COMMENTS AND OPINIONS

All-polymer solar cells

Baoqi Wu1, Bingyan Yin1, Chunhui Duan1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Chunhui Duan, duanchunhui@scut.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[2]
Lin Y, Firdaus Y, Isikgor F H, et al. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett, 2020, 5, 2935 doi: 10.1021/acsenergylett.0c01421
[3]
Lin Y, Nugraha M I, Firdaus Y, et al. A simple n-dopant derived from diquat boosts the efficiency of organic solar cells to 18.3%. ACS Energy Lett, 2020, 5, 3663 doi: 10.1021/acsenergylett.0c01949
[4]
Zhang M, Zhu L, Zhou G, et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat Commun, 2021, 12, 309 doi: 10.1038/s41467-020-20580-8
[5]
Zhan L, Li S, Xia X, et al. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv Mater, 2021, 33, 2007231 doi: 10.1002/adma.202007231
[6]
Lin Y, Magomedov A, Firdaus Y, et al. 18.4% organic solar cells using a high ionization energy self-assembled monolayer as hole extraction interlayer. ChemSusChem, 2021, in press doi: 10.1002/cssc.202100707
[7]
Lee C, Lee S, Kim G U, et al. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem Rev, 2019, 119, 8028 doi: 10.1021/acs.chemrev.9b00044
[8]
Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548 doi: 10.1016/j.joule.2021.04.007
[9]
Liu T, Yang T, Ma R, et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914 doi: 10.1016/j.joule.2021.02.002
[10]
Ma R, Yu J, Liu T, et al. All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2021, in press doi: 10.1002/agt2.58
[11]
Jia T, Zhang J, Zhang K, et al. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3',2': 3,4;2",3": 5,6]benzo[1,2c][1,2,5]thiadiazole (fDTBT)-based polymer donor. J Mater Chem A, 2021, 9, 8975 doi: 10.1039/D1TA00838B
[12]
Fu H, Li Y, Yu J, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J Am Chem Soc, 2021, 143, 2665 doi: 10.1021/jacs.0c12527
[13]
Duan C, Ding L. The new era for organic solar cells: polymer acceptors. Sci Bull, 2020, 65, 1508 doi: 10.1016/j.scib.2020.05.023
[14]
Yang J, Xiao B, Tang A, et al. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv Mater, 2019, 31, 1804699 doi: 10.1002/adma.201804699
[15]
Genene Z, Mammo W, Wang E, et al. Recent advances in n-type polymers for all-polymer solar cells. Adv Mater, 2019, 31, 1807275 doi: 10.1002/adma.201807275
[16]
Wang G, Melkonyan F S, Facchetti A, et al. All-polymer solar cells: recent progress, challenges, and prospects. Angew Chem Int Ed, 2019, 58, 4129 doi: 10.1002/anie.201808976
[17]
Sun H, Wang L, Wang Y, et al. Imide-functionalized polymer semiconductors. Chem Eur J, 2019, 25, 87 doi: 10.1002/chem.201803605
[18]
Shi Q, Wu J, Wu X, et al. Perylene diimide-based conjugated polymers for all-polymer solar cells. Chem Eur J, 2020, 26, 12510 doi: 10.1002/chem.202001011
[19]
Gao L, Zhang Z G, Xue L, et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv Mater, 2016, 28, 1884 doi: 10.1002/adma.201504629
[20]
Fan B, Ying L, Wang Z, et al. Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy Environ Sci, 2017, 10, 1243 doi: 10.1039/C7EE00619E
[21]
Liu X, Zou Y, Wang H Q, et al. High-performance all-polymer solar cells with a high fill factor and a broad tolerance to the donor/acceptor ratio. ACS Appl Mater Interfaces, 2018, 10, 38302 doi: 10.1021/acsami.8b15028
[22]
Zhu L, Zhong W, Qiu C, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv Mater, 2019, 31, 1902899 doi: 10.1002/adma.201902899
[23]
Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457, 679 doi: 10.1038/nature07727
[24]
Lee J W, Sung M J, Kim D, et al. Naphthalene diimide-based terpolymers with controlled crystalline properties for producing high electron mobility and optimal blend morphology in all-polymer solar cells. Chem Mater, 2020, 32, 2572 doi: 10.1021/acs.chemmater.0c00055
[25]
Wu Y, Schneider S, Walter C, et al. Fine-tuning semiconducting polymer self-aggregation and crystallinity enables optimal morphology and high-performance printed all-polymer solar cells. J Am Chem Soc, 2020, 142, 392 doi: 10.1021/jacs.9b10935
[26]
Lee J W, Choi N, Kim D, et al. Side chain engineered naphthalene diimide-based terpolymer for efficient and mechanically robust all-polymer solar cells. Chem Mater, 2021, 33, 1070 doi: 10.1021/acs.chemmater.0c04721
[27]
Tran D K, Kolhe N B, Hwang Y J, et al. Effects of a fluorinated donor polymer on the morphology, photophysics, and performance of all-polymer solar cells based on naphthalene diimide-arylene copolymer acceptors. ACS Appl Mater Interfaces, 2020, 12, 16490 doi: 10.1021/acsami.0c01382
[28]
Li Z, Ying L, Zhu P, et al. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ Sci, 2019, 12, 157 doi: 10.1039/C8EE02863J
[29]
Liu X, Li X, Wang L, et al. Synergistic effects of the processing solvent and additive on the production of efficient all-polymer solar cells. Nanoscale, 2020, 12, 4945 doi: 10.1039/C9NR10495J
[30]
Seo S, Kim J, Kang H, et al. Polymer donors with temperature-insensitive, strong aggregation properties enabling additive-free, processing temperature-tolerant high-performance all-polymer solar cells. Macromolecules, 2020, 54, 53 doi: 10.1021/acs.macromol.0c02496
[31]
Xie B, Zhang K, Hu Z, et al. Polymer pre-aggregation enables optimal morphology and high performance in all-polymer solar cells. Sol RRL, 2019, 4, 1900385 doi: 10.1002/solr.201900385
[32]
Zhang Y, Xu Y, Ford M J, et al. Thermally stable all-polymer solar cells with high tolerance on blend ratios. Adv Energy Mater, 2018, 8, 1800029 doi: 10.1002/aenm.201800029
[33]
Kim M, Kim H I, Ryu S U, et al. Improving the photovoltaic performance and mechanical stability of flexible all-polymer solar cells via tailoring intermolecular interactions. Chem Mater, 2019, 31, 5047 doi: 10.1021/acs.chemmater.9b00639
[34]
Liu X, Zhang C, Duan C, et al. Morphology optimization via side chain engineering enables all-polymer solar cells with excellent fill factor and stability. J Am Chem Soc, 2018, 140, 8934 doi: 10.1021/jacs.8b05038
[35]
Dou C, Ding Z, Zhang Z, et al. Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit. Angew Chem Int Ed, 2015, 54, 3648 doi: 10.1002/anie.201411973
[36]
Li Y, Meng H, Liu T, et al. 8.78% efficient all-polymer solar cells enabled by polymer acceptors based on a B←N embedded electron-deficient unit. Adv Mater, 2019, 31, 1904585 doi: 10.1002/adma.201904585
[37]
Zhao R, Wang N, Yu Y, et al. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem Mater, 2020, 32, 1308 doi: 10.1021/acs.chemmater.9b04997
[38]
Shi S, Chen P, Chen Y, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Adv Mater, 2019, 31, 1905161 doi: 10.1002/adma.201905161
[39]
Feng K, Huang J, Zhang X, et al. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV. Adv Mater, 2020, 32, 2001476 doi: 10.1002/adma.202001476
[40]
Zhao R, Liu J, Wang L. Polymer acceptors containing B←N units for organic photovoltaics. Acc Chem Res, 2020, 53, 1557 doi: 10.1021/acs.accounts.0c00281
[41]
Xu X, Feng K, Yu L, et al. Highly efficient all-polymer solar cells enabled by p-doping of the polymer donor. ACS Energy Lett, 2020, 5, 2434 doi: 10.1021/acsenergylett.0c01010
[42]
Zhang Z G, Yang Y, Yao J, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew Chem Int Ed, 2017, 56, 13503 doi: 10.1002/anie.201707678
[43]
Jia T, Zhang J, Zhong W, et al. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy, 2020, 72, 104718 doi: 10.1016/j.nanoen.2020.104718
[44]
Zhang Z G, Li Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew Chem Int Ed, 2021, 60, 4422 doi: 10.1002/anie.202009666
[45]
Meng Y, Wu J, Guo X, et al. 11.2% efficiency all-polymer solar cells with high open-circuit voltage. Sci China Chem, 2019, 62, 845 doi: 10.1007/s11426-019-9466-6
[46]
Peng F, An K, Zhong W, et al. A universal fluorinated polymer acceptor enables all-polymer solar cells with > 15% efficiency. ACS Energy Lett, 2020, 5, 3702 doi: 10.1021/acsenergylett.0c02053
[47]
Sun H, Yu H, Shi Y, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Adv Mater, 2020, 32, 2004183 doi: 10.1002/adma.202004183
[48]
Fan Q, An Q, Lin Y, et al. Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy Environ Sci, 2020, 13, 5017 doi: 10.1039/D0EE01828G
[49]
Su N, Ma R, Li G, et al. High-efficiency all-polymer solar cells with poly-small-molecule acceptors having π-extended units with broad near-IR absorption. ACS Energy Lett, 2021, 6, 728 doi: 10.1021/acsenergylett.1c00009
[50]
Wang H, Chen H, Xie W, et al. Configurational isomers induced significant difference in all-polymer solar cells. Adv Funct Mater, 2021, 31, 2100877 doi: 10.1002/adfm.202100877
[51]
Wang W, Wu Q, Sun R, et al. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule, 2020, 4, 1070 doi: 10.1016/j.joule.2020.03.019
[52]
Zhang L, Jia T, Pan L, et al. 15.4% efficiency all-polymer solar cells. Sci China Chem, 2021, 64, 408 doi: 10.1007/s11426-020-9935-2
[53]
Yu H, Qi Z, Yu J, et al. Fluorinated end group enables high-performance all-polymer solar cells with near-infrared absorption and enhanced device efficiency over 14%. Adv Energy Mater, 2020, 11, 2003171 doi: 10.1002/aenm.202003171
[54]
Wu Q, Wang W, Wu Y, et al. High-performance all-polymer solar cells with a pseudo-bilayer configuration enabled by a stepwise optimization strategy. Adv Funct Mater, 2021, 31, 2010411 doi: 10.1002/adfm.202010411
[55]
Yu H, Pan M, Sun R, et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angew Chem Int Ed, 2021, 60, 10137 doi: 10.1002/anie.202016284
[56]
Luo Z, Liu T, Ma R, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%. Adv Mater, 2020, 32, 2005942 doi: 10.1002/adma.202005942
[57]
Zhu X, Hu L, Wang W, et al. Reversible chemical reactivity of non-fullerene acceptors for organic solar cells under acidic and basic environment. ACS Appl Energy Mater, 2019, 2, 7602 doi: 10.1021/acsaem.9b01591
[58]
Guo J, Wu Y, Sun R, et al. Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. J Mater Chem A, 2019, 7, 25088 doi: 10.1039/C9TA09961A
[59]
Lv R, Geng S, Li S, et al. Influences of quinoid structures on stability and photovoltaic performance of nonfullerene acceptors. Sol RRL, 2020, 4, 2000286 doi: 10.1002/solr.202000286
[60]
Liu H, Wang W, Zhou Y, et al. A ring-locking strategy to enhance the chemical and photochemical stability of A–D–A-type non-fullerene acceptors. J Mater Chem A, 2021, 9, 1080 doi: 10.1039/D0TA09924D
[61]
McNeill C R. Morphology of all-polymer solar cells. Energy Environ Sci, 2012, 5, 5653 doi: 10.1039/c2ee03071c
[62]
Xu Y, Yuan J, Liang S, et al. Simultaneously improved efficiency and stability in all-polymer solar cells by a P–i–N architecture. ACS Energy Lett, 2019, 4, 2277 doi: 10.1021/acsenergylett.9b01459
[63]
Li N, McCulloch I, Brabec C J. Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ Sci, 2018, 11, 1355 doi: 10.1039/C8EE00151K
[64]
Kim T, Kim J H, Kang T E, et al. Flexible, highly efficient all-polymer solar cells. Nat Commun, 2015, 6, 8547 doi: 10.1038/ncomms9547
[65]
Chen S, Jung S, Cho H J, et al. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices. Angew Chem Int Ed, 2018, 57, 13277 doi: 10.1002/anie.201807513
[66]
Fan Q, Su W, Chen S, et al. Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule, 2020, 4, 658 doi: 10.1016/j.joule.2020.01.014
Fig. 1.  Chemical structures of the polymer acceptors.

Fig. 2.  Chemical structures of the polymer donors.

Fig. 3.  (Color online) Atomic force microscopy (AFM) height (first row) and phase (second row) images, scanning near-field optical microscopy (SNOM) images (third row), and transmission electron microscopy (TEM) images (fourth row) for PTzBI-Si:N2200 blend films processed under different conditions. Reproduced with permission[22], Copyright 2019, John Wiley and Sons.

Fig. 4.  (Color online) (a) Normalized PCEs as a function of light-soaking time. (b) The performance versus T80 lifetimes of PSCs reported so far. (c) Normalized PCEs for the devices under continuous illumination in a nitrogen glovebox at 65 °C. Reproduced with permission[8], Copyright 2021, Elsevier.

Fig. 5.  (a) Synthetic route of PDPS. (b) The stress-strain curves and (c) corresponding elastic modulus and integrated toughness values for the blend films with different PDPS content. (i) 0PDPS (0% PDPS), (ii) 10PDPS (10% PDPS), (iii) 20PDPS (20% PDPS), (iv) 50PDPS (50% PDPS). (d) The different bending for the blend films on PET substrate. (e) PCEs for 0PDPS and 10PDPS based flexible all-PSCs (bending radius 3 mm). Reproduced with permission[65], Copyright 2018, John Wiley and Sons.

Table 1.   Performance data for all-PSCs.

AcceptorDonorVoc
(V)
Jsc
(mA/cm2)
FFPCE
(%)
Ref.
N2200PTzBI-Si0.8817.60.7611.76[22]
NOE10PBDT-TAZ0.8412.90.758.10[34]
PBN-12CD11.1713.40.6410.07[37]
DCNBT-TPICPBDTTT-E-T0.7022.50.6510.22[39]
DCNBT-IDTPBDB-T/
PNDT-T
0.9117.50.7411.87[41]
PZ1PM60.9617.10.6811.20[45]
PJ1JD400.9123.20.7515.80[11]
PYTPBDB-T0.8923.00.7415.17[54]
PZT-γPBDB-T0.9024.70.7115.80[12]
PY-IT/BNTPM60.9622.70.7416.09[9]
PY2F-T/PYTPM60.9025.20.7617.20[8]
DownLoad: CSV
[1]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[2]
Lin Y, Firdaus Y, Isikgor F H, et al. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett, 2020, 5, 2935 doi: 10.1021/acsenergylett.0c01421
[3]
Lin Y, Nugraha M I, Firdaus Y, et al. A simple n-dopant derived from diquat boosts the efficiency of organic solar cells to 18.3%. ACS Energy Lett, 2020, 5, 3663 doi: 10.1021/acsenergylett.0c01949
[4]
Zhang M, Zhu L, Zhou G, et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat Commun, 2021, 12, 309 doi: 10.1038/s41467-020-20580-8
[5]
Zhan L, Li S, Xia X, et al. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv Mater, 2021, 33, 2007231 doi: 10.1002/adma.202007231
[6]
Lin Y, Magomedov A, Firdaus Y, et al. 18.4% organic solar cells using a high ionization energy self-assembled monolayer as hole extraction interlayer. ChemSusChem, 2021, in press doi: 10.1002/cssc.202100707
[7]
Lee C, Lee S, Kim G U, et al. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem Rev, 2019, 119, 8028 doi: 10.1021/acs.chemrev.9b00044
[8]
Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548 doi: 10.1016/j.joule.2021.04.007
[9]
Liu T, Yang T, Ma R, et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914 doi: 10.1016/j.joule.2021.02.002
[10]
Ma R, Yu J, Liu T, et al. All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2021, in press doi: 10.1002/agt2.58
[11]
Jia T, Zhang J, Zhang K, et al. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3',2': 3,4;2",3": 5,6]benzo[1,2c][1,2,5]thiadiazole (fDTBT)-based polymer donor. J Mater Chem A, 2021, 9, 8975 doi: 10.1039/D1TA00838B
[12]
Fu H, Li Y, Yu J, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J Am Chem Soc, 2021, 143, 2665 doi: 10.1021/jacs.0c12527
[13]
Duan C, Ding L. The new era for organic solar cells: polymer acceptors. Sci Bull, 2020, 65, 1508 doi: 10.1016/j.scib.2020.05.023
[14]
Yang J, Xiao B, Tang A, et al. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv Mater, 2019, 31, 1804699 doi: 10.1002/adma.201804699
[15]
Genene Z, Mammo W, Wang E, et al. Recent advances in n-type polymers for all-polymer solar cells. Adv Mater, 2019, 31, 1807275 doi: 10.1002/adma.201807275
[16]
Wang G, Melkonyan F S, Facchetti A, et al. All-polymer solar cells: recent progress, challenges, and prospects. Angew Chem Int Ed, 2019, 58, 4129 doi: 10.1002/anie.201808976
[17]
Sun H, Wang L, Wang Y, et al. Imide-functionalized polymer semiconductors. Chem Eur J, 2019, 25, 87 doi: 10.1002/chem.201803605
[18]
Shi Q, Wu J, Wu X, et al. Perylene diimide-based conjugated polymers for all-polymer solar cells. Chem Eur J, 2020, 26, 12510 doi: 10.1002/chem.202001011
[19]
Gao L, Zhang Z G, Xue L, et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv Mater, 2016, 28, 1884 doi: 10.1002/adma.201504629
[20]
Fan B, Ying L, Wang Z, et al. Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy Environ Sci, 2017, 10, 1243 doi: 10.1039/C7EE00619E
[21]
Liu X, Zou Y, Wang H Q, et al. High-performance all-polymer solar cells with a high fill factor and a broad tolerance to the donor/acceptor ratio. ACS Appl Mater Interfaces, 2018, 10, 38302 doi: 10.1021/acsami.8b15028
[22]
Zhu L, Zhong W, Qiu C, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv Mater, 2019, 31, 1902899 doi: 10.1002/adma.201902899
[23]
Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457, 679 doi: 10.1038/nature07727
[24]
Lee J W, Sung M J, Kim D, et al. Naphthalene diimide-based terpolymers with controlled crystalline properties for producing high electron mobility and optimal blend morphology in all-polymer solar cells. Chem Mater, 2020, 32, 2572 doi: 10.1021/acs.chemmater.0c00055
[25]
Wu Y, Schneider S, Walter C, et al. Fine-tuning semiconducting polymer self-aggregation and crystallinity enables optimal morphology and high-performance printed all-polymer solar cells. J Am Chem Soc, 2020, 142, 392 doi: 10.1021/jacs.9b10935
[26]
Lee J W, Choi N, Kim D, et al. Side chain engineered naphthalene diimide-based terpolymer for efficient and mechanically robust all-polymer solar cells. Chem Mater, 2021, 33, 1070 doi: 10.1021/acs.chemmater.0c04721
[27]
Tran D K, Kolhe N B, Hwang Y J, et al. Effects of a fluorinated donor polymer on the morphology, photophysics, and performance of all-polymer solar cells based on naphthalene diimide-arylene copolymer acceptors. ACS Appl Mater Interfaces, 2020, 12, 16490 doi: 10.1021/acsami.0c01382
[28]
Li Z, Ying L, Zhu P, et al. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ Sci, 2019, 12, 157 doi: 10.1039/C8EE02863J
[29]
Liu X, Li X, Wang L, et al. Synergistic effects of the processing solvent and additive on the production of efficient all-polymer solar cells. Nanoscale, 2020, 12, 4945 doi: 10.1039/C9NR10495J
[30]
Seo S, Kim J, Kang H, et al. Polymer donors with temperature-insensitive, strong aggregation properties enabling additive-free, processing temperature-tolerant high-performance all-polymer solar cells. Macromolecules, 2020, 54, 53 doi: 10.1021/acs.macromol.0c02496
[31]
Xie B, Zhang K, Hu Z, et al. Polymer pre-aggregation enables optimal morphology and high performance in all-polymer solar cells. Sol RRL, 2019, 4, 1900385 doi: 10.1002/solr.201900385
[32]
Zhang Y, Xu Y, Ford M J, et al. Thermally stable all-polymer solar cells with high tolerance on blend ratios. Adv Energy Mater, 2018, 8, 1800029 doi: 10.1002/aenm.201800029
[33]
Kim M, Kim H I, Ryu S U, et al. Improving the photovoltaic performance and mechanical stability of flexible all-polymer solar cells via tailoring intermolecular interactions. Chem Mater, 2019, 31, 5047 doi: 10.1021/acs.chemmater.9b00639
[34]
Liu X, Zhang C, Duan C, et al. Morphology optimization via side chain engineering enables all-polymer solar cells with excellent fill factor and stability. J Am Chem Soc, 2018, 140, 8934 doi: 10.1021/jacs.8b05038
[35]
Dou C, Ding Z, Zhang Z, et al. Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit. Angew Chem Int Ed, 2015, 54, 3648 doi: 10.1002/anie.201411973
[36]
Li Y, Meng H, Liu T, et al. 8.78% efficient all-polymer solar cells enabled by polymer acceptors based on a B←N embedded electron-deficient unit. Adv Mater, 2019, 31, 1904585 doi: 10.1002/adma.201904585
[37]
Zhao R, Wang N, Yu Y, et al. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem Mater, 2020, 32, 1308 doi: 10.1021/acs.chemmater.9b04997
[38]
Shi S, Chen P, Chen Y, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Adv Mater, 2019, 31, 1905161 doi: 10.1002/adma.201905161
[39]
Feng K, Huang J, Zhang X, et al. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV. Adv Mater, 2020, 32, 2001476 doi: 10.1002/adma.202001476
[40]
Zhao R, Liu J, Wang L. Polymer acceptors containing B←N units for organic photovoltaics. Acc Chem Res, 2020, 53, 1557 doi: 10.1021/acs.accounts.0c00281
[41]
Xu X, Feng K, Yu L, et al. Highly efficient all-polymer solar cells enabled by p-doping of the polymer donor. ACS Energy Lett, 2020, 5, 2434 doi: 10.1021/acsenergylett.0c01010
[42]
Zhang Z G, Yang Y, Yao J, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew Chem Int Ed, 2017, 56, 13503 doi: 10.1002/anie.201707678
[43]
Jia T, Zhang J, Zhong W, et al. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy, 2020, 72, 104718 doi: 10.1016/j.nanoen.2020.104718
[44]
Zhang Z G, Li Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew Chem Int Ed, 2021, 60, 4422 doi: 10.1002/anie.202009666
[45]
Meng Y, Wu J, Guo X, et al. 11.2% efficiency all-polymer solar cells with high open-circuit voltage. Sci China Chem, 2019, 62, 845 doi: 10.1007/s11426-019-9466-6
[46]
Peng F, An K, Zhong W, et al. A universal fluorinated polymer acceptor enables all-polymer solar cells with > 15% efficiency. ACS Energy Lett, 2020, 5, 3702 doi: 10.1021/acsenergylett.0c02053
[47]
Sun H, Yu H, Shi Y, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Adv Mater, 2020, 32, 2004183 doi: 10.1002/adma.202004183
[48]
Fan Q, An Q, Lin Y, et al. Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy Environ Sci, 2020, 13, 5017 doi: 10.1039/D0EE01828G
[49]
Su N, Ma R, Li G, et al. High-efficiency all-polymer solar cells with poly-small-molecule acceptors having π-extended units with broad near-IR absorption. ACS Energy Lett, 2021, 6, 728 doi: 10.1021/acsenergylett.1c00009
[50]
Wang H, Chen H, Xie W, et al. Configurational isomers induced significant difference in all-polymer solar cells. Adv Funct Mater, 2021, 31, 2100877 doi: 10.1002/adfm.202100877
[51]
Wang W, Wu Q, Sun R, et al. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule, 2020, 4, 1070 doi: 10.1016/j.joule.2020.03.019
[52]
Zhang L, Jia T, Pan L, et al. 15.4% efficiency all-polymer solar cells. Sci China Chem, 2021, 64, 408 doi: 10.1007/s11426-020-9935-2
[53]
Yu H, Qi Z, Yu J, et al. Fluorinated end group enables high-performance all-polymer solar cells with near-infrared absorption and enhanced device efficiency over 14%. Adv Energy Mater, 2020, 11, 2003171 doi: 10.1002/aenm.202003171
[54]
Wu Q, Wang W, Wu Y, et al. High-performance all-polymer solar cells with a pseudo-bilayer configuration enabled by a stepwise optimization strategy. Adv Funct Mater, 2021, 31, 2010411 doi: 10.1002/adfm.202010411
[55]
Yu H, Pan M, Sun R, et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angew Chem Int Ed, 2021, 60, 10137 doi: 10.1002/anie.202016284
[56]
Luo Z, Liu T, Ma R, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%. Adv Mater, 2020, 32, 2005942 doi: 10.1002/adma.202005942
[57]
Zhu X, Hu L, Wang W, et al. Reversible chemical reactivity of non-fullerene acceptors for organic solar cells under acidic and basic environment. ACS Appl Energy Mater, 2019, 2, 7602 doi: 10.1021/acsaem.9b01591
[58]
Guo J, Wu Y, Sun R, et al. Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. J Mater Chem A, 2019, 7, 25088 doi: 10.1039/C9TA09961A
[59]
Lv R, Geng S, Li S, et al. Influences of quinoid structures on stability and photovoltaic performance of nonfullerene acceptors. Sol RRL, 2020, 4, 2000286 doi: 10.1002/solr.202000286
[60]
Liu H, Wang W, Zhou Y, et al. A ring-locking strategy to enhance the chemical and photochemical stability of A–D–A-type non-fullerene acceptors. J Mater Chem A, 2021, 9, 1080 doi: 10.1039/D0TA09924D
[61]
McNeill C R. Morphology of all-polymer solar cells. Energy Environ Sci, 2012, 5, 5653 doi: 10.1039/c2ee03071c
[62]
Xu Y, Yuan J, Liang S, et al. Simultaneously improved efficiency and stability in all-polymer solar cells by a P–i–N architecture. ACS Energy Lett, 2019, 4, 2277 doi: 10.1021/acsenergylett.9b01459
[63]
Li N, McCulloch I, Brabec C J. Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ Sci, 2018, 11, 1355 doi: 10.1039/C8EE00151K
[64]
Kim T, Kim J H, Kang T E, et al. Flexible, highly efficient all-polymer solar cells. Nat Commun, 2015, 6, 8547 doi: 10.1038/ncomms9547
[65]
Chen S, Jung S, Cho H J, et al. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices. Angew Chem Int Ed, 2018, 57, 13277 doi: 10.1002/anie.201807513
[66]
Fan Q, Su W, Chen S, et al. Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule, 2020, 4, 658 doi: 10.1016/j.joule.2020.01.014
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2394 Times PDF downloads: 141 Times Cited by: 0 Times

    History

    Received: 19 June 2021 Revised: Online: Accepted Manuscript: 23 June 2021Uncorrected proof: 25 June 2021Published: 01 August 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Baoqi Wu, Bingyan Yin, Chunhui Duan, Liming Ding. All-polymer solar cells[J]. Journal of Semiconductors, 2021, 42(8): 080301. doi: 10.1088/1674-4926/42/8/080301 B Q Wu, B Y Yin, C H Duan, L M Ding, All-polymer solar cells[J]. J. Semicond., 2021, 42(8): 080301. doi: 10.1088/1674-4926/42/8/080301.Export: BibTex EndNote
      Citation:
      Baoqi Wu, Bingyan Yin, Chunhui Duan, Liming Ding. All-polymer solar cells[J]. Journal of Semiconductors, 2021, 42(8): 080301. doi: 10.1088/1674-4926/42/8/080301

      B Q Wu, B Y Yin, C H Duan, L M Ding, All-polymer solar cells[J]. J. Semicond., 2021, 42(8): 080301. doi: 10.1088/1674-4926/42/8/080301.
      Export: BibTex EndNote

      All-polymer solar cells

      doi: 10.1088/1674-4926/42/8/080301
      More Information
      • Author Bio:

        Baoqi Wu is currently a PhD candidate under the supervision of Prof. Chunhui Duan at South China University of Technology. He received his MS from Xiangtan University in 2018. His research focuses on polymer acceptors

        Bingyan Yin is currently a PhD candidate under the supervision of Prof. Chunhui Duan at South China University of Technology. She received her BS from South China University of Technology and MS from Sichuan University in 2017 and 2020, respectively. Her research focuses on organic solar cells and near-infrared organic photodetectors

        Chunhui Duan is a full professor in Department of Materials Science & Engineering, South China University of Technology. He received his BS from Dalian University of Technology in 2008 and PhD from South China University of Technology in 2013. After a postdoc training in Eindhoven University of Technology, he joined South China University of Technology in 2017. His research focuses on conjugated materials and their applications in optoelectronic devices including solar cells, photodetectors and transistors

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors

      • Corresponding author: duanchunhui@scut.edu.cnding@nanoctr.cn
      • Received Date: 2021-06-19
      • Published Date: 2021-08-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return