ARTICLES

A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%

Zhen Li and Guanjun Yang

+ Author Affiliations

 Corresponding author: Guanjun Yang, ygj@mail.xjtu.edu.cn

PDF

Turn off MathJax

Abstract: Repressing the thermal decomposition during the process of heat treatment plays an indispensable part in the preparation of perovskite films. Here, a methylammonium iodide healing method was applied to prevent the volatilization of the organic component inside the perovskite structure during the heat treatment. High-quality CH3NH3PbI3 film with a much larger grain size over 800 nm was successfully fabricated via this healing method. Besides, the absorption and photoluminescence intensity were also both improved. Finally, the best power conversion efficiency of 18.89% with a fill factor over 80% was realized in an n–i–p configuration while possessing outstanding stability. This work suggests that methylammonium iodide healing method is a reliable way to promote crystal growth and improve the photovoltaic performance and humidity stability of the CH3NH3PbI3 solar cells.

Key words: perovskitesolar cellsheat treatmentfilm qualityphotovoltaic performancestability



[1]
Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3, 1500324 doi: 10.1002/advs.201500324
[2]
Jena A K, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chem Rev, 2019, 119, 3036 doi: 10.1021/acs.chemrev.8b00539
[3]
Kim J Y, Lee J W, Jung H S, et al. High-efficiency perovskite solar cells. Chem Rev, 2020, 120, 7867 doi: 10.1021/acs.chemrev.0c00107
[4]
Wang P, Wu Y H, Cai B, et al. Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv Funct Mater, 2019, 29, 1807661 doi: 10.1002/adfm.201807661
[5]
Huang F, Li M J, Siffalovic P, et al. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ Sci, 2019, 12, 518 doi: 10.1039/C8EE03025A
[6]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r
[7]
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381 doi: 10.1038/s41586-021-03406-5
[8]
Motti S G, Meggiolaro D, Martani S, et al. Defect activity in lead halide perovskites. Adv Mater, 2019, 31, 1901183 doi: 10.1002/adma.201901183
[9]
Castro-Méndez A F, Hidalgo J, Correa-Baena J P. The role of grain boundaries in perovskite solar cells. Adv Energy Mater, 2019, 9, 1901489 doi: 10.1002/aenm.201901489
[10]
Yang Y Q, Wu J H, Wang X B, et al. Suppressing vacancy defects and grain boundaries via ostwald ripening for high-performance and stable perovskite solar cells. Adv Mater, 2020, 32, 1904347 doi: 10.1002/adma.201904347
[11]
Kong W C, Wang S W, Li F, et al. Ultrathin perovskite monocrystals boost the solar cell performance. Adv Energy Mater, 2020, 10, 2000453 doi: 10.1002/aenm.202000453
[12]
Zuo C T, Ding L M. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, 2014, 6, 9935 doi: 10.1039/C4NR02425G
[13]
Wang S R, Wang A L, Deng X Y, et al. Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J Mater Chem A, 2020, 8, 12201 doi: 10.1039/D0TA03957H
[14]
Xiong S B, Hao T Y, Sun Y Y, et al. Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. J Energy Chem, 2021, 55, 265 doi: 10.1016/j.jechem.2020.06.061
[15]
Zhang F, Zhu K. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater, 2020, 10, 1902579 doi: 10.1002/aenm.201902579
[16]
Xie L S, Cao Z Y, Wang J W, et al. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 2020, 74, 104846 doi: 10.1016/j.nanoen.2020.104846
[17]
Chen J Z, Park N G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett, 2020, 5, 2742 doi: 10.1021/acsenergylett.0c01240
[18]
Chin S H, Choi J W, Woo H C, et al. Realizing a highly luminescent perovskite thin film by controlling the grain size and crystallinity through solvent vapour annealing. Nanoscale, 2019, 11, 5861 doi: 10.1039/C8NR09947B
[19]
Liu B B, Wang S, Ma Z R, et al. High-performance perovskite solar cells with large grain-size obtained by the synergy of urea and dimethyl sulfoxide. Appl Surf Sci, 2019, 467/468, 708 doi: 10.1016/j.apsusc.2018.10.141
[20]
Kavadiya S, Strzalka J, Niedzwiedzki D M, et al. Crystal reorientation in methylammonium lead iodide perovskite thin film with thermal annealing. J Mater Chem A, 2019, 7, 12790 doi: 10.1039/C9TA02358E
[21]
Zuo C T, Ding L M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 60, 1 doi: 10.1002/anie.202015604
[22]
Ren X D, Yang Z, Yang D, et al. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale, 2016, 8, 3816 doi: 10.1039/C5NR08935B
[23]
Boyd C C, Cheacharoen R, Leijtens T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 2019, 119, 3418 doi: 10.1021/acs.chemrev.8b00336
[24]
Bisquert J, Juarez-Perez E J. The causes of degradation of perovskite solar cells. J Phys Chem Lett, 2019, 10, 5889 doi: 10.1021/acs.jpclett.9b00613
[25]
Dunfield S P, Bliss L, Zhang F, et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv Energy Mater, 2020, 10, 1904054 doi: 10.1002/aenm.201904054
[26]
Shi B, Yao X, Hou F H, et al. Unraveling the passivation process of PbI2 to enhance the efficiency of planar perovskite solar cells. J Phys Chem C, 2018, 122, 21269 doi: 10.1021/acs.jpcc.8b08075
[27]
Chen Y C, Meng Q, Xiao Y Y, et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11, 44101 doi: 10.1021/acsami.9b13648
[28]
Huang X J, Dong G P, Ding L M. The recovery of perovskites. Sci Bull, 2020, 65, 1600 doi: 10.1016/j.scib.2020.06.034
[29]
Zhou Z M, Wang Z W, Zhou Y Y, et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew Chem Int Ed, 2015, 54, 9705 doi: 10.1002/anie.201504379
[30]
Li C W, Pang S P, Xu H X, et al. Methylamine gas based synthesis and healing process toward upscaling of perovskite solar cells: progress and perspective. Sol RRL, 2017, 1, 1700076 doi: 10.1002/solr.201700076
[31]
Yang G J, Chu Q Q, Ding B, et al. A preparation method of quasi-single crystal perovskite film. China patent, CN110534654A, 2019
[32]
Ding B, Gao L L, Liang L S, et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Appl Mater Interfaces, 2016, 8, 20067 doi: 10.1021/acsami.6b05862
[33]
Ding B, Huang S Y, Chu Q Q, et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J Mater Chem A, 2018, 6, 10233 doi: 10.1039/C8TA01192C
Fig. 1.  (Color online) Schematic diagram of (a) the MAPbI3 perovskite fabrication treated by MAI healing method and (b) MAI healing process.

Fig. 2.  (Color online) SEM images of MAPbI3 perovskite treated by MAI healing method with heating temperature of (a) 100 °C, (b) 120 °C, (c) 130 °C and (d) 150 °C. (e) Comparison of grain size of the MAPbI3 film with different heating temperature. (The processing time was set as 10 min.)

Fig. 3.  (Color online) SEM images of MAPbI3 perovskite treated by MAI healing method with processing time of (a) 12 min (low magnification), (b) 12 min (high magnification), (c) 15 min and (d) 18 min. (e) Comparison of grain size of the MAPbI3 film with different processing time. (The heating temperature was set as 100 °C.)

Fig. 4.  (Color online) SEM and AFM images of MAPbI3 perovskite films treated by (a, c, d) post-annealing, (b, e, f) MAI healing. (g) Statistics of the average grain size and (h) grain boundary density of MAPbI3 perovskite film with different treatment.

Fig. 5.  (Color online) Phase structure of MAPbI3 films with different treatments. (a) XRD patterns. (b) Partial enlarged views.

Fig. 6.  (Color online) Optical and electrical spectra of MAPbI3 films with different treatments. (a) UV–vis spectra of MAPbI3 film with different treatments. (b) UV–vis spectra of MAPbI3 film treated by MAI healing as-prepared and after storage in ambient air (relative humidity: 30%–40%) for 10 days. (c) PL and (d) TRPL spectra of MAPbI3 films with different treatment.

Fig. 7.  (Color online) (a) Cross section SEM image of the PSCs treated by MAI healing. (b) J–V curves of the best performing device of MAPbI3 absorber with different treatment. (c) Photovoltaic performance of PSCs with different treatment as-prepared and after storage in ambient air (relative humidity: 30%–40%) for 192 h.

Table 1.   Statistic results of the photovoltaic performance of the PSCs prepared with different method.

TreatmentVoc (V)Jsc (mA/cm2)FF (%)PCE (%)
Post-annealing1.053 ± 0.02220.48 ± 0.3876.9 ± 2.816.58 ± 0.97
MAI healing1.052 ± 0.02420.97 ± 0.5080.6 ± 0.817.77 ± 0.57
DownLoad: CSV
[1]
Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3, 1500324 doi: 10.1002/advs.201500324
[2]
Jena A K, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chem Rev, 2019, 119, 3036 doi: 10.1021/acs.chemrev.8b00539
[3]
Kim J Y, Lee J W, Jung H S, et al. High-efficiency perovskite solar cells. Chem Rev, 2020, 120, 7867 doi: 10.1021/acs.chemrev.0c00107
[4]
Wang P, Wu Y H, Cai B, et al. Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv Funct Mater, 2019, 29, 1807661 doi: 10.1002/adfm.201807661
[5]
Huang F, Li M J, Siffalovic P, et al. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ Sci, 2019, 12, 518 doi: 10.1039/C8EE03025A
[6]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r
[7]
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381 doi: 10.1038/s41586-021-03406-5
[8]
Motti S G, Meggiolaro D, Martani S, et al. Defect activity in lead halide perovskites. Adv Mater, 2019, 31, 1901183 doi: 10.1002/adma.201901183
[9]
Castro-Méndez A F, Hidalgo J, Correa-Baena J P. The role of grain boundaries in perovskite solar cells. Adv Energy Mater, 2019, 9, 1901489 doi: 10.1002/aenm.201901489
[10]
Yang Y Q, Wu J H, Wang X B, et al. Suppressing vacancy defects and grain boundaries via ostwald ripening for high-performance and stable perovskite solar cells. Adv Mater, 2020, 32, 1904347 doi: 10.1002/adma.201904347
[11]
Kong W C, Wang S W, Li F, et al. Ultrathin perovskite monocrystals boost the solar cell performance. Adv Energy Mater, 2020, 10, 2000453 doi: 10.1002/aenm.202000453
[12]
Zuo C T, Ding L M. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, 2014, 6, 9935 doi: 10.1039/C4NR02425G
[13]
Wang S R, Wang A L, Deng X Y, et al. Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J Mater Chem A, 2020, 8, 12201 doi: 10.1039/D0TA03957H
[14]
Xiong S B, Hao T Y, Sun Y Y, et al. Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. J Energy Chem, 2021, 55, 265 doi: 10.1016/j.jechem.2020.06.061
[15]
Zhang F, Zhu K. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater, 2020, 10, 1902579 doi: 10.1002/aenm.201902579
[16]
Xie L S, Cao Z Y, Wang J W, et al. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 2020, 74, 104846 doi: 10.1016/j.nanoen.2020.104846
[17]
Chen J Z, Park N G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett, 2020, 5, 2742 doi: 10.1021/acsenergylett.0c01240
[18]
Chin S H, Choi J W, Woo H C, et al. Realizing a highly luminescent perovskite thin film by controlling the grain size and crystallinity through solvent vapour annealing. Nanoscale, 2019, 11, 5861 doi: 10.1039/C8NR09947B
[19]
Liu B B, Wang S, Ma Z R, et al. High-performance perovskite solar cells with large grain-size obtained by the synergy of urea and dimethyl sulfoxide. Appl Surf Sci, 2019, 467/468, 708 doi: 10.1016/j.apsusc.2018.10.141
[20]
Kavadiya S, Strzalka J, Niedzwiedzki D M, et al. Crystal reorientation in methylammonium lead iodide perovskite thin film with thermal annealing. J Mater Chem A, 2019, 7, 12790 doi: 10.1039/C9TA02358E
[21]
Zuo C T, Ding L M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 60, 1 doi: 10.1002/anie.202015604
[22]
Ren X D, Yang Z, Yang D, et al. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale, 2016, 8, 3816 doi: 10.1039/C5NR08935B
[23]
Boyd C C, Cheacharoen R, Leijtens T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 2019, 119, 3418 doi: 10.1021/acs.chemrev.8b00336
[24]
Bisquert J, Juarez-Perez E J. The causes of degradation of perovskite solar cells. J Phys Chem Lett, 2019, 10, 5889 doi: 10.1021/acs.jpclett.9b00613
[25]
Dunfield S P, Bliss L, Zhang F, et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv Energy Mater, 2020, 10, 1904054 doi: 10.1002/aenm.201904054
[26]
Shi B, Yao X, Hou F H, et al. Unraveling the passivation process of PbI2 to enhance the efficiency of planar perovskite solar cells. J Phys Chem C, 2018, 122, 21269 doi: 10.1021/acs.jpcc.8b08075
[27]
Chen Y C, Meng Q, Xiao Y Y, et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11, 44101 doi: 10.1021/acsami.9b13648
[28]
Huang X J, Dong G P, Ding L M. The recovery of perovskites. Sci Bull, 2020, 65, 1600 doi: 10.1016/j.scib.2020.06.034
[29]
Zhou Z M, Wang Z W, Zhou Y Y, et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew Chem Int Ed, 2015, 54, 9705 doi: 10.1002/anie.201504379
[30]
Li C W, Pang S P, Xu H X, et al. Methylamine gas based synthesis and healing process toward upscaling of perovskite solar cells: progress and perspective. Sol RRL, 2017, 1, 1700076 doi: 10.1002/solr.201700076
[31]
Yang G J, Chu Q Q, Ding B, et al. A preparation method of quasi-single crystal perovskite film. China patent, CN110534654A, 2019
[32]
Ding B, Gao L L, Liang L S, et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Appl Mater Interfaces, 2016, 8, 20067 doi: 10.1021/acsami.6b05862
[33]
Ding B, Huang S Y, Chu Q Q, et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J Mater Chem A, 2018, 6, 10233 doi: 10.1039/C8TA01192C
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2393 Times PDF downloads: 86 Times Cited by: 0 Times

    History

    Received: 17 April 2021 Revised: 12 May 2021 Online: Accepted Manuscript: 02 July 2021Uncorrected proof: 05 July 2021Published: 01 November 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhen Li, Guanjun Yang. A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%[J]. Journal of Semiconductors, 2021, 42(11): 112202. doi: 10.1088/1674-4926/42/11/112202 Z Li, G J Yang, A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%[J]. J. Semicond., 2021, 42(11): 112202. doi: 10.1088/1674-4926/42/11/112202.Export: BibTex EndNote
      Citation:
      Zhen Li, Guanjun Yang. A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%[J]. Journal of Semiconductors, 2021, 42(11): 112202. doi: 10.1088/1674-4926/42/11/112202

      Z Li, G J Yang, A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%[J]. J. Semicond., 2021, 42(11): 112202. doi: 10.1088/1674-4926/42/11/112202.
      Export: BibTex EndNote

      A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%

      doi: 10.1088/1674-4926/42/11/112202
      More Information
      • Author Bio:

        Zhen Li is a master student in School of Materials Science and Engineering, Xi'an Jiaotong University. Since 2018, he started his research on perovskite solar cells under the supervision of Professor Guanjun Yang. His current research focuses on the improvement of perovskite film quality

        Guanjun Yang is a professor in School of Materials Science and Engineering, Xi'an Jiaotong University. His research interests include film/coating approach and equipment for energy fields, such as solar cells, gas turbine, air engine

      • Corresponding author: ygj@mail.xjtu.edu.cn
      • Received Date: 2021-04-17
      • Revised Date: 2021-05-12
      • Published Date: 2021-11-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return