ARTICLES

Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator

Dapeng Liu1, 2, Jian Tang1, 2, Yao Meng1, 2, Wei Li1, 2, Ninghua Zhu1, 2 and Ming Li1, 2,

+ Author Affiliations

 Corresponding author: Ming Li, ml@semi.ac.cn

PDF

Turn off MathJax

Abstract: A modulator is an essential building block in the integrated photonics, connecting the electrical with optical signals. The microring modulator gains much attention because of the small footprint, low drive voltage and high extinction ratio. An ultra-low Vpp and high-modulation-depth indium phosphide-based racetrack microring modulator is demonstrated in this paper. The proposed device mainly comprises one racetrack microring, incorporating a semiconductor amplifier, and coupling with a bus waveguide through a multimode interference coupler. Traveling wave electrodes are employed to supply bidirectional bias ports, terminating with a 50-Ω impedance. The on/off extinction ratio of the microring reaches 43.3 dB due to the delicately tuning of the gain. An 11 mV Vpp, a maximum 42.5 dB modulation depth and a 6.6 GHz bandwidth are realized, respectively. This proposed microring modulator could enrich the functionalities and designability of the fundamental integrated devices.

Key words: integrated photonicshigh-modulation-depthmicroring modulator



[1]
Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12, 1678 doi: 10.1109/JSTQE.2006.883151
[2]
Thylén L, Wosinski L. Integrated photonics in the 21st century. Photon Res, 2014, 2, 75 doi: 10.1364/PRJ.2.000075
[3]
Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Sci Appl, 2015, 4, e286 doi: 10.1038/lsa.2015.59
[4]
Wang Z C, Tian B, Pantouvaki M, et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photonics, 2015, 9, 837 doi: 10.1038/nphoton.2015.199
[5]
Müller J, Merget F, Sharif Azadeh S, et al. Optical peaking enhancement in high-speed ring modulators. Sci Rep, 2014, 4, 6310 doi: 10.1038/srep06310
[6]
Lin H T. Mid-infrared lasers on silicon operating close to room temperature. J Semicond, 2019, 40, 100202 doi: 10.1088/1674-4926/40/10/100202
[7]
Cai X L. Progress in integrating III–V semiconductors on silicon could drive silicon photonics forward. J Semicond, 2019, 40, 100301 doi: 10.1088/1674-4926/40/10/100301
[8]
Zhao C, Xu B, Wang Z J, et al. Boron-doped III–V semiconductors for Si-based optoelectronic devices. J Semicond, 2020, 41, 011301 doi: 10.1088/1674-4926/41/1/011301
[9]
Li C H, Deng J, Sun W Y, et al. Improvement of tunnel compensated quantum well infrared detector. J Semicond, 2019, 40, 122902 doi: 10.1088/1674-4926/40/12/122902
[10]
Saleh B E A, Teich M C. Fundamentals of photonics. New York, USA: John Wiley & Sons, Inc., 1991
[11]
Yariv A, Yeh P. Photonics: optical electronics in modern communications. New York: Oxford University Press, 2007
[12]
Hofrichter J, Raz O, La Porta A, et al. A low-power high-speed InP microdisk modulator heterogeneously integrated on a SOI waveguide. Opt Express, 2012, 20, 9363 doi: 10.1364/OE.20.009363
[13]
Sadagopan T, Choi S J, Choi S J, et al. Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation. IEEE Photonics Technol Lett, 2005, 17, 414 doi: 10.1109/LPT.2004.839773
[14]
Andreou S, Millan-Mejia A, Smit M, et al. Slot waveguide microring modulator on InP membrane. 20th Annual Symposium of the IEEE Photonics Benelux Chapter, 2015, 23
[15]
Xu Q, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435, 325 doi: 10.1038/nature03569
[16]
Manipatruni S, Preston K, Chen L, et al. Ultra-low voltage, ultra-small mode volume silicon microring modulator. Opt Express, 2010, 18, 18235 doi: 10.1364/OE.18.018235
[17]
Padmaraju K, Chan J, Chen L, et al. Thermal stabilization of a microring modulator using feedback control. Opt Express, 2012, 20, 27999 doi: 10.1364/OE.20.027999
[18]
Hai M S, Fard M M P, Liboiron-Ladouceur O. A low-voltage PAM-4 SOI ring-based modulator. 2014 IEEE Photonics Conference, 2014, 194
[19]
Gould M, Baehr-Jones T, Ding R, et al. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Opt Express, 2011, 19, 3952 doi: 10.1364/OE.19.003952
[20]
Dong P, Liao S, Feng D, et al. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt Express, 2009, 17, 22484 doi: 10.1364/OE.17.022484
[21]
Dong P, Shafiiha R, Liao S, et al. Wavelength-tunable silicon microring modulator. Opt Express, 2010, 18, 10941 doi: 10.1364/OE.18.010941
[22]
Chen L, Xu Q, Wood M G, et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 2014, 1, 112 doi: 10.1364/OPTICA.1.000112
[23]
Hu Y, Xiao X, Xu H, et al. High-speed silicon modulator based on cascaded microring resonators. Opt Express, 2012, 20, 15079 doi: 10.1364/OE.20.015079
[24]
Tang Z, Pan S, Yao J. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Opt Express, 2012, 20, 6555 doi: 10.1364/OE.20.006555
[25]
Baba T, Akiyama S, Imai M, et al. 50-Gb/s ring-resonator-based silicon modulator. Opt Express, 2013, 21, 11869 doi: 10.1364/OE.21.011869
[26]
Xiao X, Xu H, Li X, et al. 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt Express, 2012, 20, 2507 doi: 10.1364/OE.20.002507
[27]
Xu Q F, Manipatruni S, Schmidt B, et al. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt Express, 2007, 15, 430 doi: 10.1364/OE.15.000430
[28]
Xia F N, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nat Photonics, 2007, 1, 65 doi: 10.1038/nphoton.2006.42
[29]
Xu Q F, Fattal D, Beausoleil R G. Silicon microring resonators with 1.5-µm radius. Opt Express, 2008, 16, 4309 doi: 10.1364/OE.16.004309
[30]
Okawachi Y, Saha K, Levy J S, et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt Lett, 2011, 36, 3398 doi: 10.1364/OL.36.003398
[31]
Frankis H C, Kiani K M, Su D, et al. High-Q tellurium-oxide-coated silicon nitride microring resonators. Opt Lett, 2018, 44, 118 doi: 10.1364/OSAC.402652
[32]
Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4, 1536 doi: 10.1364/OPTICA.4.001536
[33]
Guarino A, Poberaj G, Rezzonico D, et al. Electro–optically tunable microring resonators in lithium niobate. Nat Photonics, 2007, 1, 407 doi: 10.1038/nphoton.2007.93
[34]
Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568, 373 doi: 10.1038/s41586-019-1008-7
[35]
Fang X F, Yang L. Thermal effect analysis of silicon microring optical switch for on-chip interconnect. J Semicond, 2017, 38, 104004 doi: 10.1088/1674-4926/38/10/104004
[36]
Menon V M, Tong W, Forrest S R. Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier. IEEE Photonics Technol Lett, 2004, 16, 1343 doi: 10.1109/LPT.2004.826094
[37]
Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. J Lightwave Technol, 1997, 15, 998 doi: 10.1109/50.588673
[38]
Rabus D G, Bian Z X, Shakouri A. Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers. IEEE J Sel Top Quantum Electron, 2007, 13, 1249 doi: 10.1109/JSTQE.2007.906043
[39]
Amarnath K, Grover R, Kanakaraju S, et al. Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation. IEEE Photonics Technol Lett, 2005, 17, 2280 doi: 10.1109/LPT.2005.857596
[40]
Fujii M, Koos C, Poulton C, et al. Nonlinear FDTD analysis and experimental verification of four-wave mixing in InGaAsP-InP racetrack microresonators. IEEE Photonics Technol Lett, 2006, 18, 361 doi: 10.1109/LPT.2005.861955
[41]
Zou L X, Huang Y Z, Lv X M, et al. Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing. Photon Res, 2014, 2, 177 doi: 10.1364/PRJ.2.000177
[42]
Jun W, Wang L, Yang C, et al. Optical vector network analyzer based on double-sideband modulation. Opt Lett, 2017, 42, 4426 doi: 10.1364/OL.42.004426
Fig. 1.  (Color online) Architecture of the microring modulator.

Fig. 2.  (Color online) (a) A photograph of the microring modulator with a scale bar of 200 μm$ \mathrm{ } $. (b) A photograph of the chip coupled to the fiber array and probes for experimental test.

Fig. 3.  The I–V curve of the active resonator when the 50 Ω resistance is disconnected.

Fig. 4.  (Color online) (a) The transmission spectra of the microring modulator under four injection currents applied to the SOA. (b) Modulation depth and insertion loss with currents from 136.74 to 138.24 mA.

Fig. 5.  (Color online) The experiment schematic of the modulation bandwidth measurement.

Fig. 6.  The bandwidth of the device when it works as an electro–optic modulator.

Fig. 7.  (Color online) Measured eye diagrams of the device under 4, 8, and 12 Gb/s bit rates.

[1]
Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12, 1678 doi: 10.1109/JSTQE.2006.883151
[2]
Thylén L, Wosinski L. Integrated photonics in the 21st century. Photon Res, 2014, 2, 75 doi: 10.1364/PRJ.2.000075
[3]
Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Sci Appl, 2015, 4, e286 doi: 10.1038/lsa.2015.59
[4]
Wang Z C, Tian B, Pantouvaki M, et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photonics, 2015, 9, 837 doi: 10.1038/nphoton.2015.199
[5]
Müller J, Merget F, Sharif Azadeh S, et al. Optical peaking enhancement in high-speed ring modulators. Sci Rep, 2014, 4, 6310 doi: 10.1038/srep06310
[6]
Lin H T. Mid-infrared lasers on silicon operating close to room temperature. J Semicond, 2019, 40, 100202 doi: 10.1088/1674-4926/40/10/100202
[7]
Cai X L. Progress in integrating III–V semiconductors on silicon could drive silicon photonics forward. J Semicond, 2019, 40, 100301 doi: 10.1088/1674-4926/40/10/100301
[8]
Zhao C, Xu B, Wang Z J, et al. Boron-doped III–V semiconductors for Si-based optoelectronic devices. J Semicond, 2020, 41, 011301 doi: 10.1088/1674-4926/41/1/011301
[9]
Li C H, Deng J, Sun W Y, et al. Improvement of tunnel compensated quantum well infrared detector. J Semicond, 2019, 40, 122902 doi: 10.1088/1674-4926/40/12/122902
[10]
Saleh B E A, Teich M C. Fundamentals of photonics. New York, USA: John Wiley & Sons, Inc., 1991
[11]
Yariv A, Yeh P. Photonics: optical electronics in modern communications. New York: Oxford University Press, 2007
[12]
Hofrichter J, Raz O, La Porta A, et al. A low-power high-speed InP microdisk modulator heterogeneously integrated on a SOI waveguide. Opt Express, 2012, 20, 9363 doi: 10.1364/OE.20.009363
[13]
Sadagopan T, Choi S J, Choi S J, et al. Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation. IEEE Photonics Technol Lett, 2005, 17, 414 doi: 10.1109/LPT.2004.839773
[14]
Andreou S, Millan-Mejia A, Smit M, et al. Slot waveguide microring modulator on InP membrane. 20th Annual Symposium of the IEEE Photonics Benelux Chapter, 2015, 23
[15]
Xu Q, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435, 325 doi: 10.1038/nature03569
[16]
Manipatruni S, Preston K, Chen L, et al. Ultra-low voltage, ultra-small mode volume silicon microring modulator. Opt Express, 2010, 18, 18235 doi: 10.1364/OE.18.018235
[17]
Padmaraju K, Chan J, Chen L, et al. Thermal stabilization of a microring modulator using feedback control. Opt Express, 2012, 20, 27999 doi: 10.1364/OE.20.027999
[18]
Hai M S, Fard M M P, Liboiron-Ladouceur O. A low-voltage PAM-4 SOI ring-based modulator. 2014 IEEE Photonics Conference, 2014, 194
[19]
Gould M, Baehr-Jones T, Ding R, et al. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Opt Express, 2011, 19, 3952 doi: 10.1364/OE.19.003952
[20]
Dong P, Liao S, Feng D, et al. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt Express, 2009, 17, 22484 doi: 10.1364/OE.17.022484
[21]
Dong P, Shafiiha R, Liao S, et al. Wavelength-tunable silicon microring modulator. Opt Express, 2010, 18, 10941 doi: 10.1364/OE.18.010941
[22]
Chen L, Xu Q, Wood M G, et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 2014, 1, 112 doi: 10.1364/OPTICA.1.000112
[23]
Hu Y, Xiao X, Xu H, et al. High-speed silicon modulator based on cascaded microring resonators. Opt Express, 2012, 20, 15079 doi: 10.1364/OE.20.015079
[24]
Tang Z, Pan S, Yao J. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Opt Express, 2012, 20, 6555 doi: 10.1364/OE.20.006555
[25]
Baba T, Akiyama S, Imai M, et al. 50-Gb/s ring-resonator-based silicon modulator. Opt Express, 2013, 21, 11869 doi: 10.1364/OE.21.011869
[26]
Xiao X, Xu H, Li X, et al. 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt Express, 2012, 20, 2507 doi: 10.1364/OE.20.002507
[27]
Xu Q F, Manipatruni S, Schmidt B, et al. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt Express, 2007, 15, 430 doi: 10.1364/OE.15.000430
[28]
Xia F N, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nat Photonics, 2007, 1, 65 doi: 10.1038/nphoton.2006.42
[29]
Xu Q F, Fattal D, Beausoleil R G. Silicon microring resonators with 1.5-µm radius. Opt Express, 2008, 16, 4309 doi: 10.1364/OE.16.004309
[30]
Okawachi Y, Saha K, Levy J S, et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt Lett, 2011, 36, 3398 doi: 10.1364/OL.36.003398
[31]
Frankis H C, Kiani K M, Su D, et al. High-Q tellurium-oxide-coated silicon nitride microring resonators. Opt Lett, 2018, 44, 118 doi: 10.1364/OSAC.402652
[32]
Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4, 1536 doi: 10.1364/OPTICA.4.001536
[33]
Guarino A, Poberaj G, Rezzonico D, et al. Electro–optically tunable microring resonators in lithium niobate. Nat Photonics, 2007, 1, 407 doi: 10.1038/nphoton.2007.93
[34]
Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568, 373 doi: 10.1038/s41586-019-1008-7
[35]
Fang X F, Yang L. Thermal effect analysis of silicon microring optical switch for on-chip interconnect. J Semicond, 2017, 38, 104004 doi: 10.1088/1674-4926/38/10/104004
[36]
Menon V M, Tong W, Forrest S R. Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier. IEEE Photonics Technol Lett, 2004, 16, 1343 doi: 10.1109/LPT.2004.826094
[37]
Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. J Lightwave Technol, 1997, 15, 998 doi: 10.1109/50.588673
[38]
Rabus D G, Bian Z X, Shakouri A. Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers. IEEE J Sel Top Quantum Electron, 2007, 13, 1249 doi: 10.1109/JSTQE.2007.906043
[39]
Amarnath K, Grover R, Kanakaraju S, et al. Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation. IEEE Photonics Technol Lett, 2005, 17, 2280 doi: 10.1109/LPT.2005.857596
[40]
Fujii M, Koos C, Poulton C, et al. Nonlinear FDTD analysis and experimental verification of four-wave mixing in InGaAsP-InP racetrack microresonators. IEEE Photonics Technol Lett, 2006, 18, 361 doi: 10.1109/LPT.2005.861955
[41]
Zou L X, Huang Y Z, Lv X M, et al. Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing. Photon Res, 2014, 2, 177 doi: 10.1364/PRJ.2.000177
[42]
Jun W, Wang L, Yang C, et al. Optical vector network analyzer based on double-sideband modulation. Opt Lett, 2017, 42, 4426 doi: 10.1364/OL.42.004426
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3066 Times PDF downloads: 101 Times Cited by: 0 Times

    History

    Received: 25 January 2021 Revised: 06 March 2021 Online: Accepted Manuscript: 23 April 2021Uncorrected proof: 13 May 2021Published: 01 August 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dapeng Liu, Jian Tang, Yao Meng, Wei Li, Ninghua Zhu, Ming Li. Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator[J]. Journal of Semiconductors, 2021, 42(8): 082301. doi: 10.1088/1674-4926/42/8/082301 D P Liu, J Tang, Y Meng, W Li, N H Zhu, M Li, Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator[J]. J. Semicond., 2021, 42(8): 082301. doi: 10.1088/1674-4926/42/8/082301.Export: BibTex EndNote
      Citation:
      Dapeng Liu, Jian Tang, Yao Meng, Wei Li, Ninghua Zhu, Ming Li. Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator[J]. Journal of Semiconductors, 2021, 42(8): 082301. doi: 10.1088/1674-4926/42/8/082301

      D P Liu, J Tang, Y Meng, W Li, N H Zhu, M Li, Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator[J]. J. Semicond., 2021, 42(8): 082301. doi: 10.1088/1674-4926/42/8/082301.
      Export: BibTex EndNote

      Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator

      doi: 10.1088/1674-4926/42/8/082301
      More Information
      • Author Bio:

        Dapeng Liu received the Ph.D. degree from the State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, in 2020. He joined United Microelectronics Center (CUMEC) as a R&D engineer in July 2020, focusing on the integrated microwave photonics and integrated photonics

        Ming Li Professor of the Institute of Semiconductors (IoS), CAS. He graduated from Shizuoka University in 2009. From 2009 to 2013, he engaged in postdoctoral research in the University of Ottawa and the INRS-EMT in Canada, and joined the IoS-CAS in 2013. He has been supported by the National Overseas High-level Youth Talent Program and the Excellent/Distinguished Young Scientist Foundation of NSFC. His research interests are mainly focused on optoelectronics and microwave photonics

      • Corresponding author: ml@semi.ac.cn
      • Received Date: 2021-01-25
      • Revised Date: 2021-03-06
      • Published Date: 2021-08-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return