SHORT COMMUNICATION

26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%

Erming Feng1, Yunfei Han2, Jianhui Chang1, Hengyue Li1, Keqing Huang1, 3, Lixiu Zhang4, Qun Luo2, Jidong Zhang5, Changqi Ma2, Yingping Zou6, Liming Ding4, and Junliang Yang1,

+ Author Affiliations

 Corresponding author: Liming Ding, ding@nanoctr.cn; Junliang Yang, junliang.yang@csu.edu.cn

PDF

Turn off MathJax



[1]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[2]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[3]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[4]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[5]
Li P, Meng X, Jin K, et al. Banana-shaped electron acceptors with an electron-rich core fragment and 3D packing capability. Carbon Energy, 2022, in press doi: 10.1002/cey2.250
[6]
Meng X, Li M, Jin K, et al. A 4-arm small molecule acceptor with high photovoltaic performance. Angew Chem Int Ed, 2022, e202207762 doi: 10.1002/anie.202207762
[7]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[8]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[9]
Ding L. Organic solar cells. Wiley, 2022
[10]
Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater, 2022, 21, 656 doi: 10.1038/s41563-022-01244-y
[11]
Zheng Z, Wang J, Bi P, et al. Tandem organic solar cell with 20.2% efficiency. Joule, 2022, 6, 171 doi: 10.1016/j.joule.2021.12.017
[12]
Distler A, Brabec C J, Egelhaaf H J. Organic photovoltaic modules with new world record efficiencies. Prog Photovoltaics Res Appl, 2021, 29, 24 doi: 10.1002/pip.3336
[13]
Guan W, Yuan D, Wu J, et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J Semicond, 2021, 42, 030502 doi: 10.1088/1674-4926/42/3/030502
[14]
Li M, Wang J, Ding L, et al. Large-area organic solar cells. J Semicond, 2022, 43, 060201 doi: 10.1088/1674-4926/43/6/060201
[15]
Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301
[16]
Sun R, Wu Q, Guo J, et al. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule, 2020, 4, 407 doi: 10.1016/j.joule.2019.12.004
[17]
Zhang B, Yang F, Chen S, et al. Fluid mechanics inspired sequential blade-coating for high-performance large-area organic solar modules. Adv Funct Mater, 2022, 32, 2202011 doi: 10.1002/adfm.202202011
[18]
Zhang L, Yang S, Ning B, et al. Modulation of vertical component distribution for large-area thick-film organic solar cells. Sol RRL, 2022, 6, 2100838 doi: 10.1002/solr.202100838
[19]
Guo X, Li H, Han Y, et al. Fully doctor-bladed efficient organic solar cells processed under ambient condition. Org Electron, 2020, 82, 105725 doi: 10.1016/j.orgel.2020.105725
[20]
Li H, Huang K, Dong Y, et al. Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition. Appl Phys Lett, 2020, 117, 133301 doi: 10.1063/5.0021509
[21]
Yang Y, Feng E, Li H, et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res, 2021, 14, 4236 doi: 10.1007/s12274-021-3576-8
[22]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[23]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[24]
Zhang G, Chen X K, Xiao J, et al. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat Commun, 2020, 11, 3943 doi: 10.1038/s41467-020-17867-1
Fig. 1.  (Color online) (a) Chemical structures of PM6 and Y6. (b) 1D GIWAXS line curves along the out-of-plane (OOP, dotted line) and in-plane (IP, solid line) directions. (c) J–V curves for PM6:Y6 cells made at different temperatures. (d) EQE spectra for PM6:Y6 cells made at different temperatures. (e) J–V curves for PM6:Y6 and PM6:Y6:PC61BM modules with a designated illumination area of 26.75 cm2.

Table 1.   Performance data for doctor-bladed modules with a designated illumination area of 26.75 cm2.

Active layerVoc (V)Jsc (mA/cm2)FF (%)PCE (average) (%)
PM6:Y610.731.79271.2913.71 (13.51)
PM6:Y6 a10.641.81570.2213.56
PM6:Y6:PC61BM10.891.79573.4214.35 (14.01)
PM6:Y6:PC61BM a10.851.81472.8914.34
a Certified results in the Chinese National PV Industry Measurement and Testing Center.
DownLoad: CSV
[1]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[2]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[3]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[4]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[5]
Li P, Meng X, Jin K, et al. Banana-shaped electron acceptors with an electron-rich core fragment and 3D packing capability. Carbon Energy, 2022, in press doi: 10.1002/cey2.250
[6]
Meng X, Li M, Jin K, et al. A 4-arm small molecule acceptor with high photovoltaic performance. Angew Chem Int Ed, 2022, e202207762 doi: 10.1002/anie.202207762
[7]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[8]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[9]
Ding L. Organic solar cells. Wiley, 2022
[10]
Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater, 2022, 21, 656 doi: 10.1038/s41563-022-01244-y
[11]
Zheng Z, Wang J, Bi P, et al. Tandem organic solar cell with 20.2% efficiency. Joule, 2022, 6, 171 doi: 10.1016/j.joule.2021.12.017
[12]
Distler A, Brabec C J, Egelhaaf H J. Organic photovoltaic modules with new world record efficiencies. Prog Photovoltaics Res Appl, 2021, 29, 24 doi: 10.1002/pip.3336
[13]
Guan W, Yuan D, Wu J, et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J Semicond, 2021, 42, 030502 doi: 10.1088/1674-4926/42/3/030502
[14]
Li M, Wang J, Ding L, et al. Large-area organic solar cells. J Semicond, 2022, 43, 060201 doi: 10.1088/1674-4926/43/6/060201
[15]
Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301
[16]
Sun R, Wu Q, Guo J, et al. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule, 2020, 4, 407 doi: 10.1016/j.joule.2019.12.004
[17]
Zhang B, Yang F, Chen S, et al. Fluid mechanics inspired sequential blade-coating for high-performance large-area organic solar modules. Adv Funct Mater, 2022, 32, 2202011 doi: 10.1002/adfm.202202011
[18]
Zhang L, Yang S, Ning B, et al. Modulation of vertical component distribution for large-area thick-film organic solar cells. Sol RRL, 2022, 6, 2100838 doi: 10.1002/solr.202100838
[19]
Guo X, Li H, Han Y, et al. Fully doctor-bladed efficient organic solar cells processed under ambient condition. Org Electron, 2020, 82, 105725 doi: 10.1016/j.orgel.2020.105725
[20]
Li H, Huang K, Dong Y, et al. Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition. Appl Phys Lett, 2020, 117, 133301 doi: 10.1063/5.0021509
[21]
Yang Y, Feng E, Li H, et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res, 2021, 14, 4236 doi: 10.1007/s12274-021-3576-8
[22]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[23]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[24]
Zhang G, Chen X K, Xiao J, et al. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat Commun, 2020, 11, 3943 doi: 10.1038/s41467-020-17867-1

2022100501suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 817 Times PDF downloads: 119 Times Cited by: 0 Times

    History

    Received: 23 August 2022 Revised: Online: Uncorrected proof: 23 August 2022Published: 01 October 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Erming Feng, Yunfei Han, Jianhui Chang, Hengyue Li, Keqing Huang, Lixiu Zhang, Qun Luo, Jidong Zhang, Changqi Ma, Yingping Zou, Liming Ding, Junliang Yang. 26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%[J]. Journal of Semiconductors, 2022, 43(10): 100501. doi: 10.1088/1674-4926/43/10/100501 E M Feng, Y F Han, J H Chang, H Y Li, K Q Huang, L X Zhang, Q Luo, J D Zhang, C Q Ma, Y P Zou, L M Ding, J L Yang. 26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%[J]. J. Semicond, 2022, 43(10): 100501. doi: 10.1088/1674-4926/43/10/100501Export: BibTex EndNote
      Citation:
      Erming Feng, Yunfei Han, Jianhui Chang, Hengyue Li, Keqing Huang, Lixiu Zhang, Qun Luo, Jidong Zhang, Changqi Ma, Yingping Zou, Liming Ding, Junliang Yang. 26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%[J]. Journal of Semiconductors, 2022, 43(10): 100501. doi: 10.1088/1674-4926/43/10/100501

      E M Feng, Y F Han, J H Chang, H Y Li, K Q Huang, L X Zhang, Q Luo, J D Zhang, C Q Ma, Y P Zou, L M Ding, J L Yang. 26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%[J]. J. Semicond, 2022, 43(10): 100501. doi: 10.1088/1674-4926/43/10/100501
      Export: BibTex EndNote

      26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%

      doi: 10.1088/1674-4926/43/10/100501
      More Information
      • Author Bio:

        Erming Feng got his BS and MS from Shijiazhuang Tiedao University and Shandong Normal University, respectively. Now he is a PhD student at Central South University under the supervision of Prof. Junliang Yang. His work focuses on organic solar cells

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors

        Junliang Yang received his PhD in 2008 from CIAC, CAS. He then joined Tim S. Jones Group at the University of Warwick. In April 2011, he moved to Australia and joined Andrew B. Holmes Group at the University of Melbourne and CSIRO. In 2012, he was appointed as a professor in School of Physics and Electronics at Central South University. His research focuses on perovskite solar cells, organic solar cells, flexible and printed electronics

      • Corresponding author: ding@nanoctr.cnjunliang.yang@csu.edu.cn
      • Received Date: 2022-08-23
        Available Online: 2022-08-23

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return