REVIEWS

Waveguide external cavity narrow linewidth semiconductor lasers

Chanchan Luo1, 2, 5, Ruiying Zhang1, 2, 5, , Bocang Qiu3 and Wei Wang4

+ Author Affiliations

 Corresponding author: Ruiying Zhang, ryzhang2008@sinano.ac.cn

PDF

Turn off MathJax

Abstract: Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing. Waveguide-based external cavity narrow linewidth semiconductor lasers (WEC-NLSLs) have become a competitive and attractive candidate for many coherent applications due to their small size, volume, low energy consumption, low cost and the ability to integrate with other optical components. In this paper, we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress. Moreover, we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues. Finally, we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.

Key words: semiconductor lasernarrow linewidthwaveguide external cavity



[1]
Bao X, Li W, Qin Z, et al. OTDR and OFDR for distributed multi-parameter sensing. Proc SPIE, 2014, 9062
[2]
Bablumyan A S, Hait J N. Multi-domain differential coherence detection, USA Patent, US20020080360, 2002
[3]
Sun X, Abshire J B. Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation. Opt Express, 2012, 20(19), 21291 doi: 10.1364/OE.20.021291
[4]
Nakano D, Kohda Y, Takano K, et al. Multi-Gbps 60-GHz single-carrier system using a low-power coherent detection technique. IEEE Cool Chips XIV, 2011
[5]
Demers J R, Logan R T, Brown E R. An optically integrated coherent frequency-domain THz spectrometer with signal-to-noise ratio up to 80 dB. Microw Photonics, 2007, 92 doi: 10.1109/MWP.2007.4378144
[6]
Law D. IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment. 2012
[7]
Rohling H. Smart FM/CW radar systems for automotive applications. IEEE Radar Conference, 2008
[8]
Atzori L, Iera A, Morabito G. The internet of things: A survey. Comput Netw, 2010, 54(15), 2787 doi: 10.1016/j.comnet.2010.05.010
[9]
Marpaung D, Burla M, Capmany J. New opportunities for integrated microwave photonics. IEEE Photonics Technol Lett, 2018, 30(21), 1813 doi: 10.1109/LPT.2018.2875327
[10]
Dostart N, Zhang B, Khilo A, et al. Serpentine optical phased arrays for scalable integrated photonic LIDAR beam steering. Optica, 2020, 7(6), 726 doi: 10.1364/OPTICA.389006
[11]
Price A J, Zanoni R, Morgan P J. Photonic analog-to-digital converter. USA Patent, US7876246 B1, 2011
[12]
Nagatsuma T, Ito H, Iwatsuki K. Generation of low-phase noise and frequency-tunable millimeter-/terahertz-waves using optical heterodyning techniques with uni-traveling carrier photodiodes. 2006 European Microwave Conference, 2006, 1103
[13]
Gelikonov V M. Measurement of nanoangström oscillatory displacements by a gas laser with a small natural linewidth. Radiophys Quantum Electron, 1998, 41(11), 998 doi: 10.1007/BF02676469
[14]
Mo S, Huang X, Xu S, et al. 600-Hz linewidth short-linear-cavity fiber laser. Opt Lett, 2014, 39(20), 5818 doi: 10.1364/OL.39.005818
[15]
Lo D, Lam S K, Ye C, et al. Narrow linewidth operation of solid state dye laser based on sol-gel silica. Opt Commun, 1998, 156(4–6), 316 doi: 10.1016/S0030-4018(98)00439-8
[16]
Laue C K, Knappe R, Boller K J, et al. Wavelength tuning and spectral properties of distributed feedback diode lasers with a short external optical cavity. Appl Opt, 2001, 40(18), 3051 doi: 10.1364/AO.40.003051
[17]
Signoret P, Myara M, Tourrenc J P, et al. Bragg section effects on linewidth and lineshape in 1.55-μm DBR tunable laser diodes. IEEE Photonics Technol Lett, 2004, 16(6), 1429 doi: 10.1109/LPT.2004.826707
[18]
Henry C H. Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron, 1982, 18(2), 259 doi: 10.1109/JQE.1982.1071522
[19]
Liou K Y, Duttan K, Burrusc A. Linewidth narrow distributed feedback injection lasers with long cavity length and detuned Bragg wavelength. Appl Phys Lett, 1987, 50(9), 489 doi: 10.1063/1.98182
[20]
Ma J, Wang L R, Zhao Y T, et al. Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules. Appl Phys Lett, 2007, 91(16), 161101 doi: 10.1063/1.2799250
[21]
Patzak E, Sugimura A, Saito S, et al. Semiconductor laser linewidth in optical feedback configurations. Electron Lett, 2007, 19(24), 1026 doi: 10.1049/el:19830695
[22]
Olcay M R, Pasqual J A, Lisboa J A, et al. Tuning of a narrow linewidth pulsed dye laser with a Fabry-Perot and diffraction grating over a large wavelength range. Appl Opt, 1985, 24(19), 3146 doi: 10.1364/AO.24.003146
[23]
Liang W, Ilchenko V S, Savchenkov A A, et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt Lett, 2010, 35(16), 2822 doi: 10.1364/OL.35.002822
[24]
Poulin M, Painchaud Y, Aubé M, et al. Ultra-narrowband fiber Bragg gratings for laser linewidth reduction and RF filtering. Laser Resonators and Beam Control XII, 2010
[25]
Tran M A, Huang D, Bowers J. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 2019, 4(11), 111101 doi: 10.1063/1.5124254
[26]
Komljenovic T, Bowers J E. Monolithically integrated high-Q rings for narrow linewidth widely tunable lasers. IEEE J Quantum Electron, 2015, 51(11), 1 doi: 10.1109/JQE.2015.2480337
[27]
Larsen B, Nielsen L, Zenth K, et al. A low-loss, silicon-oxynidtride process for compact optical devices. Proc ECOC, 2003
[28]
Ou H. Different index contrast silica-on-silicon waveguides by PECVD. Electron Lett, 2003, 39(2), 212 doi: 10.1049/el:20030165
[29]
Bogaerts W, Baets R, Dumon P, et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightwave Technol, 2005, 23(1), 401 doi: 10.1109/JLT.2004.834471
[30]
Ji X, Barbosa F A S, Roberts S P, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 2017, 4(6), 619 doi: 10.1364/OPTICA.4.000619
[31]
Tran M, Huang D, Komljenovic T, et al. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Appl Sci, 2018, 8(7), 1139 doi: 10.3390/app8071139
[32]
Takeuchi T, Takahashi M, Suzuki K, et al. Wavelength tunable laser with silica-waveguide ring resonators. IEICE Trans Electron, 2009, 92(1), 198 doi: 10.1587/transele.E92.C.198
[33]
Atabaki A H, Hosseini E S, Eftekhar A A, et al. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt Express, 2010, 18(17), 18312 doi: 10.1364/OE.18.018312
[34]
Poberaj G, Hu H, Sohler, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon Rev, 2012, 6(4), 488 doi: 10.1002/lpor.201100035
[35]
Belt M, Davenport M L, Bowers J E, et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica, 2017, 4(5), 532 doi: 10.1364/OPTICA.4.000532
[36]
Boller K J, Rees A V, Fan Y, et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics, 2019, 7(1), 4 doi: 10.3390/photonics7010004
[37]
Liu B, Shakouri A, Bowers J E. Passive microring-resonator-coupled lasers. Appl Phys Lett, 2001, 79(22), 3561 doi: 10.1063/1.1420585
[38]
Liu J F, Sun X C, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. Opt Lett, 2010, 35(5), 679 doi: 10.1364/OL.35.000679
[39]
Reed G T, Knights A P, Liao M, et al. Integrating III-V quantum dot lasers on silicon substrates for silicon photonics. SPIE Opto, 2017, 101081A
[40]
Bordel D, Argoud M, Augendre E, et al. Direct and polymer bonding of III-V to processed silicon-on-insulator for hybrid silicon evanescent lasers fabrication. 218th ECS Meeting, 2010
[41]
Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev, 2010, 4(6), 751 doi: 10.1002/lpor.200900033
[42]
Tsuchizawa T, Yamada K, Fukuda H, et al. Microphotonics devices based on silicon microfabrication technology. IEEE J Sel Top Quantum Electron, 2005, 11(1), 232 doi: 10.1109/JSTQE.2004.841479
[43]
Matsumoto T, Suzuki A, Takahashi M, et al. Narrow spectral linewidth full band tunable laser based on waveguide ring resonators with low power consumption. Opt Fiber Commun Conf, 2010
[44]
Suzuki K, Kubby J A, Reed G T, et al. Wavelength tunable laser diodes with Si-wire waveguide ring resonator wavelength filters. Proc SPIE, 2011, 7943, 79431G doi: 10.1117/12.874662
[45]
Nemoto K, Kita T, Yamada H. Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators. Appl Phys Express, 2012, 5(8), 2701 doi: 10.1143/APEX.5.082701
[46]
Oldenbeuving R M, Klein E J, Offerhaus H L, et al. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity. Laser Phys Lett, 2013, 10(1), 015804 doi: 10.1088/1612-2011/10/1/015804
[47]
Ren M, Cai H, Tao J F, et al. A tunable laser using loop-back external cavity based on double ring resonators. Transducers & Eurosensors Xxvii: The International Conference on Solid-state Sensors, 2013
[48]
Kita T, Nemoto K, Yamada H. Silicon photonic wavelength-tunable laser diode with asymmetric Mach-Zehnder interferometer. IEEE J Sel Top Quantum Electron, 2014, 20(4), 344 doi: 10.1109/JSTQE.2013.2295712
[49]
Kita T, Nemoto K, Yamada H. Long external cavity Si photonic wavelength tunable laser diode. Jpn J Appl Phys, 2014, 53(4S), 04E doi: 10.7567/JJAP.53.04EG04
[50]
Fan Y, Oldenbeuving R M, Klein E J, et al. A hybrid semiconductor-glass waveguide laser. Laser Sources and Applications II, 2014
[51]
Debregeas H, Ferrari C, Cappuzzo M A, et al. 2kHz linewidth C-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external cavity. 2014 International Semiconductor Laser Conference, 2014, 50
[52]
Kobayashi N, Sato K, Namiwaka M, et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J Lightwave Technol, 2015, 33(6), 1241 doi: 10.1109/JLT.2014.2385106
[53]
Tang R, Kita T, Yamada H. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach-Zehnder interferometer. Opt Lett, 2015, 40(7), 1504 doi: 10.1364/OL.40.001504
[54]
Fan Y, Epping J P, Oldenbeaving R M, et al. Optically integrated InP-Si3N4 hybrid laser. 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), 2016
[55]
Zhao J L, Oldenbeuving R M, Epping J P, et al. Narrow-linewidth widely tunable hybrid external cavity laser using Si3N4/SiO2 microring resonators. IEEE International Conference on Group IV Photonics, 2016
[56]
Kita T, Tang R, Yamada H. Narrow spectral linewidth silicon photonic wavelength tunable laser diode for digital coherent communication system. IEEE J Sel Top Quantum Electron, 2016, 22(6), 23 doi: 10.1109/JSTQE.2016.2559418
[57]
Brian S, Xingchen J, Avik D, et al. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt Lett, 2017, 42(21), 4541 doi: 10.1364/OL.42.004541
[58]
Fan Y, Oldenbeuving R M, Hoekman M, et al. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser. Lasers & Electro-Optics, 2017, JTh5C-9
[59]
Lin Y, Browning C, Timens R B, et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si3N4/SiO2) microring resonators for optical coherent system. IEEE Photonics J, 2018, 10(99), 1 doi: 10.1109/JPHOT.2018.2842026
[60]
Li Y, Zhang Y, Chen H, et al. Tunable self-injected fabry-perot laser diode coupled to an external high-Q Si3N4 /SiO2 microring resonator. J Lightwave Technol, 2018, 36(16), 3269 doi: 10.1109/JLT.2018.2838325
[61]
Zhu Y, Zhu L. Narrow-linewidth, tunable external cavity dual-band diode lasers through InP/GaAs-Si3N4 hybrid integration. Opt Express, 2019, 27(3), 2354 doi: 10.1364/OE.27.002354
[62]
Xiang C, Morton P A, Bowers J E. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating. Opt Lett, 2019, 44(15), 3825 doi: 10.1364/OL.44.003825
[63]
Zhu Y Y, Zeng S W, Zhu L. Optical beam steering by using tunable, narrow-linewidth butt-coupled hybrid lasers in a silicon nitride photonics platform. Photonics Res, 2020, 8(3), 03000375 doi: 10.1364/PRJ.382852
[64]
Fan Y W, van Rees A, Van der Slot P J, et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt Express, 2020, 28(15), 21713 doi: 10.1364/OE.398906
[65]
Hu Y, Cao W, Tang X S, et al. High power, high SMSR and wide tuning range silicon micro-ring tunable laser. Opt Express, 2017, 25(7), 8029 doi: 10.1364/OE.25.008029
[66]
Alalusi M, Brasil P, Lee S, et al. Low noise planar external cavity laser for interferometric fiber optic sensors. Proc SPIE, 2008, 7316
[67]
Park H, Fang A W, Kodama S, et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt Express, 2005, 13(23), 9460 doi: 10.1364/OPEX.13.009460
[68]
Le Liepvre A, Jany C, Accard A, et al. Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique. IEEE International Conference on Group IV Photonics, 2012
[69]
Keyvaninia S, Roelkens G, Van Thourhout D, et al. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt Express, 2013, 21(3), 3784 doi: 10.1364/OE.21.003784
[70]
Hulme J C, Doylend J K, Bowers J E. Widely tunable Vernier ring laser on hybrid silicon. Opt Express, 2013, 21(17), 19718 doi: 10.1364/OE.21.019718
[71]
Komljenovic T, Srinivasan S, Norberg E, et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quantum Electron, 2015, 21(6), 214 doi: 10.1109/JSTQE.2015.2422752
[72]
Komljenovic T, Davenport M, Srinivasan S, et al. Narrow linewidth tunable laser using coupled resonator mirrors. Optical Fiber Communications Conference & Exhibition, 2015
[73]
Liang L, Hulme J, Chao R L, et al. A direct comparison between heterogeneously integrated widely-tunable ring-based laser designs. Optical Fiber Communications Conference & Exhibition, 2017
[74]
Tran M A, Komljenovic T, Huang D, et al. A widely-tunable high-SMSR narrow-linewidth laser heterogeneously integrated on silicon. CLEO: Applications and Technology, 2018
[75]
Huang D, Tran M A, Guo J, et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 2019, 6(6), 745 doi: 10.1364/OPTICA.6.000745
[76]
Tran M A, Huang D, Guo J, et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J Sel Top Quantum Electron, 2019, 26(2), 1 doi: 10.1109/JSTQE.2019.2935274
[77]
Aoyama K, Kobayashi S, Wada M, et al. Compact narrow-linewidth optical negative feedback laser with Si optical filter. Appl Phys Express, 2018, 11(11), 112703 doi: 10.7567/APEX.11.112703
[78]
D’Agostino, Domenico, Carnicella G, et al. Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc. Opt Express, 2015, 23(19), 25143 doi: 10.1364/OE.23.025143
[79]
Andreou S, Williams K A, Bente E A J M. Monolithically integrated InP-based DBR lasers with an intra-cavity ring resonator. Opt Express, 2019, 27(19), 26281 doi: 10.1364/OE.27.026281
[80]
Wang J, Zhan R Y, Qiu B C, et al. Design of high-Q compact passive ring resonators via incorporating a loss-compensated structure for high performance angular velocity sensing in monolithic integrated-optical-gyroscopes. IEEE Sens J, 2017, 17(1), 84 doi: 10.1109/JSEN.2016.2624510
[81]
Luo C C, Wang J, Qiu B C, et al. Gain spectral narrowing of semiconductor laser based on dual-core vertical coupler structure. Opt Commun, 2020, 474, 126166 doi: 10.1016/j.optcom.2020.126166
[82]
Zhang R Y. Ring cavity device and its fabrication method thereof. USA Patent, US20160131926, 2016
[83]
Zhang R Y. Narrow linewidth laser. Chinese Patent, CN108075354A, 2016
Fig. 1.  (Color online) External cavity feedback semiconductor laser. (a) Block diagram. (b) Equivalent model.

Fig. 2.  (Color online) (a) Illustration of the role of factor A. (b) Illustration of factor B (optical negative feedback).

Fig. 3.  (Color online) The relationship between the external cavity length, the waveguide loss and the intrinsic linewidth of the laser [36].

Fig. 4.  (Color online) Optical path extension under different coupling coefficients and different losses.

Fig. 5.  (Color online) (a) SSC structure diagram[42]. (b) Heterogeneous integration[41].

Fig. 6.  (Color online) The intrinsic linewidth of hybrid integrated laser based on butt coupling technology: a-[43], b-[44], c-[45], d-[46], e-[47], f-[48], g-[49], h-[50], i-[51], j-[52], k-[53], l-[54], m-[55], n-[56], o-[57], p-[58], q-[59], r-[60], s-[61], t-[62], u-[63], v-[64].

Fig. 7.  (Color online) Schematic view of the hybrid laser based on a Si3N4 feedback circuit comprising a spiral and three MRRs[64].

Fig. 8.  (a) Laser structure diagram based on triple MRR. (b) Frequency noise spectrum[76].

Table 1.   Optical properties of the waveguide external cavity platforms.

PlatformPropagation loss (dB/cm)Group indexRefractive index contrast
SiON/SiO2[27]0.051.48160.025
SiO2/Si[28]0.0231.4650.02
Si-wire/SiO2 [29]2.43.47
Si3N4/SiO2[30]0.0131.9960.5
Ultralow-loss SOI[31]0.163.612.145
DownLoad: CSV

Table 2.   The performances of heterogeneous integrated lasers.

First authorStructureSMSR
(dB)
Tuning range
(nm)
Min. linewidth
(kHz)
Hulme[70]MRR3540338
Komljenovic[71]MRR + LR455450
Komljenovic[72]MRR>4029260
Liang[73]MRR + LR>4040150
Tran[74]MRR + LR + MZI>505550
Huang[75]Grating>551
MRR + Grating0.5
Tran[76]Dual MRR + LR>45402
Triple MRR + LR>40110<0.22
DownLoad: CSV
[1]
Bao X, Li W, Qin Z, et al. OTDR and OFDR for distributed multi-parameter sensing. Proc SPIE, 2014, 9062
[2]
Bablumyan A S, Hait J N. Multi-domain differential coherence detection, USA Patent, US20020080360, 2002
[3]
Sun X, Abshire J B. Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation. Opt Express, 2012, 20(19), 21291 doi: 10.1364/OE.20.021291
[4]
Nakano D, Kohda Y, Takano K, et al. Multi-Gbps 60-GHz single-carrier system using a low-power coherent detection technique. IEEE Cool Chips XIV, 2011
[5]
Demers J R, Logan R T, Brown E R. An optically integrated coherent frequency-domain THz spectrometer with signal-to-noise ratio up to 80 dB. Microw Photonics, 2007, 92 doi: 10.1109/MWP.2007.4378144
[6]
Law D. IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment. 2012
[7]
Rohling H. Smart FM/CW radar systems for automotive applications. IEEE Radar Conference, 2008
[8]
Atzori L, Iera A, Morabito G. The internet of things: A survey. Comput Netw, 2010, 54(15), 2787 doi: 10.1016/j.comnet.2010.05.010
[9]
Marpaung D, Burla M, Capmany J. New opportunities for integrated microwave photonics. IEEE Photonics Technol Lett, 2018, 30(21), 1813 doi: 10.1109/LPT.2018.2875327
[10]
Dostart N, Zhang B, Khilo A, et al. Serpentine optical phased arrays for scalable integrated photonic LIDAR beam steering. Optica, 2020, 7(6), 726 doi: 10.1364/OPTICA.389006
[11]
Price A J, Zanoni R, Morgan P J. Photonic analog-to-digital converter. USA Patent, US7876246 B1, 2011
[12]
Nagatsuma T, Ito H, Iwatsuki K. Generation of low-phase noise and frequency-tunable millimeter-/terahertz-waves using optical heterodyning techniques with uni-traveling carrier photodiodes. 2006 European Microwave Conference, 2006, 1103
[13]
Gelikonov V M. Measurement of nanoangström oscillatory displacements by a gas laser with a small natural linewidth. Radiophys Quantum Electron, 1998, 41(11), 998 doi: 10.1007/BF02676469
[14]
Mo S, Huang X, Xu S, et al. 600-Hz linewidth short-linear-cavity fiber laser. Opt Lett, 2014, 39(20), 5818 doi: 10.1364/OL.39.005818
[15]
Lo D, Lam S K, Ye C, et al. Narrow linewidth operation of solid state dye laser based on sol-gel silica. Opt Commun, 1998, 156(4–6), 316 doi: 10.1016/S0030-4018(98)00439-8
[16]
Laue C K, Knappe R, Boller K J, et al. Wavelength tuning and spectral properties of distributed feedback diode lasers with a short external optical cavity. Appl Opt, 2001, 40(18), 3051 doi: 10.1364/AO.40.003051
[17]
Signoret P, Myara M, Tourrenc J P, et al. Bragg section effects on linewidth and lineshape in 1.55-μm DBR tunable laser diodes. IEEE Photonics Technol Lett, 2004, 16(6), 1429 doi: 10.1109/LPT.2004.826707
[18]
Henry C H. Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron, 1982, 18(2), 259 doi: 10.1109/JQE.1982.1071522
[19]
Liou K Y, Duttan K, Burrusc A. Linewidth narrow distributed feedback injection lasers with long cavity length and detuned Bragg wavelength. Appl Phys Lett, 1987, 50(9), 489 doi: 10.1063/1.98182
[20]
Ma J, Wang L R, Zhao Y T, et al. Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules. Appl Phys Lett, 2007, 91(16), 161101 doi: 10.1063/1.2799250
[21]
Patzak E, Sugimura A, Saito S, et al. Semiconductor laser linewidth in optical feedback configurations. Electron Lett, 2007, 19(24), 1026 doi: 10.1049/el:19830695
[22]
Olcay M R, Pasqual J A, Lisboa J A, et al. Tuning of a narrow linewidth pulsed dye laser with a Fabry-Perot and diffraction grating over a large wavelength range. Appl Opt, 1985, 24(19), 3146 doi: 10.1364/AO.24.003146
[23]
Liang W, Ilchenko V S, Savchenkov A A, et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt Lett, 2010, 35(16), 2822 doi: 10.1364/OL.35.002822
[24]
Poulin M, Painchaud Y, Aubé M, et al. Ultra-narrowband fiber Bragg gratings for laser linewidth reduction and RF filtering. Laser Resonators and Beam Control XII, 2010
[25]
Tran M A, Huang D, Bowers J. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 2019, 4(11), 111101 doi: 10.1063/1.5124254
[26]
Komljenovic T, Bowers J E. Monolithically integrated high-Q rings for narrow linewidth widely tunable lasers. IEEE J Quantum Electron, 2015, 51(11), 1 doi: 10.1109/JQE.2015.2480337
[27]
Larsen B, Nielsen L, Zenth K, et al. A low-loss, silicon-oxynidtride process for compact optical devices. Proc ECOC, 2003
[28]
Ou H. Different index contrast silica-on-silicon waveguides by PECVD. Electron Lett, 2003, 39(2), 212 doi: 10.1049/el:20030165
[29]
Bogaerts W, Baets R, Dumon P, et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightwave Technol, 2005, 23(1), 401 doi: 10.1109/JLT.2004.834471
[30]
Ji X, Barbosa F A S, Roberts S P, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 2017, 4(6), 619 doi: 10.1364/OPTICA.4.000619
[31]
Tran M, Huang D, Komljenovic T, et al. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Appl Sci, 2018, 8(7), 1139 doi: 10.3390/app8071139
[32]
Takeuchi T, Takahashi M, Suzuki K, et al. Wavelength tunable laser with silica-waveguide ring resonators. IEICE Trans Electron, 2009, 92(1), 198 doi: 10.1587/transele.E92.C.198
[33]
Atabaki A H, Hosseini E S, Eftekhar A A, et al. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt Express, 2010, 18(17), 18312 doi: 10.1364/OE.18.018312
[34]
Poberaj G, Hu H, Sohler, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon Rev, 2012, 6(4), 488 doi: 10.1002/lpor.201100035
[35]
Belt M, Davenport M L, Bowers J E, et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica, 2017, 4(5), 532 doi: 10.1364/OPTICA.4.000532
[36]
Boller K J, Rees A V, Fan Y, et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics, 2019, 7(1), 4 doi: 10.3390/photonics7010004
[37]
Liu B, Shakouri A, Bowers J E. Passive microring-resonator-coupled lasers. Appl Phys Lett, 2001, 79(22), 3561 doi: 10.1063/1.1420585
[38]
Liu J F, Sun X C, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. Opt Lett, 2010, 35(5), 679 doi: 10.1364/OL.35.000679
[39]
Reed G T, Knights A P, Liao M, et al. Integrating III-V quantum dot lasers on silicon substrates for silicon photonics. SPIE Opto, 2017, 101081A
[40]
Bordel D, Argoud M, Augendre E, et al. Direct and polymer bonding of III-V to processed silicon-on-insulator for hybrid silicon evanescent lasers fabrication. 218th ECS Meeting, 2010
[41]
Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev, 2010, 4(6), 751 doi: 10.1002/lpor.200900033
[42]
Tsuchizawa T, Yamada K, Fukuda H, et al. Microphotonics devices based on silicon microfabrication technology. IEEE J Sel Top Quantum Electron, 2005, 11(1), 232 doi: 10.1109/JSTQE.2004.841479
[43]
Matsumoto T, Suzuki A, Takahashi M, et al. Narrow spectral linewidth full band tunable laser based on waveguide ring resonators with low power consumption. Opt Fiber Commun Conf, 2010
[44]
Suzuki K, Kubby J A, Reed G T, et al. Wavelength tunable laser diodes with Si-wire waveguide ring resonator wavelength filters. Proc SPIE, 2011, 7943, 79431G doi: 10.1117/12.874662
[45]
Nemoto K, Kita T, Yamada H. Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators. Appl Phys Express, 2012, 5(8), 2701 doi: 10.1143/APEX.5.082701
[46]
Oldenbeuving R M, Klein E J, Offerhaus H L, et al. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity. Laser Phys Lett, 2013, 10(1), 015804 doi: 10.1088/1612-2011/10/1/015804
[47]
Ren M, Cai H, Tao J F, et al. A tunable laser using loop-back external cavity based on double ring resonators. Transducers & Eurosensors Xxvii: The International Conference on Solid-state Sensors, 2013
[48]
Kita T, Nemoto K, Yamada H. Silicon photonic wavelength-tunable laser diode with asymmetric Mach-Zehnder interferometer. IEEE J Sel Top Quantum Electron, 2014, 20(4), 344 doi: 10.1109/JSTQE.2013.2295712
[49]
Kita T, Nemoto K, Yamada H. Long external cavity Si photonic wavelength tunable laser diode. Jpn J Appl Phys, 2014, 53(4S), 04E doi: 10.7567/JJAP.53.04EG04
[50]
Fan Y, Oldenbeuving R M, Klein E J, et al. A hybrid semiconductor-glass waveguide laser. Laser Sources and Applications II, 2014
[51]
Debregeas H, Ferrari C, Cappuzzo M A, et al. 2kHz linewidth C-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external cavity. 2014 International Semiconductor Laser Conference, 2014, 50
[52]
Kobayashi N, Sato K, Namiwaka M, et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J Lightwave Technol, 2015, 33(6), 1241 doi: 10.1109/JLT.2014.2385106
[53]
Tang R, Kita T, Yamada H. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach-Zehnder interferometer. Opt Lett, 2015, 40(7), 1504 doi: 10.1364/OL.40.001504
[54]
Fan Y, Epping J P, Oldenbeaving R M, et al. Optically integrated InP-Si3N4 hybrid laser. 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), 2016
[55]
Zhao J L, Oldenbeuving R M, Epping J P, et al. Narrow-linewidth widely tunable hybrid external cavity laser using Si3N4/SiO2 microring resonators. IEEE International Conference on Group IV Photonics, 2016
[56]
Kita T, Tang R, Yamada H. Narrow spectral linewidth silicon photonic wavelength tunable laser diode for digital coherent communication system. IEEE J Sel Top Quantum Electron, 2016, 22(6), 23 doi: 10.1109/JSTQE.2016.2559418
[57]
Brian S, Xingchen J, Avik D, et al. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt Lett, 2017, 42(21), 4541 doi: 10.1364/OL.42.004541
[58]
Fan Y, Oldenbeuving R M, Hoekman M, et al. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser. Lasers & Electro-Optics, 2017, JTh5C-9
[59]
Lin Y, Browning C, Timens R B, et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si3N4/SiO2) microring resonators for optical coherent system. IEEE Photonics J, 2018, 10(99), 1 doi: 10.1109/JPHOT.2018.2842026
[60]
Li Y, Zhang Y, Chen H, et al. Tunable self-injected fabry-perot laser diode coupled to an external high-Q Si3N4 /SiO2 microring resonator. J Lightwave Technol, 2018, 36(16), 3269 doi: 10.1109/JLT.2018.2838325
[61]
Zhu Y, Zhu L. Narrow-linewidth, tunable external cavity dual-band diode lasers through InP/GaAs-Si3N4 hybrid integration. Opt Express, 2019, 27(3), 2354 doi: 10.1364/OE.27.002354
[62]
Xiang C, Morton P A, Bowers J E. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating. Opt Lett, 2019, 44(15), 3825 doi: 10.1364/OL.44.003825
[63]
Zhu Y Y, Zeng S W, Zhu L. Optical beam steering by using tunable, narrow-linewidth butt-coupled hybrid lasers in a silicon nitride photonics platform. Photonics Res, 2020, 8(3), 03000375 doi: 10.1364/PRJ.382852
[64]
Fan Y W, van Rees A, Van der Slot P J, et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt Express, 2020, 28(15), 21713 doi: 10.1364/OE.398906
[65]
Hu Y, Cao W, Tang X S, et al. High power, high SMSR and wide tuning range silicon micro-ring tunable laser. Opt Express, 2017, 25(7), 8029 doi: 10.1364/OE.25.008029
[66]
Alalusi M, Brasil P, Lee S, et al. Low noise planar external cavity laser for interferometric fiber optic sensors. Proc SPIE, 2008, 7316
[67]
Park H, Fang A W, Kodama S, et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt Express, 2005, 13(23), 9460 doi: 10.1364/OPEX.13.009460
[68]
Le Liepvre A, Jany C, Accard A, et al. Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique. IEEE International Conference on Group IV Photonics, 2012
[69]
Keyvaninia S, Roelkens G, Van Thourhout D, et al. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt Express, 2013, 21(3), 3784 doi: 10.1364/OE.21.003784
[70]
Hulme J C, Doylend J K, Bowers J E. Widely tunable Vernier ring laser on hybrid silicon. Opt Express, 2013, 21(17), 19718 doi: 10.1364/OE.21.019718
[71]
Komljenovic T, Srinivasan S, Norberg E, et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quantum Electron, 2015, 21(6), 214 doi: 10.1109/JSTQE.2015.2422752
[72]
Komljenovic T, Davenport M, Srinivasan S, et al. Narrow linewidth tunable laser using coupled resonator mirrors. Optical Fiber Communications Conference & Exhibition, 2015
[73]
Liang L, Hulme J, Chao R L, et al. A direct comparison between heterogeneously integrated widely-tunable ring-based laser designs. Optical Fiber Communications Conference & Exhibition, 2017
[74]
Tran M A, Komljenovic T, Huang D, et al. A widely-tunable high-SMSR narrow-linewidth laser heterogeneously integrated on silicon. CLEO: Applications and Technology, 2018
[75]
Huang D, Tran M A, Guo J, et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 2019, 6(6), 745 doi: 10.1364/OPTICA.6.000745
[76]
Tran M A, Huang D, Guo J, et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J Sel Top Quantum Electron, 2019, 26(2), 1 doi: 10.1109/JSTQE.2019.2935274
[77]
Aoyama K, Kobayashi S, Wada M, et al. Compact narrow-linewidth optical negative feedback laser with Si optical filter. Appl Phys Express, 2018, 11(11), 112703 doi: 10.7567/APEX.11.112703
[78]
D’Agostino, Domenico, Carnicella G, et al. Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc. Opt Express, 2015, 23(19), 25143 doi: 10.1364/OE.23.025143
[79]
Andreou S, Williams K A, Bente E A J M. Monolithically integrated InP-based DBR lasers with an intra-cavity ring resonator. Opt Express, 2019, 27(19), 26281 doi: 10.1364/OE.27.026281
[80]
Wang J, Zhan R Y, Qiu B C, et al. Design of high-Q compact passive ring resonators via incorporating a loss-compensated structure for high performance angular velocity sensing in monolithic integrated-optical-gyroscopes. IEEE Sens J, 2017, 17(1), 84 doi: 10.1109/JSEN.2016.2624510
[81]
Luo C C, Wang J, Qiu B C, et al. Gain spectral narrowing of semiconductor laser based on dual-core vertical coupler structure. Opt Commun, 2020, 474, 126166 doi: 10.1016/j.optcom.2020.126166
[82]
Zhang R Y. Ring cavity device and its fabrication method thereof. USA Patent, US20160131926, 2016
[83]
Zhang R Y. Narrow linewidth laser. Chinese Patent, CN108075354A, 2016
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3447 Times PDF downloads: 279 Times Cited by: 0 Times

    History

    Received: 30 September 2020 Revised: 04 November 2020 Online: Uncorrected proof: 30 December 2020Accepted Manuscript: 30 December 2020Published: 12 April 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chanchan Luo, Ruiying Zhang, Bocang Qiu, Wei Wang. Waveguide external cavity narrow linewidth semiconductor lasers[J]. Journal of Semiconductors, 2021, 42(4): 041308. doi: 10.1088/1674-4926/42/4/041308 C C Luo, R Y Zhang, B C Qiu, W Wang, Waveguide external cavity narrow linewidth semiconductor lasers[J]. J. Semicond., 2021, 42(4): 041308. doi: 10.1088/1674-4926/42/4/041308.Export: BibTex EndNote
      Citation:
      Chanchan Luo, Ruiying Zhang, Bocang Qiu, Wei Wang. Waveguide external cavity narrow linewidth semiconductor lasers[J]. Journal of Semiconductors, 2021, 42(4): 041308. doi: 10.1088/1674-4926/42/4/041308

      C C Luo, R Y Zhang, B C Qiu, W Wang, Waveguide external cavity narrow linewidth semiconductor lasers[J]. J. Semicond., 2021, 42(4): 041308. doi: 10.1088/1674-4926/42/4/041308.
      Export: BibTex EndNote

      Waveguide external cavity narrow linewidth semiconductor lasers

      doi: 10.1088/1674-4926/42/4/041308
      More Information
      • Author Bio:

        Chanchan Luo was born in Zhangjiajie, China. She has been taking successive postgraduate and doctoral programs of study for Ph.D. degree from the University of Science and Technology of China since September 2017. Her research includes the design, simulation, testing and analysis of III–V optoelectronic device

        Ruiying Zhang is professor of Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS). She was graduated from Institute of Semiconductors, CAS in 2002. Currently, her research interests focuses on narrow linewidth semiconductor lasers and their application in sensing and communications. Dr. Zhang authored or co-authored more than 60 scientific papers and holds 18 patents

        Bocang Qiu is currently a professor at the Shaanxi University of Science and Technology. His research has been focusing on modeling, design and fabrication of various photonics devices since 1994. He is author or co-author of more than 120 journal and conference papers, and holds 18 patents

        Wei Wang is professor of Institute of Semiconductor, Chinese Academy of Sciences. He was graduated from Department of Physics, Beijing University in 1960. His research interests include DFB lasers, VCSEL, electro-absorption modulated lasers and other InP based Photonic Integrated Circuits. Professor Wang is an elected Academician of Chinese Academy of Sciences

      • Corresponding author: ryzhang2008@sinano.ac.cn
      • Received Date: 2020-09-30
      • Revised Date: 2020-11-04
      • Published Date: 2021-04-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return