REVIEWS

Latest advances in high-performance light sources and optical amplifiers on silicon

Songtao Liu1, and Akhilesh Khope2

+ Author Affiliations

 Corresponding author: Songtao Liu, stliu.photonics@gmail.com, stliu7963@gmail.com

PDF

Turn off MathJax

Abstract: Efficient light generation and amplification has long been missing on the silicon platform due to its well-known indirect bandgap nature. Driven by the size, weight, power and cost (SWaP-C) requirements, the desire to fully realize integrated silicon electronic and photonic integrated circuits has greatly pushed the effort of realizing high performance on-chip lasers and amplifiers moving forward. Several approaches have been proposed and demonstrated to address this issue. In this paper, a brief overview of recent progress of the high-performance lasers and amplifiers on Si based on different technology is presented. Representative device demonstrations, including ultra-narrow linewidth III–V/Si lasers, fully integrated III–V/Si/Si3N4 lasers, high-channel count mode locked quantum dot (QD) lasers, and high gain QD amplifiers will be covered.

Key words: III–V/Si photonic integrated circuitssemiconductor laserssemiconductor amplifierquantum dots



[1]
Rahim A, Spuesens T, Baets R, et al. Open-access silicon photonics: Current status and emerging initiatives. Proc IEEE, 2018, 106, 2313 doi: 10.1109/JPROC.2018.2878686
[2]
Pinguet T, Denton S, Gloeckner S, et al. High-volume manufacturing platform for silicon photonics. Proc IEEE, 2018, 106, 2281 doi: 10.1109/JPROC.2018.2859198
[3]
Chen X, Milosevic M M, Stanković S, et al. The emergence of silicon photonics as a flexible technology platform. Proc IEEE, 2018, 106, 2101 doi: 10.1109/JPROC.2018.2854372
[4]
Glick M, Abrams N C, Cheng Q X, et al. PINE: photonic integrated networked energy efficient datacenters (ENLITENED program). J Opt Commun Netw, 2020, 12, 443 doi: 10.1364/JOCN.402788
[5]
Poulton C V, Byrd M J, Moss B, et al. Element optical phased array with 100° steering range and flip-chip CMOS. Conference on Lasers and Electro-Optics, 2020, JTh4A.3
[6]
Komljenovic T, Huang D N, Pintus P, et al. Photonic integrated circuits using heterogeneous integration on silicon. Proc IEEE, 2018, 106, 2246 doi: 10.1109/JPROC.2018.2864668
[7]
Adoption of silicon photonics is reaching an inflection point. https://www.lightcounting.com/light-trends/adoption-silicon-photonics-reaching-inflection-point/#:~:text=Many in the industry have, such transitions is most challenging
[8]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4, 511 doi: 10.1038/nphoton.2010.167
[9]
Fang A W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express, 2006, 14, 9203 doi: 10.1364/OE.14.009203
[10]
Jones R, Doussiere P, Driscoll J B, et al. Heterogeneously integrated InP\/silicon photonics: Fabricating fully functional transceivers. IEEE Nanotechnol Mag, 2019, 13, 17 doi: 10.1109/MNANO.2019.2891369
[11]
Liu A Y, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top Quantum Electron, 2018, 24, 6000412 doi: 10.1109/JSTQE.2018.2854542
[12]
Norman J C, Jung D, Wan Y T, et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 2018, 3, 030901 doi: 10.1063/1.5021345
[13]
Rong H S, Xu S B, Kuo Y H, et al. Low-threshold continuous-wave Raman silicon laser. Nat Photonics, 2007, 1, 232 doi: 10.1038/nphoton.2007.29
[14]
Liu J F, Sun X C, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. Opt Lett, 2010, 35, 679 doi: 10.1364/OL.35.000679
[15]
Wang Z C, Abbasi A, Dave U, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11, 1700063 doi: 10.1002/lpor.201700063
[16]
Fang A W, Koch B R, Gan K G, et al. A racetrack mode-locked silicon evanescent laser. Opt Express, 2008, 16, 1393 doi: 10.1364/OE.16.001393
[17]
Wang Z C, van Gasse K, Moskalenko V, et al. A III-V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6, e16260 doi: 10.1038/lsa.2016.260
[18]
Zhang C, Srinivasan S, Tang Y, et al. Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. Opt Express, 2014, 22, 10202 doi: 10.1364/OE.22.010202
[19]
Liang D, Huang X, Kurczveil G, et al. Integrated finely tunable microring laser on silicon. Nat Photonics, 2016, 10, 719 doi: 10.1038/nphoton.2016.163
[20]
Komljenovic T, Srinivasan S, Norberg E, et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quantum Electron, 2015, 21, 214 doi: 10.1109/JSTQE.2015.2422752
[21]
Kurczveil G, Heck M J R, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 2011, 17, 1521 doi: 10.1109/JSTQE.2011.2112639
[22]
Zhang C, Zhang S J, Peters J D, et al. 8 × 8 × 40 Gbps fully integrated silicon photonic network on chip. Optica, 2016, 3, 785 doi: 10.1364/OPTICA.3.000785
[23]
Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 2010, 4, 751 doi: 10.1002/lpor.200900033
[24]
Tran M A, Huang D N, Bowers J E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 2019, 4, 111101 doi: 10.1063/1.5124254
[25]
Henry C. Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron, 1982, 18, 259 doi: 10.1109/JQE.1982.1071522
[26]
Davenport M L, Liu S T, Bowers J E. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon Res, 2018, 6, 468 doi: 10.1364/PRJ.6.000468
[27]
Santis C T, Steger S T, Vilenchik Y, et al. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms. Proc Natl Acad Sci USA, 2014, 111, 2879 doi: 10.1073/pnas.1400184111
[28]
Tran M, Huang D N, Komljenovic T, et al. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Appl Sci, 2018, 8, 1139 doi: 10.3390/app8071139
[29]
Bauters J F, Heck M J R, John D, et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt Express, 2011, 19, 3163 doi: 10.1364/OE.19.003163
[30]
Santis C T, Vilenchik Y, Yariv A, et al. Sub-kHz quantum linewidth semiconductor laser on silicon chip. Conf Lasers Electro-Opt CLEO, 2015, 1
[31]
Huang D N, Tran M A, Guo J, et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 2019, 6, 745 doi: 10.1364/OPTICA.6.000745
[32]
Liu B, Shakouri A, Bowers J E. Passive microring-resonator-coupled lasers. Appl Phys Lett, 2001, 79, 3561 doi: 10.1063/1.1420585
[33]
Malik A, Guo J, Tran M A, et al. Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon. Photon Res, 2020, 8, 1551 doi: 10.1364/PRJ.394726
[34]
Xiang C, Jin W, Guo J, et al. Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers. Opt Express, 2020, 28, 19926 doi: 10.1364/OE.394491
[35]
Jin W, Yang Q F, Chang L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. arXiv preprint arXiv: 2009.07390, 2020
[36]
Xiang C, Jin W, Guo J, et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 2020, 7, 20 doi: 10.1364/OPTICA.384026
[37]
de Beeck C O, Haq B, Elsinger L, et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 2020, 7, 386 doi: 10.1364/OPTICA.382989
[38]
Park H, Zhang C, Tran M A, et al. Heterogeneous silicon nitride photonics. Optica, 2020, 7, 336 doi: 10.1364/OPTICA.391809
[39]
Cheng Q X, Bahadori M, Glick M, et al. Recent advances in optical technologies for data centers: A review. Optica, 2018, 5, 1354 doi: 10.1364/OPTICA.5.001354
[40]
Coldren L A, Corzine S W, Mashanovitch M L. Diode lasers and photonic integrated circuits. In: Wiley Series in Microwave and Optical Engineering. Wiley, 2012
[41]
Berg T W, Mork J. Saturation and noise properties of quantum-dot optical amplifiers. IEEE J Quantum Electron, 2004, 40, 1527 doi: 10.1109/JQE.2004.835114
[42]
Park H, Fang A W, Cohen O, et al. A hybrid AlGaInAs–silicon evanescent amplifier. IEEE Photonics Technol Lett, 2007, 19, 230 doi: 10.1109/LPT.2007.891188
[43]
Davenport M L, Skendžić S, Volet N, et al. Heterogeneous silicon/III –V semiconductor optical amplifiers. IEEE J Sel Top Quantum Electron, 2016, 22, 78 doi: 10.1109/JSTQE.2016.2593103
[44]
Cheung S, Kawakita Y, Shang K, et al. Highly efficient chip-scale III –V/silicon hybrid optical amplifiers. Opt Express, 2015, 23, 22431 doi: 10.1364/OE.23.022431
[45]
van Gasse K, Wang R J, Roelkens G. 27 dB gain III–V-on-silicon semiconductor optical amplifier with > 17 dBm output power. Opt Express, 2019, 27, 293 doi: 10.1364/OE.27.000293
[46]
Chen S M, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10, 307 doi: 10.1038/nphoton.2016.21
[47]
Norman J C, Jung D, Zhang Z Y, et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron, 2019, 55, 2000511 doi: 10.1109/JQE.2019.2901508
[48]
Pan S J, Cao V, Liao M Y, et al. Recent progress in epitaxial growth of III –V quantum-dot lasers on silicon substrate. J Semicond, 2019, 40, 101302 doi: 10.1088/1674-4926/40/10/101302
[49]
Shi B, Han Y, Li Q, et al. 1.55-μm lasers epitaxially grown on silicon. IEEE J Sel Top Quantum Electron, 2019, 25, 1900711 doi: 10.1109/JSTQE.2019.2927579
[50]
Wei W Q, Feng Q, Wang Z H, et al. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J Semicond, 2019, 40, 53 doi: 10.1088/1674-4926/40/10/101303
[51]
Jung D, Zhang Z Y, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2018, 5, 1094 doi: 10.1021/acsphotonics.7b01387
[52]
Liu A Y, Srinivasan S, Norman J, et al. Quantum dot lasers for silicon photonics. Photonics Res, 2015, 3, B1 doi: 10.1364/PRJ.3.0000B1
[53]
Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19, 11381 doi: 10.1364/OE.19.011381
[54]
Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 13 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42, 338 doi: 10.1364/OL.42.000338
[55]
Chen S M, Liao M Y, Tang M C, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25, 4632 doi: 10.1364/OE.25.004632
[56]
Wan Y T, Norman J, Li Q, et al. 13 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, 4, 940 doi: 10.1364/OPTICA.4.000940
[57]
Wei W Q, Zhang J Y, Wang J H, et al. Phosphorus-free 1.5 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt Lett., 2020, 45, 2042 doi: 10.1364/OL.389191
[58]
Wan Y T, Zhang S, Norman J C, et al. Tunable quantum dot lasers grown directly on silicon. Optica, 2019, 6, 1394 doi: 10.1364/OPTICA.6.001394
[59]
Liu S T, Norman J, Dumont M, et al. High-performance O-band quantum-dot semiconductor optical amplifiers directly grown on a CMOS compatible silicon substrate. ACS Photonics, 2019, 6, 2523 doi: 10.1021/acsphotonics.9b00903
[60]
Liu S T, Wu X R, Jung D, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica, 2019, 6, 128 doi: 10.1364/OPTICA.6.000128
[61]
Zhang Z Y, Zhang Z Y, Norman J C, et al. Integrated dispersion compensated mode-locked quantum dot laser. Photon Res, 2020, 8, 1428 doi: 10.1364/PRJ.397175
[62]
Wang Y, Chen S M, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 2018, 5, 528 doi: 10.1364/OPTICA.5.000528
[63]
Wan Y T, Norman J C, Tong Y Y, et al. Quantum dot lasers: 1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si (laser photonics rev. 14(7)/2020). Laser Photonics Rev, 2020, 14, 2070042 doi: 10.1002/lpor.202070042
[64]
Chen B L, Wan Y T, Xie Z Y, et al. Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photonics, 2020, 7, 528 doi: 10.1021/acsphotonics.9b01709
[65]
Wei W Q, Feng Q, Guo J J, et al. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt Express, 2020, 28, 26555 doi: 10.1364/OE.402174
[66]
Zhang Z Y, Jung D, Norman J C, et al. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J Sel Top Quantum Electron, 2019, 25, 1900509 doi: 10.1109/JSTQE.2019.2916884
[67]
Chow W W, Zhang Z Y, Norman J C, et al. On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0. APL Photonics, 2020, 5, 026101 doi: 10.1063/1.5133075
[68]
Huang H M, Duan J N, Jung D, et al. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J Opt Soc Am B, 2018, 35, 2780 doi: 10.1364/JOSAB.35.002780
[69]
Thompson M G, Rae A R, Xia M, et al. InGaAs quantum-dot mode-locked laser diodes. IEEE J Sel Top Quantum Electron, 2009, 15, 661 doi: 10.1109/JSTQE.2008.2012265
[70]
Liu S T, Wang H T, Sun M D, et al. AWG-based monolithic 4 × 12 GHz multichannel harmonically mode-locked laser. IEEE Photonics Technol Lett, 2016, 28, 241 doi: 10.1109/LPT.2015.2493344
[71]
Kemal J N, Marin-Palomo P, Panapakkam V, et al. WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. 2017 Opt Fiber Commun Conf Exhib OFC, 2017, 1
[72]
Khope A S P, Saeidi M, Yu R, et al. Multi-wavelength selective crossbar switch. Opt Express, 2019, 27, 5203 doi: 10.1364/OE.27.005203
[73]
Khope A S P, Liu S T, Zhang Z Y, et al. 2 λ switch. Opt Lett, 2020, 45, 5340 doi: 10.1364/OL.402241
[74]
Liu S T, Norman J C, Jung D, et al. Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si. Appl Phys Lett, 2018, 113, 041108 doi: 10.1063/1.5043200
[75]
Liu S, Jung D, Norman J C, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron Lett, 2018, 54, 432 doi: 10.1049/el.2017.4639
[76]
Liu S T, Wu X R, Norman J, et al. 100 GHz colliding pulse mode locked quantum dot lasers directly grown on Si for WDM application. Conference on Lasers and Electro-Optics, 2019, ATu3P-5
[77]
Auth D, Liu S, Norman J, et al. Passively mode-locked semiconductor quantum dot on silicon laser with 400 Hz RF line width. Opt Express, 2019, 27, 27256 doi: 10.1364/OE.27.027256
[78]
Wu X R, Liu S T, Jung D, et al. Terabit interconnects with a 20-GHz O-band passively mode locked quantum dot laser grown directly on silicon. Optical Fiber Communication Conference (OFC), 2019, W2A-3
[79]
Lu Z G, Liu J R, Raymond S, et al. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt Express, 2008, 16, 10835 doi: 10.1364/OE.16.010835
[80]
Gao F, Luo S, Ji H M, et al. Single-section mode-locked 1.55-μm InAs/InP quantum dot lasers grown by MOVPE. Opt Commun, 2016, 370, 18 doi: 10.1016/j.optcom.2016.02.061
[81]
Rosales R, Murdoch S G, Watts R T, et al. High performance mode locking characteristics of single section quantum dash lasers. Opt Express, 2012, 20, 8649 doi: 10.1364/OE.20.008649
[82]
Chow W W, Liu S T, Zhang Z Y, et al. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt Express, 2020, 28, 5317 doi: 10.1364/OE.382821
[83]
Bardella P, Columbo L L, Gioannini M. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: A theoretical study. Opt Express, OE, 2017, 25, 26234 doi: 10.1364/OE.25.026234
[84]
Akiyama T, Sugawara M, Arakawa Y. Quantum-dot semiconductor optical amplifiers. Proc IEEE, 2007, 95, 1757 doi: 10.1109/JPROC.2007.900899
[85]
Liu S T, Tong Y Y, Norman J, et al. High efficiency, high gain and high saturation output power quantum dot SOAs grown on Si and applications. Optical Fiber Communication Conference (OFC), 2020, 1
[86]
Bowers J E, Gossard A, Jung D, et al. Quantum dot photonic integrated circuits on silicon. Conference on Lasers and Electro-Optics, 2018, 1
[87]
Han Y, Yan Z, Ng W K, et al. Bufferless 1.5 μm III-V lasers grown on Si-photonics 220 nm silicon-on-insulator platforms. Optica, 2020, 7, 148 doi: 10.1364/OPTICA.381745
Fig. 1.  (Color online) (a) Evolution of photonic integration in terms of the number of devices in a single PIC. Silicon photonic integration (red circle) represents the “passive” integration without an on-chip laser solution; InP integration (blue squares) and heterogeneous silicon integration (green triangle) are solutions with on-chip lasers[6]. (b) Schematic of the heterogeneous platform commercialized by Intel[10].

Fig. 2.  (Color online) High-Q heterogeneous laser device schematics (not to scale). (a) Two-dimensional cross-section of the heterogeneous platform, with superimposed optical transverse mode profile. (b) Perspective view of a high-Q heterogeneous laser. (c) Perspective view of the high-Q silicon resonator[27]. (d) Frequency noise spectral density for three high-Q heterogeneous lasers (with different spacer thickness) and control laser[30].

Fig. 3.  (Color online) (a) High-Q widely tunable heterogeneous quad-ring tunable laser device schematics (not to scale). (b) Coarse tuning spectra showing the tuning range of 120 nm. (c) Frequency noise spectrum of the fabricated quad-ring mirror laser. A white noise level of 45 Hz2/Hz is drawn[24].

Fig. 4.  (Color online) (a) III–V/Si/Si3N4 laser schematic diagram. (b) Si–Si3N4 taper as well as the simulated mode profile. (c) Single-mode optical spectrum with gain current of 160 mA. The inset shows measured normalized reflection spectra of the Si3N4 spiral grating[36].

Fig. 5.  (Color online) (a) Schematic illustration of the typical epitaxial structure used for lasers and amplifiers including one period of the p-modulation doped active region and the III–V/Si buffer including defect filter layers and thermal cycle annealing (TCA) to reduce dislocation densities. (b) As-grown photoluminescence spectra for quantum dot lasers on GaAs and Si substrates[47].

Fig. 6.  (Color online) (a) Schematic diagram of the 20 GHz quantum dot mode-locked laser on silicon (not to scale). (b) Optical spectrum and corresponding optical linewidth of each mode within 10 dB. (c) Relative intensity noise of the whole O-band spectrum and certain filtered individual wavelength channels. (d) BER performance of the PAM-4 signal with different comb lines[60].

Fig. 7.  (Color online) Si-based QD-SOA (a) on-chip gain (TE polarization) mapping as a function of on-chip input power and wavelength at 20 °C. (b) On-chip small signal gain as a function of wavelength. (c) On-chip output power as a function of on-chip input power. (d) Wall-plug efficiency as a function of on-chip input power[59]. (e) Bit error rate (BER) against the received optical power for the optical receiver (PD+TIA) with and without QD-SOA under 20 °C, eye diagrams of the receiver with and without QD-SOA are shown in the insets[85].

[1]
Rahim A, Spuesens T, Baets R, et al. Open-access silicon photonics: Current status and emerging initiatives. Proc IEEE, 2018, 106, 2313 doi: 10.1109/JPROC.2018.2878686
[2]
Pinguet T, Denton S, Gloeckner S, et al. High-volume manufacturing platform for silicon photonics. Proc IEEE, 2018, 106, 2281 doi: 10.1109/JPROC.2018.2859198
[3]
Chen X, Milosevic M M, Stanković S, et al. The emergence of silicon photonics as a flexible technology platform. Proc IEEE, 2018, 106, 2101 doi: 10.1109/JPROC.2018.2854372
[4]
Glick M, Abrams N C, Cheng Q X, et al. PINE: photonic integrated networked energy efficient datacenters (ENLITENED program). J Opt Commun Netw, 2020, 12, 443 doi: 10.1364/JOCN.402788
[5]
Poulton C V, Byrd M J, Moss B, et al. Element optical phased array with 100° steering range and flip-chip CMOS. Conference on Lasers and Electro-Optics, 2020, JTh4A.3
[6]
Komljenovic T, Huang D N, Pintus P, et al. Photonic integrated circuits using heterogeneous integration on silicon. Proc IEEE, 2018, 106, 2246 doi: 10.1109/JPROC.2018.2864668
[7]
Adoption of silicon photonics is reaching an inflection point. https://www.lightcounting.com/light-trends/adoption-silicon-photonics-reaching-inflection-point/#:~:text=Many in the industry have, such transitions is most challenging
[8]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4, 511 doi: 10.1038/nphoton.2010.167
[9]
Fang A W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express, 2006, 14, 9203 doi: 10.1364/OE.14.009203
[10]
Jones R, Doussiere P, Driscoll J B, et al. Heterogeneously integrated InP\/silicon photonics: Fabricating fully functional transceivers. IEEE Nanotechnol Mag, 2019, 13, 17 doi: 10.1109/MNANO.2019.2891369
[11]
Liu A Y, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top Quantum Electron, 2018, 24, 6000412 doi: 10.1109/JSTQE.2018.2854542
[12]
Norman J C, Jung D, Wan Y T, et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 2018, 3, 030901 doi: 10.1063/1.5021345
[13]
Rong H S, Xu S B, Kuo Y H, et al. Low-threshold continuous-wave Raman silicon laser. Nat Photonics, 2007, 1, 232 doi: 10.1038/nphoton.2007.29
[14]
Liu J F, Sun X C, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. Opt Lett, 2010, 35, 679 doi: 10.1364/OL.35.000679
[15]
Wang Z C, Abbasi A, Dave U, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11, 1700063 doi: 10.1002/lpor.201700063
[16]
Fang A W, Koch B R, Gan K G, et al. A racetrack mode-locked silicon evanescent laser. Opt Express, 2008, 16, 1393 doi: 10.1364/OE.16.001393
[17]
Wang Z C, van Gasse K, Moskalenko V, et al. A III-V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6, e16260 doi: 10.1038/lsa.2016.260
[18]
Zhang C, Srinivasan S, Tang Y, et al. Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. Opt Express, 2014, 22, 10202 doi: 10.1364/OE.22.010202
[19]
Liang D, Huang X, Kurczveil G, et al. Integrated finely tunable microring laser on silicon. Nat Photonics, 2016, 10, 719 doi: 10.1038/nphoton.2016.163
[20]
Komljenovic T, Srinivasan S, Norberg E, et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quantum Electron, 2015, 21, 214 doi: 10.1109/JSTQE.2015.2422752
[21]
Kurczveil G, Heck M J R, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 2011, 17, 1521 doi: 10.1109/JSTQE.2011.2112639
[22]
Zhang C, Zhang S J, Peters J D, et al. 8 × 8 × 40 Gbps fully integrated silicon photonic network on chip. Optica, 2016, 3, 785 doi: 10.1364/OPTICA.3.000785
[23]
Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 2010, 4, 751 doi: 10.1002/lpor.200900033
[24]
Tran M A, Huang D N, Bowers J E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 2019, 4, 111101 doi: 10.1063/1.5124254
[25]
Henry C. Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron, 1982, 18, 259 doi: 10.1109/JQE.1982.1071522
[26]
Davenport M L, Liu S T, Bowers J E. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon Res, 2018, 6, 468 doi: 10.1364/PRJ.6.000468
[27]
Santis C T, Steger S T, Vilenchik Y, et al. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms. Proc Natl Acad Sci USA, 2014, 111, 2879 doi: 10.1073/pnas.1400184111
[28]
Tran M, Huang D N, Komljenovic T, et al. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Appl Sci, 2018, 8, 1139 doi: 10.3390/app8071139
[29]
Bauters J F, Heck M J R, John D, et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt Express, 2011, 19, 3163 doi: 10.1364/OE.19.003163
[30]
Santis C T, Vilenchik Y, Yariv A, et al. Sub-kHz quantum linewidth semiconductor laser on silicon chip. Conf Lasers Electro-Opt CLEO, 2015, 1
[31]
Huang D N, Tran M A, Guo J, et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 2019, 6, 745 doi: 10.1364/OPTICA.6.000745
[32]
Liu B, Shakouri A, Bowers J E. Passive microring-resonator-coupled lasers. Appl Phys Lett, 2001, 79, 3561 doi: 10.1063/1.1420585
[33]
Malik A, Guo J, Tran M A, et al. Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon. Photon Res, 2020, 8, 1551 doi: 10.1364/PRJ.394726
[34]
Xiang C, Jin W, Guo J, et al. Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers. Opt Express, 2020, 28, 19926 doi: 10.1364/OE.394491
[35]
Jin W, Yang Q F, Chang L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. arXiv preprint arXiv: 2009.07390, 2020
[36]
Xiang C, Jin W, Guo J, et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 2020, 7, 20 doi: 10.1364/OPTICA.384026
[37]
de Beeck C O, Haq B, Elsinger L, et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 2020, 7, 386 doi: 10.1364/OPTICA.382989
[38]
Park H, Zhang C, Tran M A, et al. Heterogeneous silicon nitride photonics. Optica, 2020, 7, 336 doi: 10.1364/OPTICA.391809
[39]
Cheng Q X, Bahadori M, Glick M, et al. Recent advances in optical technologies for data centers: A review. Optica, 2018, 5, 1354 doi: 10.1364/OPTICA.5.001354
[40]
Coldren L A, Corzine S W, Mashanovitch M L. Diode lasers and photonic integrated circuits. In: Wiley Series in Microwave and Optical Engineering. Wiley, 2012
[41]
Berg T W, Mork J. Saturation and noise properties of quantum-dot optical amplifiers. IEEE J Quantum Electron, 2004, 40, 1527 doi: 10.1109/JQE.2004.835114
[42]
Park H, Fang A W, Cohen O, et al. A hybrid AlGaInAs–silicon evanescent amplifier. IEEE Photonics Technol Lett, 2007, 19, 230 doi: 10.1109/LPT.2007.891188
[43]
Davenport M L, Skendžić S, Volet N, et al. Heterogeneous silicon/III –V semiconductor optical amplifiers. IEEE J Sel Top Quantum Electron, 2016, 22, 78 doi: 10.1109/JSTQE.2016.2593103
[44]
Cheung S, Kawakita Y, Shang K, et al. Highly efficient chip-scale III –V/silicon hybrid optical amplifiers. Opt Express, 2015, 23, 22431 doi: 10.1364/OE.23.022431
[45]
van Gasse K, Wang R J, Roelkens G. 27 dB gain III–V-on-silicon semiconductor optical amplifier with > 17 dBm output power. Opt Express, 2019, 27, 293 doi: 10.1364/OE.27.000293
[46]
Chen S M, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10, 307 doi: 10.1038/nphoton.2016.21
[47]
Norman J C, Jung D, Zhang Z Y, et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron, 2019, 55, 2000511 doi: 10.1109/JQE.2019.2901508
[48]
Pan S J, Cao V, Liao M Y, et al. Recent progress in epitaxial growth of III –V quantum-dot lasers on silicon substrate. J Semicond, 2019, 40, 101302 doi: 10.1088/1674-4926/40/10/101302
[49]
Shi B, Han Y, Li Q, et al. 1.55-μm lasers epitaxially grown on silicon. IEEE J Sel Top Quantum Electron, 2019, 25, 1900711 doi: 10.1109/JSTQE.2019.2927579
[50]
Wei W Q, Feng Q, Wang Z H, et al. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J Semicond, 2019, 40, 53 doi: 10.1088/1674-4926/40/10/101303
[51]
Jung D, Zhang Z Y, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2018, 5, 1094 doi: 10.1021/acsphotonics.7b01387
[52]
Liu A Y, Srinivasan S, Norman J, et al. Quantum dot lasers for silicon photonics. Photonics Res, 2015, 3, B1 doi: 10.1364/PRJ.3.0000B1
[53]
Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19, 11381 doi: 10.1364/OE.19.011381
[54]
Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 13 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42, 338 doi: 10.1364/OL.42.000338
[55]
Chen S M, Liao M Y, Tang M C, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25, 4632 doi: 10.1364/OE.25.004632
[56]
Wan Y T, Norman J, Li Q, et al. 13 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, 4, 940 doi: 10.1364/OPTICA.4.000940
[57]
Wei W Q, Zhang J Y, Wang J H, et al. Phosphorus-free 1.5 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt Lett., 2020, 45, 2042 doi: 10.1364/OL.389191
[58]
Wan Y T, Zhang S, Norman J C, et al. Tunable quantum dot lasers grown directly on silicon. Optica, 2019, 6, 1394 doi: 10.1364/OPTICA.6.001394
[59]
Liu S T, Norman J, Dumont M, et al. High-performance O-band quantum-dot semiconductor optical amplifiers directly grown on a CMOS compatible silicon substrate. ACS Photonics, 2019, 6, 2523 doi: 10.1021/acsphotonics.9b00903
[60]
Liu S T, Wu X R, Jung D, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica, 2019, 6, 128 doi: 10.1364/OPTICA.6.000128
[61]
Zhang Z Y, Zhang Z Y, Norman J C, et al. Integrated dispersion compensated mode-locked quantum dot laser. Photon Res, 2020, 8, 1428 doi: 10.1364/PRJ.397175
[62]
Wang Y, Chen S M, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 2018, 5, 528 doi: 10.1364/OPTICA.5.000528
[63]
Wan Y T, Norman J C, Tong Y Y, et al. Quantum dot lasers: 1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si (laser photonics rev. 14(7)/2020). Laser Photonics Rev, 2020, 14, 2070042 doi: 10.1002/lpor.202070042
[64]
Chen B L, Wan Y T, Xie Z Y, et al. Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photonics, 2020, 7, 528 doi: 10.1021/acsphotonics.9b01709
[65]
Wei W Q, Feng Q, Guo J J, et al. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt Express, 2020, 28, 26555 doi: 10.1364/OE.402174
[66]
Zhang Z Y, Jung D, Norman J C, et al. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J Sel Top Quantum Electron, 2019, 25, 1900509 doi: 10.1109/JSTQE.2019.2916884
[67]
Chow W W, Zhang Z Y, Norman J C, et al. On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0. APL Photonics, 2020, 5, 026101 doi: 10.1063/1.5133075
[68]
Huang H M, Duan J N, Jung D, et al. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J Opt Soc Am B, 2018, 35, 2780 doi: 10.1364/JOSAB.35.002780
[69]
Thompson M G, Rae A R, Xia M, et al. InGaAs quantum-dot mode-locked laser diodes. IEEE J Sel Top Quantum Electron, 2009, 15, 661 doi: 10.1109/JSTQE.2008.2012265
[70]
Liu S T, Wang H T, Sun M D, et al. AWG-based monolithic 4 × 12 GHz multichannel harmonically mode-locked laser. IEEE Photonics Technol Lett, 2016, 28, 241 doi: 10.1109/LPT.2015.2493344
[71]
Kemal J N, Marin-Palomo P, Panapakkam V, et al. WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. 2017 Opt Fiber Commun Conf Exhib OFC, 2017, 1
[72]
Khope A S P, Saeidi M, Yu R, et al. Multi-wavelength selective crossbar switch. Opt Express, 2019, 27, 5203 doi: 10.1364/OE.27.005203
[73]
Khope A S P, Liu S T, Zhang Z Y, et al. 2 λ switch. Opt Lett, 2020, 45, 5340 doi: 10.1364/OL.402241
[74]
Liu S T, Norman J C, Jung D, et al. Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si. Appl Phys Lett, 2018, 113, 041108 doi: 10.1063/1.5043200
[75]
Liu S, Jung D, Norman J C, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron Lett, 2018, 54, 432 doi: 10.1049/el.2017.4639
[76]
Liu S T, Wu X R, Norman J, et al. 100 GHz colliding pulse mode locked quantum dot lasers directly grown on Si for WDM application. Conference on Lasers and Electro-Optics, 2019, ATu3P-5
[77]
Auth D, Liu S, Norman J, et al. Passively mode-locked semiconductor quantum dot on silicon laser with 400 Hz RF line width. Opt Express, 2019, 27, 27256 doi: 10.1364/OE.27.027256
[78]
Wu X R, Liu S T, Jung D, et al. Terabit interconnects with a 20-GHz O-band passively mode locked quantum dot laser grown directly on silicon. Optical Fiber Communication Conference (OFC), 2019, W2A-3
[79]
Lu Z G, Liu J R, Raymond S, et al. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt Express, 2008, 16, 10835 doi: 10.1364/OE.16.010835
[80]
Gao F, Luo S, Ji H M, et al. Single-section mode-locked 1.55-μm InAs/InP quantum dot lasers grown by MOVPE. Opt Commun, 2016, 370, 18 doi: 10.1016/j.optcom.2016.02.061
[81]
Rosales R, Murdoch S G, Watts R T, et al. High performance mode locking characteristics of single section quantum dash lasers. Opt Express, 2012, 20, 8649 doi: 10.1364/OE.20.008649
[82]
Chow W W, Liu S T, Zhang Z Y, et al. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt Express, 2020, 28, 5317 doi: 10.1364/OE.382821
[83]
Bardella P, Columbo L L, Gioannini M. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: A theoretical study. Opt Express, OE, 2017, 25, 26234 doi: 10.1364/OE.25.026234
[84]
Akiyama T, Sugawara M, Arakawa Y. Quantum-dot semiconductor optical amplifiers. Proc IEEE, 2007, 95, 1757 doi: 10.1109/JPROC.2007.900899
[85]
Liu S T, Tong Y Y, Norman J, et al. High efficiency, high gain and high saturation output power quantum dot SOAs grown on Si and applications. Optical Fiber Communication Conference (OFC), 2020, 1
[86]
Bowers J E, Gossard A, Jung D, et al. Quantum dot photonic integrated circuits on silicon. Conference on Lasers and Electro-Optics, 2018, 1
[87]
Han Y, Yan Z, Ng W K, et al. Bufferless 1.5 μm III-V lasers grown on Si-photonics 220 nm silicon-on-insulator platforms. Optica, 2020, 7, 148 doi: 10.1364/OPTICA.381745
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3441 Times PDF downloads: 147 Times Cited by: 0 Times

    History

    Received: 05 November 2020 Revised: 07 December 2020 Online: Accepted Manuscript: 01 February 2021Uncorrected proof: 07 February 2021Published: 12 April 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Songtao Liu, Akhilesh Khope. Latest advances in high-performance light sources and optical amplifiers on silicon[J]. Journal of Semiconductors, 2021, 42(4): 041307. doi: 10.1088/1674-4926/42/4/041307 S T Liu, A Khope, Latest advances in high-performance light sources and optical amplifiers on silicon[J]. J. Semicond., 2021, 42(4): 041307. doi: 10.1088/1674-4926/42/4/041307.Export: BibTex EndNote
      Citation:
      Songtao Liu, Akhilesh Khope. Latest advances in high-performance light sources and optical amplifiers on silicon[J]. Journal of Semiconductors, 2021, 42(4): 041307. doi: 10.1088/1674-4926/42/4/041307

      S T Liu, A Khope, Latest advances in high-performance light sources and optical amplifiers on silicon[J]. J. Semicond., 2021, 42(4): 041307. doi: 10.1088/1674-4926/42/4/041307.
      Export: BibTex EndNote

      Latest advances in high-performance light sources and optical amplifiers on silicon

      doi: 10.1088/1674-4926/42/4/041307
      More Information
      • Author Bio:

        Songtao Liu received his Ph.D. degree in microelectronics and solid state electronics from the University of Chinese Academy of Sciences, Beijing, China, 2017. His research interests are in the field of III–V/silicon photonic integrated circuits, semiconductor lasers, semiconductor physics, optical interconnects, microwave photonics, etc. He is now with Ayar Labs, USA

        Akhilesh Khope received his Ph.D. degree in 2019 from UC Santa Barbara, CA, USA, under Prof John Bowers and Prof Adel Saleh in optical switches for data center networks. His research interests are in optical networks, photonic integrated switches and AI. He is now with Microsoft, USA

      • Corresponding author: stliu.photonics@gmail.com, stliu7963@gmail.com
      • Received Date: 2020-11-05
      • Revised Date: 2020-12-07
      • Published Date: 2021-04-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return