal.6b00269
[123]
Li M, Wang J, Li P, et al. Mesoporous palladium-copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO. J Mater Chem A, 2016, 4, 4776 doi: 10.1039/C6TA00487C
[124]
Yin Z, Gao D, Yao S, et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy, 2016, 27, 35 doi: 10.1016/j.nanoen.2016.06.035
[125]
Kim D, Xie C, Becknell N, et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc, 2017, 139, 8329 doi: 10.1021/jacs.7b03516
[126]
Bernal M, Bagger A, Scholten F, et al. CO2 electroreduction on copper-cobalt nanoparticles: Size and composition effect. Nano Energy, 2018, 53, 27 doi: 10.1016/j.nanoen.2018.08.027
[127]
Chen D, Yao Q, Cui P, et al. Tailoring the selectivity of bimetallic copper-palladium nanoalloys for electrocatalytic reduction of CO2 to CO. ACS Appl. Energy Mater, 2018, 1, 883 doi: 10.1021/acsaem.7b00320
[128]
Hori Y, Takahashi I, Koga O, et al. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B, 2002, 106, 15 doi: 10.1021/jp013478d
[129]
Jia F, Yu X, Zhang L. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst. J Power Sources, 2014, 252, 85 doi: 10.1016/j.jpowsour.2013.12.002
[130]
Guo X, Zhang Y, Deng C, et al. Composition dependent activity of Cu-Pt nanocrystals for electrochemical reduction of CO2. Chem Commun, 2015, 51, 1345 doi: 10.1039/C4CC08175G
[131]
Ren D, Ang B S H, Yeo B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal, 2016, 6, 8239 doi: 10.1021/acscatal.6b02162
[132]
Clark E L, Hahn C, Jaramillo T F, et al. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J Am Chem Soc, 2017, 139, 15848 doi: 10.1021/jacs.7b08607
[133]
Ma S, Sadakiyo M, Heim M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J Am Chem Soc, 2017, 139, 47 doi: 10.1021/jacs.6b10740
[134]
Gao D, Zhang Y, Zhou Z, et al. Enhancing CO2 electroreduction with the metal-oxide interface. J Am Chem Soc, 2017, 139, 5652 doi: 10.1021/jacs.7b00102
[135]
Rogers C, Perkins W S, Veber G, et al. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J Am Chem Soc, 2017, 139, 4052 doi: 10.1021/jacs.6b12217
[136]
Lee S, Park G, Lee J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal, 2017, 7, 8594 doi: 10.1021/acscatal.7b02822
[137]
Huang J, Mensi M, Oveisi E, et al. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J Am Chem Soc, 2019, 141, 2490 doi: 10.1021/jacs.8b12381
[138]
Guntern Y T, Pankhurst J R, Vávra J, et al. Nanocrystal/metal–organic framework hybrids as electrocatalytic platforms for CO2 conversion. Angew Chem Int Ed, 2019, 58, 12632 doi: 10.1002/anie.201905172
[139]
Yuan J, Yang M P, Zhi W Y, et al. Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts. J CO2 Util, 2019, 33, 452 doi: 10.1016/j.jcou.2019.07.014
[140]
Carlos G M, Etosha R C, Stephanie A N, et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat Catal, 2018, 1, 764 doi: 10.1038/s41929-018-0139-9
[141]
Peter B O, Patrick W, Tania M B, et al. Cascade reaction in nanozymes: spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J Am Chem Soc, 2019, 141, 36 doi: 10.1021/jacs.9b07310
[142]
Wang X L, de Araújo J F, Ju W, et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat Nanotechnol, 2019, 14, 1063 doi: 10.1038/s41565-019-0551-6
[143]
Haochen Z, Xiaoxia C, Jingguang G C, et al. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat Commun, 2019, 10, 3340 doi: 10.1038/s41467-019-11292-9
[144]
Varela A S, Schlaup C, Jovanov Z P, et al. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J Phys Chem C, 2013, 117, 20500 doi: 10.1021/jp406913f
[145]
Sen S, Liu D, Palmore G T R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal, 2014, 4, 3091 doi: 10.1021/cs500522g
[146]
Roberts F S, Kuhl K P, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem, 2015, 127, 5268 doi: 10.1002/ange.201412214
[147]
Reske R, Duca M, Oezaslan M, et al. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J Phys Chem Lett, 2013, 4, 2410 doi: 10.1021/jz401087q
[148]
Wakerley D, Lamaison S, Ozanam F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat Mater, 2019, 18, 1222 doi: 10.1038/s41563-019-0445-x
[149]
Liu J, Fu J, Zhou Y, et al. Controlled synthesis of EDTA modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multi-carbon products. Nano Lett, 2020, 20, 7 doi: 10.1021/acs.nanolett.0c00639
[150]
Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J Am Chem Soc, 2017, 139, 3774 doi: 10.1021/jacs.6b13287
[151]
Zhu S, Jiang B, Cai W B, et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J Am Chem Soc, 2017, 139, 15664 doi: 10.1021/jacs.7b10462
[152]
Wuttig A, Yoon Y, Ryu J, et al. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J Am Chem Soc, 2017, 139, 17109 doi: 10.1021/jacs.7b08345
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5144 Times PDF downloads: 178 Times Cited by: 0 Times

    History

    Received: 01 July 2020 Revised: 13 July 2020 Online: Accepted Manuscript: 19 August 2020Uncorrected proof: 21 August 2020Published: 04 September 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Can Cui, Xiaosong Hu, Liaoyong Wen. Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide[J]. Journal of Semiconductors, 2020, 41(9): 091705. doi: 10.1088/1674-4926/41/9/091705 C Cui, X S Hu, L Y Wen, Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide[J]. J. Semicond., 2020, 41(9): 091705. doi: 10.1088/1674-4926/41/9/091705.Export: BibTex EndNote
      Citation:
      Can Cui, Xiaosong Hu, Liaoyong Wen. Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide[J]. Journal of Semiconductors, 2020, 41(9): 091705. doi: 10.1088/1674-4926/41/9/091705

      C Cui, X S Hu, L Y Wen, Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide[J]. J. Semicond., 2020, 41(9): 091705. doi: 10.1088/1674-4926/41/9/091705.
      Export: BibTex EndNote

      Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide

      doi: 10.1088/1674-4926/41/9/091705
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return