ARTICLES

Extensive study of optical contrast between bulk and nanoscale transition metal dichalcogenide semiconductors

Ankush Parmar1, Jashangeet Kaur2, , Manish Dev Sharma1 and Navdeep Goyal1

+ Author Affiliations

 Corresponding author: Jashangeet Kaur, jashan2191@yahoo.com

PDF

Turn off MathJax

Abstract: A remarkable refinement in the optical behavior of two-dimensional transition metal dichalcogenides (TMDs) has been brought to light when cleaved from their respective bulks. These atomically thin direct bandgap semiconductors are highly responsive to optical energy which proposes the route for futuristic photonic devices. In this manuscript, we have substantially focused on the optical study of MoS2 and WS2 nanosheets and comparative analysis with their bulk counterparts. The synthesis of nanosheets has been accomplished with liquid exfoliation followed by fabrication of thin films with drop-casting technique. X-ray diffraction and field emission scanning electron microscopy affirmed the morphology, whereas, UV–visible spectroscopy served as the primary tool for optical analysis. It was observed that several parameters, like optical conductivity, optical band-gap energy etc. have enhanced statistics in the case of exfoliated nanosheets as compared to their respective bulks. Some researchers have touched upon this analysis for MoS2, but it is completely novel for WS2. We expect our work to clearly distinguish between the optical behaviors of nanoscale and bulk TMDs so as to intensify and strengthen the research related to 2D-layered materials for optoelectronic and photovoltaic applications.

Key words: transition metal dichalcogenides2D layered materialsoptical propertiesliquid phase exfoliationthin filmsdrop-casting



[1]
Gan X R, Zhao H M, Quan X. Two-dimensional MoS2: A promising building block for biosensors. Biosens Bioelectron, 2017, 89, 56 doi: 10.1016/j.bios.2016.03.042
[2]
Deb S, Chakrabarti P, Mohapatra P K, et al. Tailoring of defect luminescence in CVD grown monolayer MoS2 film. Appl Surf Sci, 2018, 445, 542 doi: 10.1016/j.apsusc.2018.03.165
[3]
Sekine T, Julien C, Samaras I, et al. Vibrational modifications on lithium intercalation in MoS2. Mater Sci Eng B, 1989, 3, 153 doi: 10.1016/0921-5107(89)90195-5
[4]
Kelly A G, Vega-Mayoral V, Boland J B, et al. Whiskey-phase exfoliation: Exfoliation and printing of nanosheets using Irish whiskey. 2D Mater, 2019, 6, 045036 doi: 10.1088/2053-1583/ab3892
[5]
Wang Q, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7, 699 doi: 10.1038/nnano.2012.193
[6]
Ji S S, Yang Z, Zhang C, et al. Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution. Electrochimica Acta, 2013, 109, 269 doi: 10.1016/j.electacta.2013.07.094
[7]
Tudorache F, Popa P D, Dobromir M, et al. Studies on the structure and gas sensing properties of nickel-cobalt ferrite thin films prepared by spin coating. Mater Sci Eng B, 2013, 178, 1334 doi: 10.1016/j.mseb.2013.03.019
[8]
Vikraman D, Hussain S, Truong L, et al. Fabrication of MoS2/WSe2 heterostructures as electrocatalyst for enhanced hydrogen evolution reaction. Appl Surf Sci, 2019, 480, 611 doi: 10.1016/j.apsusc.2019.02.236
[9]
Yim C, O'Brien M, McEvoy N, et al. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl Phys Lett, 2014, 104, 103114 doi: 10.1063/1.4868108
[10]
Reshak A H, Auluck S. Calculated optical properties of 2H-MoS2 intercalated with lithium. Phys Rev B, 2003, 68, 125101 doi: 10.1103/PhysRevB.68.125101
[11]
Kaur J, Parmar A, Tripathi S K, et al. Optical Study of Ge1Sb2Te4 and GeSbTe thin films. Mater Res Express, 2019, 6, 046417 doi: 10.1088/2053-1591/aafc03
[12]
Saha N, Sarkar A, Ghosh A B, et al. Highly active spherical amorphous MoS2: Facile synthesis and application in photocatalytic degradation of rose Bengal dye and hydrogenation of nitroarenes. RSC Adv, 2015, 5, 88848 doi: 10.1039/C5RA19442C
[13]
Çabuk S, Mamedov A. Urbach rule and optical properties of the LiNbO3 and LiTaO3. J Opt A, 1999, 1, 424 doi: 10.1088/1464-4258/1/3/313
[14]
Galeczki G. Wemple-didomenico plots for the refractive index of PbTe. Infrared Phys, 1991, 31, 215 doi: 10.1016/0020-0891(91)90049-L
[15]
Jha R, Santra S, Guha P K. Green synthesis route for WS2 nanosheets using water intercalation. Mater Res Express, 2016, 3, 095014 doi: 10.1088/2053-1591/3/9/095014
[16]
Tian X J, Wu J Y, Li Q, et al. Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide. J Mater Sci, 2018, 53, 7258 doi: 10.1007/s10853-018-2053-6
[17]
Dong N N, Li Y X, Feng Y Y, et al. Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets. Sci Rep, 2015, 5, 14646 doi: 10.1038/srep14646
[18]
Yasmeen S, Iqbal F, Munawar T, et al. Synthesis, structural and optical analysis of surfactant assisted ZnO-NiO nanocomposites prepared by homogeneous precipitation method. Ceram Int, 2019, 45, 17859 doi: 10.1016/j.ceramint.2019.06.001
[19]
Devangamath S S, Lobo B. Optical parameters of epoxy-CoSO4·7H2O polymer hybrid material. Mater Res Innov, 2020, 24, 152 doi: 10.1080/14328917.2019.1619272
[20]
Kaur J, Parmar A, Tripathi S K, et al. Temperature-dependent opto-electronic properties of Ge2.53Sb4.89Te2.50 thin films. Phase Transitions, 2020, 93, 134 doi: 10.1080/01411594.2019.1687894
Fig. 1.  (Color online) Schematic diagram for synthesis of nanosheets and fabrication of thin films.

Fig. 2.  (Color online) Represents efficient exfoliation of bulk TMDs through (a) XRD spectra of MoS2, (b, c) FESEM of M_bulk and M_exfoliated, and (d) UV–visible spectra of all samples.

Fig. 3.  (Color online) Variation of (a) absorption coefficient, (b) extinction coefficient, and (c) refractive index with incident energy for all the samples.

Fig. 4.  (Color online) Tauc plot for (a) M_bulk, M_exfoliated and (b) W_bulk, W_exfoliated.

Fig. 5.  (Color online) Variation of (a) real part and (b) imaginary part of dielectric constant with incident energy for all samples. WDM plots for (c) M_bulk, M_exfoliated and (d) W_bulk, W_exfoliated.

Table 1.   Optical band gap (Eg(opt)) and Urbach energy (Eu) for all the samples.

SampleEg(opt) (eV)Eu (eV)
M_bulk1.299.78
M_exfoliated1.910.57
W_bulk1.365.31
W_exfoliated2.000.61
DownLoad: CSV

Table 2.   Dispersion energy and oscillator energy parameters for all the samples.

SampleEo (eV)Ed (eV)So (10–5)λo (nm)εnoM–1M–3
M_bulk2.5571.1611.5249.321.0361.01427.914.30
M_exfoliated4.0591.3324.590.721.0441.02222.551.38
W_bulk0.9019.921.37944.381.0451.02222.1327.32
W_exfoliated1.4242.984.05711.041.0331.01630.2715.01
DownLoad: CSV
[1]
Gan X R, Zhao H M, Quan X. Two-dimensional MoS2: A promising building block for biosensors. Biosens Bioelectron, 2017, 89, 56 doi: 10.1016/j.bios.2016.03.042
[2]
Deb S, Chakrabarti P, Mohapatra P K, et al. Tailoring of defect luminescence in CVD grown monolayer MoS2 film. Appl Surf Sci, 2018, 445, 542 doi: 10.1016/j.apsusc.2018.03.165
[3]
Sekine T, Julien C, Samaras I, et al. Vibrational modifications on lithium intercalation in MoS2. Mater Sci Eng B, 1989, 3, 153 doi: 10.1016/0921-5107(89)90195-5
[4]
Kelly A G, Vega-Mayoral V, Boland J B, et al. Whiskey-phase exfoliation: Exfoliation and printing of nanosheets using Irish whiskey. 2D Mater, 2019, 6, 045036 doi: 10.1088/2053-1583/ab3892
[5]
Wang Q, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7, 699 doi: 10.1038/nnano.2012.193
[6]
Ji S S, Yang Z, Zhang C, et al. Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution. Electrochimica Acta, 2013, 109, 269 doi: 10.1016/j.electacta.2013.07.094
[7]
Tudorache F, Popa P D, Dobromir M, et al. Studies on the structure and gas sensing properties of nickel-cobalt ferrite thin films prepared by spin coating. Mater Sci Eng B, 2013, 178, 1334 doi: 10.1016/j.mseb.2013.03.019
[8]
Vikraman D, Hussain S, Truong L, et al. Fabrication of MoS2/WSe2 heterostructures as electrocatalyst for enhanced hydrogen evolution reaction. Appl Surf Sci, 2019, 480, 611 doi: 10.1016/j.apsusc.2019.02.236
[9]
Yim C, O'Brien M, McEvoy N, et al. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl Phys Lett, 2014, 104, 103114 doi: 10.1063/1.4868108
[10]
Reshak A H, Auluck S. Calculated optical properties of 2H-MoS2 intercalated with lithium. Phys Rev B, 2003, 68, 125101 doi: 10.1103/PhysRevB.68.125101
[11]
Kaur J, Parmar A, Tripathi S K, et al. Optical Study of Ge1Sb2Te4 and GeSbTe thin films. Mater Res Express, 2019, 6, 046417 doi: 10.1088/2053-1591/aafc03
[12]
Saha N, Sarkar A, Ghosh A B, et al. Highly active spherical amorphous MoS2: Facile synthesis and application in photocatalytic degradation of rose Bengal dye and hydrogenation of nitroarenes. RSC Adv, 2015, 5, 88848 doi: 10.1039/C5RA19442C
[13]
Çabuk S, Mamedov A. Urbach rule and optical properties of the LiNbO3 and LiTaO3. J Opt A, 1999, 1, 424 doi: 10.1088/1464-4258/1/3/313
[14]
Galeczki G. Wemple-didomenico plots for the refractive index of PbTe. Infrared Phys, 1991, 31, 215 doi: 10.1016/0020-0891(91)90049-L
[15]
Jha R, Santra S, Guha P K. Green synthesis route for WS2 nanosheets using water intercalation. Mater Res Express, 2016, 3, 095014 doi: 10.1088/2053-1591/3/9/095014
[16]
Tian X J, Wu J Y, Li Q, et al. Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide. J Mater Sci, 2018, 53, 7258 doi: 10.1007/s10853-018-2053-6
[17]
Dong N N, Li Y X, Feng Y Y, et al. Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets. Sci Rep, 2015, 5, 14646 doi: 10.1038/srep14646
[18]
Yasmeen S, Iqbal F, Munawar T, et al. Synthesis, structural and optical analysis of surfactant assisted ZnO-NiO nanocomposites prepared by homogeneous precipitation method. Ceram Int, 2019, 45, 17859 doi: 10.1016/j.ceramint.2019.06.001
[19]
Devangamath S S, Lobo B. Optical parameters of epoxy-CoSO4·7H2O polymer hybrid material. Mater Res Innov, 2020, 24, 152 doi: 10.1080/14328917.2019.1619272
[20]
Kaur J, Parmar A, Tripathi S K, et al. Temperature-dependent opto-electronic properties of Ge2.53Sb4.89Te2.50 thin films. Phase Transitions, 2020, 93, 134 doi: 10.1080/01411594.2019.1687894

21030010suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2199 Times PDF downloads: 49 Times Cited by: 0 Times

    History

    Received: 10 March 2021 Revised: 26 March 2021 Online: Accepted Manuscript: 27 April 2021Uncorrected proof: 13 May 2021Published: 01 August 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ankush Parmar, Jashangeet Kaur, Manish Dev Sharma, Navdeep Goyal. Extensive study of optical contrast between bulk and nanoscale transition metal dichalcogenide semiconductors[J]. Journal of Semiconductors, 2021, 42(8): 082001. doi: 10.1088/1674-4926/42/8/082001 A Parmar, J Kaur, M D Sharma, N Goyal, Extensive study of optical contrast between bulk and nanoscale transition metal dichalcogenide semiconductors[J]. J. Semicond., 2021, 42(8): 082001. doi: 10.1088/1674-4926/42/8/082001.Export: BibTex EndNote
      Citation:
      Ankush Parmar, Jashangeet Kaur, Manish Dev Sharma, Navdeep Goyal. Extensive study of optical contrast between bulk and nanoscale transition metal dichalcogenide semiconductors[J]. Journal of Semiconductors, 2021, 42(8): 082001. doi: 10.1088/1674-4926/42/8/082001

      A Parmar, J Kaur, M D Sharma, N Goyal, Extensive study of optical contrast between bulk and nanoscale transition metal dichalcogenide semiconductors[J]. J. Semicond., 2021, 42(8): 082001. doi: 10.1088/1674-4926/42/8/082001.
      Export: BibTex EndNote

      Extensive study of optical contrast between bulk and nanoscale transition metal dichalcogenide semiconductors

      doi: 10.1088/1674-4926/42/8/082001
      More Information
      • Author Bio:

        Ankush Parmar has done Bachelors (B.Tech) and Masters of Engineering Technology (M.Tech) in Electronics and Nanoscience respectively. Later, he qualified the National Eligibility Test (NET) and presently he is pursuing Ph.D. in Material Science from Department of Phyisics, Panjab University, India. Transition Metal Chalcogenides is his main area of research

        Jashangeet Kaur is a doctorate holder in Material Science from Department of Physics, Panjab University, Chandigarh, India. She has to her credit, various publications in the field of chalcogenide based phase change random access memories (PCRAM). Presently she is working on transition metal dichalcogenides for optoelectronic applications

      • Corresponding author: jashan2191@yahoo.com
      • Received Date: 2021-03-10
      • Revised Date: 2021-03-26
      • Published Date: 2021-08-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return