ARTICLES

Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection

Yifan Wang1, 2, Xuanze Li1, 2, Pei Liu1, 2, Jing Xia1, 2, and Xiangmin Meng1, 2,

+ Author Affiliations

 Corresponding author: Jing Xia, xiajing@mail.ipc.ac.cn; Xiangmin Meng, mengxiangmin@mail.ipc.ac.cn

PDF

Turn off MathJax

Abstract: Epitaxial high-crystallization film semiconductor heterostructures has been proved to be an effective method to prepare single-crystal films for different functional devices in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as building blocks for heterostructures. Here, the conformal vapor phase epitaxy of CsPbBr3 on PbS single-crystal films is realized to form the CsPbBr3/PbS heterostructures via a two-step vapor deposition process. The structural characterization reveals that PbS substrates and the epilayer CsPbBr3 have clear relationships: CsPbBr3(110) // PbS(100), CsPbBr3[$\bar{1}10$] // PbS[001] and CsPbBr3[001] // PbS[010]. The absorption and photoluminescence (PL) characteristics of CsPbBr3/PbS heterostructures show the broadband light absorption and efficient photogenerated carrier transfer. Photodetectors based on the heterostructures show superior photoresponsivity of 15 A/W, high detectivity of 2.65 × 1011 Jones, fast response speed of 96 ms and obvious rectification behavior. Our study offers a convenient method for establishing the high-quality CsPbBr3/PbS single-crystal film heterostructures and providing an effective way for their application in optoelectronic devices.

Key words: heteroepitaxial growthCsPbBr3PbSsingle-crystal filmphotodetector



[1]
Zhao J J, Li H H, Qiu Y C, et al. Programmable single-crystalline PbI2 microplate arrays and their organic/inorganic heterojunctions. Adv Funct Mater, 2020, 30, 2003631 doi: 10.1002/adfm.202003631
[2]
Xia X H, Tu J P, Zhang Y Q, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano, 2012, 6, 5531 doi: 10.1021/nn301454q
[3]
Iannaccone G, Bonaccorso F, Colombo L, et al. Quantum engineering of transistors based on 2D materials heterostructures. Nat Nanotechnol, 2018, 13, 183 doi: 10.1038/s41565-018-0082-6
[4]
Zhang H, Jiang X T, Wang Y L, et al. Preface to the special issue on monoelemental 2D semiconducting materials and their applications. J Semicond, 2020, 41, 080101 doi: 10.1088/1674-4926/41/8/080101
[5]
Yuan J, Sun T, Hu Z X, et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl Mater Interfaces, 2018, 10, 40614 doi: 10.1021/acsami.8b13620
[6]
Capasso F. Band-gap engineering: From physics and materials to new semiconductor devices. Science, 1987, 235, 172 doi: 10.1126/science.235.4785.172
[7]
Zhou J S, Yang J H, Wei Z M. Photodetectors based on 2D material/Si heterostructure. J Semicond, 2020, 41, 080401 doi: 10.1088/1674-4926/41/8/080401
[8]
Kroemer H. A proposed class of hetero-junction injection lasers. Proc IEEE, 1963, 51, 1782
[9]
Feng M, Holonyak N, Chan R. Quantum-well-base heterojunction bipolar light-emitting transistor. Appl Phys Lett, 2004, 84, 1952 doi: 10.1063/1.1669071
[10]
Lee K, Li J, Cheng L, et al. Sub-picosecond carrier dynamics induced by efficient charge transfer in MoTe2/WTe2 van der Waals heterostructures. ACS Nano, 2019, 13, 9587 doi: 10.1021/acsnano.9b04701
[11]
Zhang P, Zhang Y W, Wei Y, et al. Contact engineering for two-dimensional semiconductors. J Semicond, 2020, 41, 071901 doi: 10.1088/1674-4926/41/7/071901
[12]
Duan X D, Wang C, Shaw J C, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol, 2014, 9, 1024 doi: 10.1038/nnano.2014.222
[13]
Caroff P, Wagner J B, Dick K A, et al. High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. Small, 2008, 4, 878 doi: 10.1002/smll.200700892
[14]
Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323 doi: 10.1038/s41586-019-1013-x
[15]
Jariwala D, Marks T J, Hersam M C. Mixed-dimensional van der Waals heterostructures. Nat Mater, 2017, 16, 170 doi: 10.1038/nmat4703
[16]
Zhou S Y, Peng B. Non-volatile optical memory in vertical van der Waals heterostructures. J Semicond, 2020, 41, 072906 doi: 10.1088/1674-4926/41/7/072906
[17]
Qian F, Li Y, Gradečak S, et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater, 2008, 7, 701 doi: 10.1038/nmat2253
[18]
Walsh A, Scanlon D O, Chen S Y, et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew Chem Int Ed, 2015, 54, 1791 doi: 10.1002/anie.201409740
[19]
Gao Y, Zhao L Y, Shang Q Y, et al. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. J Semicond, 2019, 40, 052201 doi: 10.1088/1674-4926/40/5/052201
[20]
Chen H M, Huang W, Marks T J, et al. Recent advances in multi-layer light-emitting heterostructure transistors. Small, 2021, 17, 2007661 doi: 10.1002/smll.202007661
[21]
Huo N J, Kang J, Wei Z M, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv Funct Mater, 2014, 24, 7025 doi: 10.1002/adfm.201401504
[22]
Wang Y P, Chen Z Z, Deschler F, et al. Epitaxial halide perovskite lateral double heterostructure. ACS Nano, 2017, 11, 3355 doi: 10.1021/acsnano.7b00724
[23]
Yang S J, Liu K L, Han W, et al. Salt-assisted growth of P-type Cu9S5 nanoflakes for P-N heterojunction photodetectors with high responsivity. Adv Funct Mater, 2020, 30, 1908382 doi: 10.1002/adfm.201908382
[24]
Feng J G, Yan X X, Liu Y, et al. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv Mater, 2017, 29, 1605993 doi: 10.1002/adma.201605993
[25]
Wang Y F, Yang F, Li X Z, et al. Epitaxial growth of large-scale orthorhombic CsPbBr3 perovskite thin films with anisotropic photoresponse property. Adv Funct Mater, 2019, 29, 1904913 doi: 10.1002/adfm.201904913
[26]
Zhang X L, Xu B, Zhang J B, et al. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv Funct Mater, 2016, 26, 4595 doi: 10.1002/adfm.201600958
[27]
Liu C, Li W Z, Zhang C L, et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J Am Chem Soc, 2018, 140, 3825 doi: 10.1021/jacs.7b13229
[28]
Huang L, Huo N J, Zheng Z Q, et al. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: Band alignment investigation for the case of CsPbBr3/MoSe2. J Semicond, 2020, 41, 052206 doi: 10.1088/1674-4926/41/5/052206
[29]
Zhou Q W, Duan J L, Yang X Y, et al. Interfacial strain release from the WS2/CsPbBr3 van der waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells. Angew Chem Int Ed, 2020, 59, 21997 doi: 10.1002/anie.202010252
[30]
Jiang J, Sun X, Chen X C, et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat Commun, 2019, 10, 4145 doi: 10.1038/s41467-019-12056-1
[31]
Song X F, Liu X H, Yu D J, et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces, 2018, 10, 2801 doi: 10.1021/acsami.7b14745
[32]
Huo N J, Yang Y J, Li J B. Optoelectronics based on 2D TMDs and heterostructures. J Semicond, 2017, 38, 031002 doi: 10.1088/1674-4926/38/3/031002
[33]
Li Z J, Hofman E, Li J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv Funct Mater, 2018, 28, 1704288 doi: 10.1002/adfm.201704288
[34]
Zhong Q X, Cao M H, Hu H C, et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core–shell nanoparticles. ACS Nano, 2018, 12, 8579 doi: 10.1021/acsnano.8b04209
[35]
Fan C, Xu X, Yang K, et al. Controllable epitaxial growth of core-shell PbSe@CsPbBr3 wire heterostructures. Adv Mater, 2018, 30, 1804707 doi: 10.1002/adma.201804707
[36]
Liu Q B, Liang L H, Shen H Z, et al. Epitaxial growth of CsPbBr3-PbS vertical and lateral heterostructures for visible to infrared broadband photodetection. Nano Res, 2021, 14, 1 doi: 10.1007/s12274-021-3308-0
[37]
Wei Z, Perumal A, Su R, et al. Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8, 18021 doi: 10.1039/C6NR05330K
[38]
Zhang X J, Wu X X, Liu X Y, et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis-NIR dual emission. J Am Chem Soc, 2020, 142, 4464 doi: 10.1021/jacs.9b13681
[39]
Shen Y D, Chen R J, Yu X C, et al. Gibbs-Thomson effect in planar nanowires: Orientation and doping modulated growth. Nano Lett, 2016, 16, 4158 doi: 10.1021/acs.nanolett.6b01037
[40]
Wang F, Wang Z X, Xu K, et al. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance. Nano Lett, 2015, 15, 7558 doi: 10.1021/acs.nanolett.5b03291
[41]
He Y H, Matei L, Jung H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat Commun, 2018, 9, 1609 doi: 10.1038/s41467-018-04073-3
[42]
Hu X L, Zhou H, Jiang Z Y, et al. Direct vapor growth of perovskite CsPbBr3 nanoplate electroluminescence devices. ACS Nano, 2017, 11, 9869 doi: 10.1021/acsnano.7b03660
[43]
Pak Y, Mitra S, Alaal N, et al. Dark-current reduction accompanied photocurrent enhancement in p-type MnO quantum-dot decorated n-type 2D-MoS2-based photodetector. Appl Phys Lett, 2020, 116, 112102 doi: 10.1063/1.5143578
[44]
Wen Y, Wang Q S, Yin L, et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv Mater, 2016, 28, 8051 doi: 10.1002/adma.201602481
Fig. 1.  (Color online) Schematic diagram of the tube furnace setup for the growth of CsPbBr3/PbS heterostructures.

Fig. 2.  (Color online) (a) SEM image of PbS single-crystal films epitaxially grown on NaCl (100) substrates. (b) XRD patterns of the PbS films on NaCl (100) crystals (red) and reference data (JPCDS, PDF#05-0592, black).

Fig. 3.  (Color online) (a, b) Cross-section and top-view SEM images of CsPbBr3 films epitaxially grown on PbS (100) films. (c) XRD patterns of the CsPbBr3/PbS heterostructures and standard cards of CsPbBr3 and PbS. (d) Magnified XRD pattern in (a).

Fig. 4.  (Color online) (a, b) Experimental results of pole figures from EBSD results for CsPbBr3 and PbS. (c) EBSD orientation map of the CsPbBr3 films epitaxial growth on PbS.

Fig. 5.  (Color online) (a) UV–visible–IR absorption spectra and (b) PL spectra of pristine CsPbBr3 and CsPbBr3/PbS heterostructures.

Fig. 6.  (Color online) Photodetector based on CsPbBr3/PbS film heterostructures. (a) IV curves of the film photodetector in the dark and under 450 nm laser illumination with different light intensities. The inset is the schematic diagram of the device. (b) Light intensity dependence of the photocurrent at the bias of 5 V and corresponding fitting curve. (c, d) Time-resolved photoresponse and the enlarged portion of the device at the bias of 5 V and light intensity of 40 mW/cm2.

Fig. 7.  (Color online) (a) Schematic diagram of the CsPbBr3/PbS p–n heterojunction photodetector under laser illumination. (b) Dark current and photocurrent of the CsPbBr3/PbS heterostructure detectors under a 532, 785 and 1550 nm light with a power density of 40 mW/cm2.

[1]
Zhao J J, Li H H, Qiu Y C, et al. Programmable single-crystalline PbI2 microplate arrays and their organic/inorganic heterojunctions. Adv Funct Mater, 2020, 30, 2003631 doi: 10.1002/adfm.202003631
[2]
Xia X H, Tu J P, Zhang Y Q, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano, 2012, 6, 5531 doi: 10.1021/nn301454q
[3]
Iannaccone G, Bonaccorso F, Colombo L, et al. Quantum engineering of transistors based on 2D materials heterostructures. Nat Nanotechnol, 2018, 13, 183 doi: 10.1038/s41565-018-0082-6
[4]
Zhang H, Jiang X T, Wang Y L, et al. Preface to the special issue on monoelemental 2D semiconducting materials and their applications. J Semicond, 2020, 41, 080101 doi: 10.1088/1674-4926/41/8/080101
[5]
Yuan J, Sun T, Hu Z X, et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl Mater Interfaces, 2018, 10, 40614 doi: 10.1021/acsami.8b13620
[6]
Capasso F. Band-gap engineering: From physics and materials to new semiconductor devices. Science, 1987, 235, 172 doi: 10.1126/science.235.4785.172
[7]
Zhou J S, Yang J H, Wei Z M. Photodetectors based on 2D material/Si heterostructure. J Semicond, 2020, 41, 080401 doi: 10.1088/1674-4926/41/8/080401
[8]
Kroemer H. A proposed class of hetero-junction injection lasers. Proc IEEE, 1963, 51, 1782
[9]
Feng M, Holonyak N, Chan R. Quantum-well-base heterojunction bipolar light-emitting transistor. Appl Phys Lett, 2004, 84, 1952 doi: 10.1063/1.1669071
[10]
Lee K, Li J, Cheng L, et al. Sub-picosecond carrier dynamics induced by efficient charge transfer in MoTe2/WTe2 van der Waals heterostructures. ACS Nano, 2019, 13, 9587 doi: 10.1021/acsnano.9b04701
[11]
Zhang P, Zhang Y W, Wei Y, et al. Contact engineering for two-dimensional semiconductors. J Semicond, 2020, 41, 071901 doi: 10.1088/1674-4926/41/7/071901
[12]
Duan X D, Wang C, Shaw J C, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol, 2014, 9, 1024 doi: 10.1038/nnano.2014.222
[13]
Caroff P, Wagner J B, Dick K A, et al. High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. Small, 2008, 4, 878 doi: 10.1002/smll.200700892
[14]
Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323 doi: 10.1038/s41586-019-1013-x
[15]
Jariwala D, Marks T J, Hersam M C. Mixed-dimensional van der Waals heterostructures. Nat Mater, 2017, 16, 170 doi: 10.1038/nmat4703
[16]
Zhou S Y, Peng B. Non-volatile optical memory in vertical van der Waals heterostructures. J Semicond, 2020, 41, 072906 doi: 10.1088/1674-4926/41/7/072906
[17]
Qian F, Li Y, Gradečak S, et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater, 2008, 7, 701 doi: 10.1038/nmat2253
[18]
Walsh A, Scanlon D O, Chen S Y, et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew Chem Int Ed, 2015, 54, 1791 doi: 10.1002/anie.201409740
[19]
Gao Y, Zhao L Y, Shang Q Y, et al. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. J Semicond, 2019, 40, 052201 doi: 10.1088/1674-4926/40/5/052201
[20]
Chen H M, Huang W, Marks T J, et al. Recent advances in multi-layer light-emitting heterostructure transistors. Small, 2021, 17, 2007661 doi: 10.1002/smll.202007661
[21]
Huo N J, Kang J, Wei Z M, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv Funct Mater, 2014, 24, 7025 doi: 10.1002/adfm.201401504
[22]
Wang Y P, Chen Z Z, Deschler F, et al. Epitaxial halide perovskite lateral double heterostructure. ACS Nano, 2017, 11, 3355 doi: 10.1021/acsnano.7b00724
[23]
Yang S J, Liu K L, Han W, et al. Salt-assisted growth of P-type Cu9S5 nanoflakes for P-N heterojunction photodetectors with high responsivity. Adv Funct Mater, 2020, 30, 1908382 doi: 10.1002/adfm.201908382
[24]
Feng J G, Yan X X, Liu Y, et al. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv Mater, 2017, 29, 1605993 doi: 10.1002/adma.201605993
[25]
Wang Y F, Yang F, Li X Z, et al. Epitaxial growth of large-scale orthorhombic CsPbBr3 perovskite thin films with anisotropic photoresponse property. Adv Funct Mater, 2019, 29, 1904913 doi: 10.1002/adfm.201904913
[26]
Zhang X L, Xu B, Zhang J B, et al. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv Funct Mater, 2016, 26, 4595 doi: 10.1002/adfm.201600958
[27]
Liu C, Li W Z, Zhang C L, et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J Am Chem Soc, 2018, 140, 3825 doi: 10.1021/jacs.7b13229
[28]
Huang L, Huo N J, Zheng Z Q, et al. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: Band alignment investigation for the case of CsPbBr3/MoSe2. J Semicond, 2020, 41, 052206 doi: 10.1088/1674-4926/41/5/052206
[29]
Zhou Q W, Duan J L, Yang X Y, et al. Interfacial strain release from the WS2/CsPbBr3 van der waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells. Angew Chem Int Ed, 2020, 59, 21997 doi: 10.1002/anie.202010252
[30]
Jiang J, Sun X, Chen X C, et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat Commun, 2019, 10, 4145 doi: 10.1038/s41467-019-12056-1
[31]
Song X F, Liu X H, Yu D J, et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces, 2018, 10, 2801 doi: 10.1021/acsami.7b14745
[32]
Huo N J, Yang Y J, Li J B. Optoelectronics based on 2D TMDs and heterostructures. J Semicond, 2017, 38, 031002 doi: 10.1088/1674-4926/38/3/031002
[33]
Li Z J, Hofman E, Li J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv Funct Mater, 2018, 28, 1704288 doi: 10.1002/adfm.201704288
[34]
Zhong Q X, Cao M H, Hu H C, et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core–shell nanoparticles. ACS Nano, 2018, 12, 8579 doi: 10.1021/acsnano.8b04209
[35]
Fan C, Xu X, Yang K, et al. Controllable epitaxial growth of core-shell PbSe@CsPbBr3 wire heterostructures. Adv Mater, 2018, 30, 1804707 doi: 10.1002/adma.201804707
[36]
Liu Q B, Liang L H, Shen H Z, et al. Epitaxial growth of CsPbBr3-PbS vertical and lateral heterostructures for visible to infrared broadband photodetection. Nano Res, 2021, 14, 1 doi: 10.1007/s12274-021-3308-0
[37]
Wei Z, Perumal A, Su R, et al. Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8, 18021 doi: 10.1039/C6NR05330K
[38]
Zhang X J, Wu X X, Liu X Y, et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis-NIR dual emission. J Am Chem Soc, 2020, 142, 4464 doi: 10.1021/jacs.9b13681
[39]
Shen Y D, Chen R J, Yu X C, et al. Gibbs-Thomson effect in planar nanowires: Orientation and doping modulated growth. Nano Lett, 2016, 16, 4158 doi: 10.1021/acs.nanolett.6b01037
[40]
Wang F, Wang Z X, Xu K, et al. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance. Nano Lett, 2015, 15, 7558 doi: 10.1021/acs.nanolett.5b03291
[41]
He Y H, Matei L, Jung H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat Commun, 2018, 9, 1609 doi: 10.1038/s41467-018-04073-3
[42]
Hu X L, Zhou H, Jiang Z Y, et al. Direct vapor growth of perovskite CsPbBr3 nanoplate electroluminescence devices. ACS Nano, 2017, 11, 9869 doi: 10.1021/acsnano.7b03660
[43]
Pak Y, Mitra S, Alaal N, et al. Dark-current reduction accompanied photocurrent enhancement in p-type MnO quantum-dot decorated n-type 2D-MoS2-based photodetector. Appl Phys Lett, 2020, 116, 112102 doi: 10.1063/1.5143578
[44]
Wen Y, Wang Q S, Yin L, et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv Mater, 2016, 28, 8051 doi: 10.1002/adma.201602481
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2368 Times PDF downloads: 133 Times Cited by: 0 Times

    History

    Received: 01 April 2021 Revised: 19 April 2021 Online: Accepted Manuscript: 07 June 2021Uncorrected proof: 10 June 2021Published: 01 November 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yifan Wang, Xuanze Li, Pei Liu, Jing Xia, Xiangmin Meng. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection[J]. Journal of Semiconductors, 2021, 42(11): 112001. doi: 10.1088/1674-4926/42/11/112001 Y F Wang, X Z Li, P Liu, J Xia, X M Meng, Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection[J]. J. Semicond., 2021, 42(11): 112001. doi: 10.1088/1674-4926/42/11/112001.Export: BibTex EndNote
      Citation:
      Yifan Wang, Xuanze Li, Pei Liu, Jing Xia, Xiangmin Meng. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection[J]. Journal of Semiconductors, 2021, 42(11): 112001. doi: 10.1088/1674-4926/42/11/112001

      Y F Wang, X Z Li, P Liu, J Xia, X M Meng, Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection[J]. J. Semicond., 2021, 42(11): 112001. doi: 10.1088/1674-4926/42/11/112001.
      Export: BibTex EndNote

      Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection

      doi: 10.1088/1674-4926/42/11/112001
      More Information
      • Author Bio:

        Yifan Wang is a PhD student at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, under the supervision of Prof. Xiangmin Meng. Her current research interests include in-situ TEM study for functional materials, preparation and optoelectronic properties for all inorganic perovskites

        Jing Xia is an associate professor at the Center of Electron Microscopy, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China. His research interests focus on utilizing and developing in-situ TEM for functional materials with an emphasis on atomic scale structure and properties of material interfaces and nanostructures under different atmosphere conditions

        Xiangmin Meng is a professor at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS). He has been supported by the National Basic Research Program of China (973 Program) and the “Strategic Priority Research Program” of Chinese Academy of Sciences. His research interests are mainly focused on the electron microscope analysis and properties study of low-dimensional nanomaterials

      • Corresponding author: xiajing@mail.ipc.ac.cnmengxiangmin@mail.ipc.ac.cn
      • Received Date: 2021-04-01
      • Revised Date: 2021-04-19
      • Published Date: 2021-11-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return