REVIEWS

Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators

Yan Wang1, Tongtong Liu1, Jiangyi Liu1, Chuanbo Li1, Zhuo Chen2, and Shuhui Bo1,

+ Author Affiliations

 Corresponding author: Zhuo Chen, chenzhuo@mail.ipc.ac.cn; Shuhui Bo, boshuhui@muc.edu.cn

PDF

Turn off MathJax

Abstract: High performance electro-optic modulator, as the key device of integrated ultra-wideband optical systems, have become the focus of research. Meanwhile, the organic-based hybrid electro-optic modulators, which make full use of the advantages of organic electro-optic (OEO) materials (e.g. high electro-optic coefficient, fast response speed, high bandwidth, easy processing/integration and low cost) have attracted considerable attention. In this paper, we introduce a series of high-performance OEO materials that exhibit good properties in electro-optic activity and thermal stability. In addition, the recent progress of organic-based hybrid electro-optic devices is reviewed, including photonic crystal-organic hybrid (PCOH), silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) modulators. A high-performance integrated optical platform based on OEO materials is a promising solution for growing high speeds and low power consumption in compact sizes.

Key words: organic electro-optic materialsmodulatororganic-based hybrid modulatorheterogeneous integration



[1]
Heni W, Kutuvantavida Y, Haffner C, et al. Silicon-organic and plasmonic-organic hybrid photonics. ACS Photonics, 2017, 4, 1576 doi: 10.1021/acsphotonics.7b00224
[2]
Benea-Chelmus I C, Zhu T Q, Settembrini F F, et al. Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz. ACS Photonics, 2018, 5, 1398 doi: 10.1021/acsphotonics.7b01407
[3]
Robinson B H, Johnson L E, Elder D L, et al. Optimization of plasmonic-organic hybrid electro-optics. J Lightwave Technol, 2018, 36, 5036 doi: 10.1109/JLT.2018.2865882
[4]
Rahim A, Hermans A, Wohlfeil B, et al. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv Photonics, 2021, 3, 024003 doi: 10.1117/1.AP.3.2.024003
[5]
Dalton L R, Robinson B H, Elder D L, et al. Hybrid electro-optics and chipscale integration of electronics and photonics. Proc SPIE, 2017, 10364 doi: 10.1117/12.2278795
[6]
Wang J, Long Y. On-chip silicon photonic signaling and processing: A review. Sci Bull, 2018, 63, 1267 doi: 10.1016/j.scib.2018.05.038
[7]
Dong P, Chen Y K, Duan G H, et al. Silicon photonic devices and integrated circuits. Nanophotonics, 2014, 3, 215 doi: 10.1515/nanoph-2013-0023
[8]
Dong Y H, Zhang Y, Shen J, et al. Silicon-integrated high-speed mode and polarization switch-and-selector. J Semicond, 2022, 43, 022301 doi: 10.1088/1674-4926/43/2/022301
[9]
Dalton L R, Sullivan P A, Bale D H. Electric field poled organic electro-optic materials: State of the art and future prospects. Chem Rev, 2010, 110, 25 doi: 10.1021/cr9000429
[10]
Alloatti L, Palmer R, Diebold S, et al. 100 GHz silicon–organic hybrid modulator. Light Sci Appl, 2014, 3, e173 doi: 10.1038/lsa.2014.54
[11]
Melikyan A, Alloatti L, Muslija A, et al. High-speed plasmonic phase modulators. Nat Photonics, 2014, 8, 229 doi: 10.1038/nphoton.2014.9
[12]
Haffner C, Heni W, Fedoryshyn Y, et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics, 2015, 9, 525 doi: 10.1038/nphoton.2015.127
[13]
Liang K, Wang C, Wu B Y, et al. Polymeric thermo-optic digital optical switches. Chin J Semicond, 2006, 27, 747
[14]
Liu D P, Tang J, Meng Y, et al. Ultra-low Vpp and high-modulation-depth InP-based electro-optic microring modulator. J Semicond, 2021, 42, 082301 doi: 10.1088/1674-4926/42/8/082301
[15]
He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13, 359 doi: 10.1038/s41566-019-0378-6
[16]
Yuan S, Hu C R, Pan A, et al. Photonic devices based on thin-film lithium niobate on insulator. J Semicond, 2021, 42, 041304 doi: 10.1088/1674-4926/42/4/041304
[17]
Xu M Y, Cai X L. Advances in integrated ultra-wideband electro-optic modulators. Opt Express, 2022, 30, 7253 doi: 10.1364/OE.449022
[18]
Yang Y H, Liu F G, Wang H R, et al. Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing heteroatoms to the donor. J Mater Chem C, 2015, 3, 5297 doi: 10.1039/C5TC00723B
[19]
Zhang H, Tian Y X, Bo S H, et al. A study on regulating the conjugate position of NLO chromophores for reducing the dipole moment and enhancing the electro-optic activities of organic materials. J Mater Chem C, 2020, 8, 1380 doi: 10.1039/C9TC05704H
[20]
Li Z A, Kim H, Chi S H, et al. Effects of counterions with multiple charges on the linear and nonlinear optical properties of polymethine salts. Chem Mater, 2016, 28, 3115 doi: 10.1021/acs.chemmater.6b00641
[21]
Liu F G, Xu H J, Zhang H, et al. Synthesis of julolidine-containing nonlinear optical chromophores: Achieving excellent electro-optic activity by optimizing the bridges and acceptors. Dyes Pigments, 2016, 134, 358 doi: 10.1016/j.dyepig.2016.07.038
[22]
Zhang H, Huo F Y, Liu F G, et al. Synthesis and characterization of two novel second-order nonlinear optical chromophores based on julolidine donors with excellent electro-optic activity. RSC Adv, 2016, 6, 99743 doi: 10.1039/C6RA21814H
[23]
Liu F G, Zhang H, Xiao H Y, et al. Structure-function relationship exploration for enhanced electro-optic activity in isophorone-based organic NLO chromophores. Dyes Pigments, 2018, 157, 55 doi: 10.1016/j.dyepig.2018.04.036
[24]
Hu C L, Liu F G, Zhang H, et al. Synthesis of novel nonlinear optical chromophores: Achieving excellent electro-optic activity by introducing benzene derivative isolation groups into the bridge. J Mater Chem C, 2015, 3, 11595 doi: 10.1039/C5TC02702K
[25]
Liu F G, Zhang M L, Xiao H Y, et al. Auxiliary donor for tetrahydroquinoline-containing nonlinear optical chromophores: Enhanced electro-optical activity and thermal stability. J Mater Chem C, 2015, 3, 9283 doi: 10.1039/C5TC01610J
[26]
Wu J Y, Li Z, Luo J D, et al. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J Mater Chem C, 2020, 8, 15009 doi: 10.1039/D0TC03224G
[27]
Xu H J, Liu F G, Elder D L, et al. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels-alder cross-linkable binary molecular glasses. Chem Mater, 2020, 32, 1408 doi: 10.1021/acs.chemmater.9b03725
[28]
Honardoost A, Safian R, Teng M, et al. Ultralow-power polymer electro-optic integrated modulators. J Semicond, 2019, 40, 070401 doi: 10.1088/1674-4926/40/7/070401
[29]
Witmer J D, McKenna T P, Arrangoiz-Arriola P, et al. A silicon-organic hybrid platform for quantum microwave-to-optical transduction. Quantum Sci Technol, 2020, 5, 034004 doi: 10.1088/2058-9565/ab7eed
[30]
Weimann C, Schindler P C, Palmer R, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt Express, 2014, 22, 3629 doi: 10.1364/OE.22.003629
[31]
Koeber S, Palmer R, Lauermann M, et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light Sci Appl, 2015, 4, e255 doi: 10.1038/lsa.2015.28
[32]
Lauermann M, Wolf S, Schindler P C, et al. 40 GBd 16QAM signaling at 160 gb/s in a silicon-organic hybrid modulator. J Lightwave Technol, 2015, 33, 1210 doi: 10.1109/JLT.2015.2394211
[33]
Koos C, Leuthold J, Freude W, et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J Lightwave Technol, 2016, 34, 256 doi: 10.1109/JLT.2015.2499763
[34]
Kieninger C, Kutuvantavida Y, Elder D L, et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica, 2018, 5, 739 doi: 10.1364/OPTICA.5.000739
[35]
Kieninger C, Kutuvantavida Y, Miura H, et al. Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85 °C. Opt Express, 2018, 26, 27955 doi: 10.1364/OE.26.027955
[36]
Wolf S, Zwickel H, Hartmann W, et al. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 Gbit/s on-off keying. Sci Rep, 2018, 8, 2598 doi: 10.1038/s41598-017-19061-8
[37]
Kieninger C, Füllner C, Zwickel H, et al. SOH Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. 2020 Opt Fiber Commun Conf Exhib OFC, 2020, 1 doi: 10.1364/OFC.2020.Th3C.3
[38]
Ayata M, Fedoryshyn Y, Heni W, et al. High-speed plasmonic modulator in a single metal layer. Science, 2017, 358, 630 doi: 10.1126/science.aan5953
[39]
Hoessbacher C, Josten A, Baeuerle B, et al. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt Express, 2017, 25, 1762 doi: 10.1364/OE.25.001762
[40]
Haffner C, Chelladurai D, Fedoryshyn Y, et al. Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556, 483 doi: 10.1038/s41586-018-0031-4
[41]
Burla M, Hoessbacher C, Heni W, et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photonics, 2019, 4, 056106 doi: 10.1063/1.5086868
[42]
Heni W, Fedoryshyn Y, Baeuerle B, et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat Commun, 2019, 10, 1694 doi: 10.1038/s41467-019-09724-7
[43]
Baeuerle B, Hoessbacher C, Heni W, et al. 100 GBd IM/DD transmission over 14 km SMF in the C-band enabled by a plasmonic SSB MZM. Opt Express, 2020, 28, 8601 doi: 10.1364/OE.384825
[44]
Koch U, Uhl C, Hettrich H, et al. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter. Nat Electron, 2020, 3, 338 doi: 10.1038/s41928-020-0417-9
[45]
Dalton L R. Theory-inspired development of organic electro-optic materials. Thin Solid Films, 2009, 518, 428 doi: 10.1016/j.tsf.2009.07.001
[46]
Sullivan P A, Rommel H, Liao Y, et al. Theory-guided design and synthesis of multichromophore dendrimers: An analysis of the electro-optic effect. J Am Chem Soc, 2007, 129, 7523 doi: 10.1021/ja068322b
[47]
Liu J L, Bo S H, Liu X H, et al. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores. J Incl Phenom Macrocycl Chem, 2010, 68, 253 doi: 10.1007/s10847-010-9781-9
[48]
Li Z A, Wu W B, Li Q Q, et al. High-generation second-order nonlinear optical (NLO) dendrimers: Convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew Chem Int Ed Engl, 2010, 49, 2763 doi: 10.1002/anie.200906946
[49]
Wu W B, Qin J G, Li Z. New design strategies for second-order nonlinear optical polymers and dendrimers. Polymer, 2013, 54, 4351 doi: 10.1016/j.polymer.2013.05.039
[50]
Hammond S R, Sinness J, Dubbury S, et al. Molecular engineering of nanoscale order in organic electro-optic glasses. J Mater Chem, 2012, 22, 6752 doi: 10.1039/c2jm14915j
[51]
Chen Z, Zhang A R, Xiao H Y, et al. Tailoring the chemical structures and nonliear optical properties of julolidinyl-based chromophores by molecular engineering. Dyes Pigments, 2020, 173, 107876 doi: 10.1016/j.dyepig.2019.107876
[52]
Wu J Y, Bo S H, Liu J L, et al. Synthesis of novel nonlinear optical chromophore to achieve ultrahigh electro-optic activity. Chem Commun, 2012, 48, 9637 doi: 10.1039/c2cc34747d
[53]
Zhou X H, Luo J D, Davies J A, et al. Push-pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: Optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups. J Mater Chem, 2012, 22, 16390 doi: 10.1039/c2jm32848h
[54]
Bo S H, Li Y, Liu T T, et al. Systematic study on the optimization of a bis(N, N-diethyl)aniline based NLO chromophore via a stronger electron acceptor, extended π-conjugation and isolation groups. J Mater Chem C, 2022, 10, 3343 doi: 10.1039/D1TC05684K
[55]
Elder D L, Benight S J, Song J S, et al. Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores. Chem Mater, 2014, 26, 872 doi: 10.1021/cm4034935
[56]
Jin W W, Johnston P V, Elder D L, et al. Structure-function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores. J Mater Chem C, 2016, 4, 3119 doi: 10.1039/C6TC00358C
[57]
Elder D L, Haffner C, Heni W, et al. Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores. Chem Mater, 2017, 29, 6457 doi: 10.1021/acs.chemmater.7b02020
[58]
Zhang H, Yang Y H, Xiao H Y, et al. Enhancement of electro-optic properties of bis(N, N-diethyl)aniline based second order nonlinear chromophores by introducing a stronger electron acceptor and modifying the π-bridge. J Mater Chem C, 2017, 5, 6704 doi: 10.1039/C7TC01175J
[59]
Zhang A R, Xiao H Y, Peng C C, et al. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity. RSC Adv, 2014, 4, 65088 doi: 10.1039/C4RA10078F
[60]
Ummethala S, Harter T, Koehnle K, et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat Photonics, 2019, 13, 519 doi: 10.1038/s41566-019-0475-6
[61]
Cheng Y J, Luo J D, Hau S, et al. Large electro-optic activity and enhanced thermal stability from diarylaminophenyl-containing high-β nonlinear optical chromophores. Chem Mater, 2007, 19, 1154 doi: 10.1021/cm062340a
[62]
Davies J A, Elangovan A, Sullivan P A, et al. Rational enhancement of second-order nonlinearity: Bis-(4-methoxyphenyl) hetero-aryl-amino donor-based chromophores: Design, synthesis, and electrooptic activity. J Am Chem Soc, 2008, 130, 10565 doi: 10.1021/ja8007424
[63]
Yang Y H, Xu H J, Liu F G, et al. Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. J Mater Chem C, 2014, 2, 5124 doi: 10.1039/C4TC00508B
[64]
Yang Y H, Liu J L, Zhang M L, et al. The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. J Mater Chem C, 2015, 3, 3913 doi: 10.1039/C5TC00241A
[65]
Yang Y H, Wang H R, Liu F G, et al. The synthesis of new double-donor chromophores with excellent electro-optic activity by introducing modified bridges. Phys Chem Chem Phys, 2015, 17, 5776 doi: 10.1039/C4CP05829A
[66]
Jin W W, Johnston P V, Elder D L, et al. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Appl Phys Lett, 2014, 104, 243304 doi: 10.1063/1.4884829
[67]
Huang S, Kim T D, Luo J D, et al. Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode. Appl Phys Lett, 2010, 96, 243311 doi: 10.1063/1.3453659
[68]
Xu H J, Elder D L, Johnson L E, et al. Electro-optic activity in excess of 1000 pm V –1 achieved via theory-guided organic chromophore design. Adv Mater, 2021, 33, 2104174 doi: 10.1002/adma.202104174
[69]
Xu H J, Elder D L, Johnson L E, et al. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic-organic hybrid devices. Mater Horiz, 2022, 9, 261 doi: 10.1039/D1MH01206A
[70]
Brosi J M, Koos C, Andreani L C, et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt Express, 2008, 16, 4177 doi: 10.1364/OE.16.004177
[71]
Lin C Y, Wang X L, Chakravarty S, et al. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Appl Phys Lett, 2010, 97, 093304 doi: 10.1063/1.3486225
[72]
Zhang X Y, Hosseini A, Chakravarty S, et al. Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. Opt Lett, 2013, 38, 4931 doi: 10.1364/OL.38.004931
[73]
Zhang X Y, Chung C J, Hosseini A, et al. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J Lightwave Technol, 2016, 34, 2941 doi: 10.1109/JLT.2015.2471853
[74]
Alloatti L, Korn D, Palmer R, et al. 42.7 Gbit/s electro-optic modulator in silicon technology. Opt Express, 2011, 19, 11841 doi: 10.1364/OE.19.011841
[75]
Ummethala S, Kemal J N, Alam A S, et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica, 2021, 8, 511 doi: 10.1364/OPTICA.411161
[76]
Park D H, Yun V, Luo J, et al. EO polymer at cryogenic temperatures. Electron Lett, 2016, 52, 1703 doi: 10.1049/el.2016.1406
[77]
Lu G W, Hong J X, Qiu F, et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat Commun, 2020, 11, 4224 doi: 10.1038/s41467-020-18005-7
[78]
Zou Y H, Wang Y M, Zhang X X, et al. Optimal design and preparation of silicon-organic hybrid integrated electro-optic modulator. Opt Precision Eng, 2020, 28(10), 2138 doi: 10.37188/OPE.20202810.2138
[79]
Elder D L, Dalton L R. Organic electro-optics and optical rectification: From mesoscale to nanoscale hybrid devices and chip-scale integration of electronics and photonics. Ind Eng Chem Res, 2022, 61, 1207 doi: 10.1021/acs.iecr.1c03836
[80]
Heni W, Baeuerle B, Mardoyan H, et al. Ultra-high-speed 2: 1 digital selector and plasmonic modulator IM/DD transmitter operating at 222 GBaud for intra-datacenter applications. J Lightwave Technol, 2020, 38, 2734 doi: 10.1109/JLT.2020.2972637
[81]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562, 101 doi: 10.1038/s41586-018-0551-y
[82]
Weigel P O, Zhao J, Fang K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt Express, 2018, 26, 23728 doi: 10.1364/OE.26.023728
[83]
Zwickel H, Kemal J N, Kieninger C, et al. Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation. Opt Express, 2018, 26, 34580 doi: 10.1364/OE.26.034580
Fig. 1.  EO chromophores with stronger electron-donors.

Fig. 2.  High performance chromophores for neat film poling.

Fig. 3.  (Color online) (a) Chemical structure for chromophores HLD1, HLD2, cross-linker C1, and polymer P1. (b) Temporal stability of the poled films HLD1/HLD2, HLD2/C1, HLD2/P1, JRD1/APC, and JRD1/PMMA at the curing temperature of 85 °C. Reproduced with permission from Ref. [27]. Copyright 2020, American Chemical Society.

Fig. 4.  (Color online) (a) Schematic of the slot-photonic crystal slow-light phase modulator and dominant electric field component Ex at quasi-TE mode. Reprinted with permission from Ref. [70], Copyright 2008, The Optical Society. (b) Scanning electron microscopy (SEM) images of the fabricated device. Reprinted with permission from Ref. [73], Copyright 2016, The Optical Society.

Fig. 5.  (Color online) (a) The SOH phase modulator with an SiO2 film on top of the silicon strips which cover with the gate electrode. Reproduced with permission from Ref. [74]. Copyright 2011, Optical Society of America. (b) 100 GHz SOH phase modulator. Reproduced with permission from Ref. [10]. Copyright 2014, Nature Publishing Group. (c) Ultra-low half-wave voltage of 0.21 V SOH MZM. Reproduced with permission from Ref. [34]. Copyright 2018, Optical Society of America. (d) Capacitivity coupled SOH MZM with high-κ slotlines. Reproduced with permission from Ref.[75]. Copyright 2021, Optical Society of America. (e) High-temperature-resistant SOH MZM working up to 200 Gbit/s over 100 °C. Reproduced with permission from Ref. [77]. Copyright 2020, Nature Publishing Group. (f) The structure of SOH MZM by optimizing the strip-to-slot mode converter. Reproduced with permission from Ref. [78]. Copyright 2020, Optics and Precision Engineering.

Fig. 6.  (Color online) (a) The relative size of all-organic, SOH and POH modulator. Reproduced with permission from Ref. [1]. Copyright 2017, American Chemical Society. (b) Variation of halfwave voltage (Vπ) with electrode length/device length (L) for various types of devices. Reproduced with permission from Ref. [79]. Copyright 2021, American Chemical Society. (c) Comparison measured (symbols) and computationally predicted (lines) VπL values for JRD1, DLD164, and BAH13 organic OEO materials at 1550 nm in a POH MZM. Reproduced with permission from Ref. [69]. Copyright 2022, Royal Society of Chemistry.

Fig. 7.  (Color online) (a) A high-speed POH phase modulator designed and fabricated. Reproduced with permission from Ref. [11]. Copyright 2014, Nature Publishing Group. (b) POH MZM with metal-insulator-metal plasmonic slot waveguide. Reproduced with permission from Ref. [12]. Copyright 2015, Nature Publishing Group. (c) All-plasmonic MZM using a single metal layer without the silicon waveguide. Reproduced with permission from Ref. [38]. Copyright 2017, Nature Publishing Group. (d) Low-loss plasmonic electro-optic ring modulator. Reproduced with permission from Ref. [40]. Copyright 2018, Nature Publishing Group.

Fig. 8.  (Color online) (a) Beyond 500 GHz POH MZM used for sub-THz microwave photonics. Reproduced with permission from Ref. [41]. Copyright 2019. American Institute of Physics. (b) 222 GBd on-off-keying transmitter based on POH MZM. Reproduced with permission from Ref. [80]. Copyright 2020. Optical Society of America. (c) Compact IQ electro-optic modulator operated with sub-1-V driving electronics. Reproduced with permission from Ref. [42]. Copyright 2019. Nature Publishing Group. (d) Symbol rates 100 GBd monolithically integrated electro-optical transmitter based on POH MZM. Reproduced with permission from Ref. [44]. Copyright 2020. Nature Publishing Group.

Table 1.   The MZM on various EO platforms with operating principle of Pockels effect. The best result reported is given in parenthesis.

Platform3-dB EO bandwidth (GHz)Vπ (V)Footprint (mm)Loss (dB/cm)
SOH>60 (76 [75])0.21 V [34]<1~20 (22 [83])
POH>100 (500 [41])4.8 V [24]<0.02~500 (400[12])
PCOH78 [70]0.94[73]~0.3~200[73]
LNOI>67 (110[81])1.4 [81]5–20~0.3
LN/Si70 (106 [82])5.1 [15]>5~1 (0.98 [15])
DownLoad: CSV
[1]
Heni W, Kutuvantavida Y, Haffner C, et al. Silicon-organic and plasmonic-organic hybrid photonics. ACS Photonics, 2017, 4, 1576 doi: 10.1021/acsphotonics.7b00224
[2]
Benea-Chelmus I C, Zhu T Q, Settembrini F F, et al. Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz. ACS Photonics, 2018, 5, 1398 doi: 10.1021/acsphotonics.7b01407
[3]
Robinson B H, Johnson L E, Elder D L, et al. Optimization of plasmonic-organic hybrid electro-optics. J Lightwave Technol, 2018, 36, 5036 doi: 10.1109/JLT.2018.2865882
[4]
Rahim A, Hermans A, Wohlfeil B, et al. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv Photonics, 2021, 3, 024003 doi: 10.1117/1.AP.3.2.024003
[5]
Dalton L R, Robinson B H, Elder D L, et al. Hybrid electro-optics and chipscale integration of electronics and photonics. Proc SPIE, 2017, 10364 doi: 10.1117/12.2278795
[6]
Wang J, Long Y. On-chip silicon photonic signaling and processing: A review. Sci Bull, 2018, 63, 1267 doi: 10.1016/j.scib.2018.05.038
[7]
Dong P, Chen Y K, Duan G H, et al. Silicon photonic devices and integrated circuits. Nanophotonics, 2014, 3, 215 doi: 10.1515/nanoph-2013-0023
[8]
Dong Y H, Zhang Y, Shen J, et al. Silicon-integrated high-speed mode and polarization switch-and-selector. J Semicond, 2022, 43, 022301 doi: 10.1088/1674-4926/43/2/022301
[9]
Dalton L R, Sullivan P A, Bale D H. Electric field poled organic electro-optic materials: State of the art and future prospects. Chem Rev, 2010, 110, 25 doi: 10.1021/cr9000429
[10]
Alloatti L, Palmer R, Diebold S, et al. 100 GHz silicon–organic hybrid modulator. Light Sci Appl, 2014, 3, e173 doi: 10.1038/lsa.2014.54
[11]
Melikyan A, Alloatti L, Muslija A, et al. High-speed plasmonic phase modulators. Nat Photonics, 2014, 8, 229 doi: 10.1038/nphoton.2014.9
[12]
Haffner C, Heni W, Fedoryshyn Y, et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics, 2015, 9, 525 doi: 10.1038/nphoton.2015.127
[13]
Liang K, Wang C, Wu B Y, et al. Polymeric thermo-optic digital optical switches. Chin J Semicond, 2006, 27, 747
[14]
Liu D P, Tang J, Meng Y, et al. Ultra-low Vpp and high-modulation-depth InP-based electro-optic microring modulator. J Semicond, 2021, 42, 082301 doi: 10.1088/1674-4926/42/8/082301
[15]
He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13, 359 doi: 10.1038/s41566-019-0378-6
[16]
Yuan S, Hu C R, Pan A, et al. Photonic devices based on thin-film lithium niobate on insulator. J Semicond, 2021, 42, 041304 doi: 10.1088/1674-4926/42/4/041304
[17]
Xu M Y, Cai X L. Advances in integrated ultra-wideband electro-optic modulators. Opt Express, 2022, 30, 7253 doi: 10.1364/OE.449022
[18]
Yang Y H, Liu F G, Wang H R, et al. Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing heteroatoms to the donor. J Mater Chem C, 2015, 3, 5297 doi: 10.1039/C5TC00723B
[19]
Zhang H, Tian Y X, Bo S H, et al. A study on regulating the conjugate position of NLO chromophores for reducing the dipole moment and enhancing the electro-optic activities of organic materials. J Mater Chem C, 2020, 8, 1380 doi: 10.1039/C9TC05704H
[20]
Li Z A, Kim H, Chi S H, et al. Effects of counterions with multiple charges on the linear and nonlinear optical properties of polymethine salts. Chem Mater, 2016, 28, 3115 doi: 10.1021/acs.chemmater.6b00641
[21]
Liu F G, Xu H J, Zhang H, et al. Synthesis of julolidine-containing nonlinear optical chromophores: Achieving excellent electro-optic activity by optimizing the bridges and acceptors. Dyes Pigments, 2016, 134, 358 doi: 10.1016/j.dyepig.2016.07.038
[22]
Zhang H, Huo F Y, Liu F G, et al. Synthesis and characterization of two novel second-order nonlinear optical chromophores based on julolidine donors with excellent electro-optic activity. RSC Adv, 2016, 6, 99743 doi: 10.1039/C6RA21814H
[23]
Liu F G, Zhang H, Xiao H Y, et al. Structure-function relationship exploration for enhanced electro-optic activity in isophorone-based organic NLO chromophores. Dyes Pigments, 2018, 157, 55 doi: 10.1016/j.dyepig.2018.04.036
[24]
Hu C L, Liu F G, Zhang H, et al. Synthesis of novel nonlinear optical chromophores: Achieving excellent electro-optic activity by introducing benzene derivative isolation groups into the bridge. J Mater Chem C, 2015, 3, 11595 doi: 10.1039/C5TC02702K
[25]
Liu F G, Zhang M L, Xiao H Y, et al. Auxiliary donor for tetrahydroquinoline-containing nonlinear optical chromophores: Enhanced electro-optical activity and thermal stability. J Mater Chem C, 2015, 3, 9283 doi: 10.1039/C5TC01610J
[26]
Wu J Y, Li Z, Luo J D, et al. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J Mater Chem C, 2020, 8, 15009 doi: 10.1039/D0TC03224G
[27]
Xu H J, Liu F G, Elder D L, et al. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels-alder cross-linkable binary molecular glasses. Chem Mater, 2020, 32, 1408 doi: 10.1021/acs.chemmater.9b03725
[28]
Honardoost A, Safian R, Teng M, et al. Ultralow-power polymer electro-optic integrated modulators. J Semicond, 2019, 40, 070401 doi: 10.1088/1674-4926/40/7/070401
[29]
Witmer J D, McKenna T P, Arrangoiz-Arriola P, et al. A silicon-organic hybrid platform for quantum microwave-to-optical transduction. Quantum Sci Technol, 2020, 5, 034004 doi: 10.1088/2058-9565/ab7eed
[30]
Weimann C, Schindler P C, Palmer R, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt Express, 2014, 22, 3629 doi: 10.1364/OE.22.003629
[31]
Koeber S, Palmer R, Lauermann M, et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light Sci Appl, 2015, 4, e255 doi: 10.1038/lsa.2015.28
[32]
Lauermann M, Wolf S, Schindler P C, et al. 40 GBd 16QAM signaling at 160 gb/s in a silicon-organic hybrid modulator. J Lightwave Technol, 2015, 33, 1210 doi: 10.1109/JLT.2015.2394211
[33]
Koos C, Leuthold J, Freude W, et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J Lightwave Technol, 2016, 34, 256 doi: 10.1109/JLT.2015.2499763
[34]
Kieninger C, Kutuvantavida Y, Elder D L, et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica, 2018, 5, 739 doi: 10.1364/OPTICA.5.000739
[35]
Kieninger C, Kutuvantavida Y, Miura H, et al. Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85 °C. Opt Express, 2018, 26, 27955 doi: 10.1364/OE.26.027955
[36]
Wolf S, Zwickel H, Hartmann W, et al. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 Gbit/s on-off keying. Sci Rep, 2018, 8, 2598 doi: 10.1038/s41598-017-19061-8
[37]
Kieninger C, Füllner C, Zwickel H, et al. SOH Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. 2020 Opt Fiber Commun Conf Exhib OFC, 2020, 1 doi: 10.1364/OFC.2020.Th3C.3
[38]
Ayata M, Fedoryshyn Y, Heni W, et al. High-speed plasmonic modulator in a single metal layer. Science, 2017, 358, 630 doi: 10.1126/science.aan5953
[39]
Hoessbacher C, Josten A, Baeuerle B, et al. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt Express, 2017, 25, 1762 doi: 10.1364/OE.25.001762
[40]
Haffner C, Chelladurai D, Fedoryshyn Y, et al. Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556, 483 doi: 10.1038/s41586-018-0031-4
[41]
Burla M, Hoessbacher C, Heni W, et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photonics, 2019, 4, 056106 doi: 10.1063/1.5086868
[42]
Heni W, Fedoryshyn Y, Baeuerle B, et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat Commun, 2019, 10, 1694 doi: 10.1038/s41467-019-09724-7
[43]
Baeuerle B, Hoessbacher C, Heni W, et al. 100 GBd IM/DD transmission over 14 km SMF in the C-band enabled by a plasmonic SSB MZM. Opt Express, 2020, 28, 8601 doi: 10.1364/OE.384825
[44]
Koch U, Uhl C, Hettrich H, et al. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter. Nat Electron, 2020, 3, 338 doi: 10.1038/s41928-020-0417-9
[45]
Dalton L R. Theory-inspired development of organic electro-optic materials. Thin Solid Films, 2009, 518, 428 doi: 10.1016/j.tsf.2009.07.001
[46]
Sullivan P A, Rommel H, Liao Y, et al. Theory-guided design and synthesis of multichromophore dendrimers: An analysis of the electro-optic effect. J Am Chem Soc, 2007, 129, 7523 doi: 10.1021/ja068322b
[47]
Liu J L, Bo S H, Liu X H, et al. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores. J Incl Phenom Macrocycl Chem, 2010, 68, 253 doi: 10.1007/s10847-010-9781-9
[48]
Li Z A, Wu W B, Li Q Q, et al. High-generation second-order nonlinear optical (NLO) dendrimers: Convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew Chem Int Ed Engl, 2010, 49, 2763 doi: 10.1002/anie.200906946
[49]
Wu W B, Qin J G, Li Z. New design strategies for second-order nonlinear optical polymers and dendrimers. Polymer, 2013, 54, 4351 doi: 10.1016/j.polymer.2013.05.039
[50]
Hammond S R, Sinness J, Dubbury S, et al. Molecular engineering of nanoscale order in organic electro-optic glasses. J Mater Chem, 2012, 22, 6752 doi: 10.1039/c2jm14915j
[51]
Chen Z, Zhang A R, Xiao H Y, et al. Tailoring the chemical structures and nonliear optical properties of julolidinyl-based chromophores by molecular engineering. Dyes Pigments, 2020, 173, 107876 doi: 10.1016/j.dyepig.2019.107876
[52]
Wu J Y, Bo S H, Liu J L, et al. Synthesis of novel nonlinear optical chromophore to achieve ultrahigh electro-optic activity. Chem Commun, 2012, 48, 9637 doi: 10.1039/c2cc34747d
[53]
Zhou X H, Luo J D, Davies J A, et al. Push-pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: Optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups. J Mater Chem, 2012, 22, 16390 doi: 10.1039/c2jm32848h
[54]
Bo S H, Li Y, Liu T T, et al. Systematic study on the optimization of a bis(N, N-diethyl)aniline based NLO chromophore via a stronger electron acceptor, extended π-conjugation and isolation groups. J Mater Chem C, 2022, 10, 3343 doi: 10.1039/D1TC05684K
[55]
Elder D L, Benight S J, Song J S, et al. Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores. Chem Mater, 2014, 26, 872 doi: 10.1021/cm4034935
[56]
Jin W W, Johnston P V, Elder D L, et al. Structure-function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores. J Mater Chem C, 2016, 4, 3119 doi: 10.1039/C6TC00358C
[57]
Elder D L, Haffner C, Heni W, et al. Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores. Chem Mater, 2017, 29, 6457 doi: 10.1021/acs.chemmater.7b02020
[58]
Zhang H, Yang Y H, Xiao H Y, et al. Enhancement of electro-optic properties of bis(N, N-diethyl)aniline based second order nonlinear chromophores by introducing a stronger electron acceptor and modifying the π-bridge. J Mater Chem C, 2017, 5, 6704 doi: 10.1039/C7TC01175J
[59]
Zhang A R, Xiao H Y, Peng C C, et al. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity. RSC Adv, 2014, 4, 65088 doi: 10.1039/C4RA10078F
[60]
Ummethala S, Harter T, Koehnle K, et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat Photonics, 2019, 13, 519 doi: 10.1038/s41566-019-0475-6
[61]
Cheng Y J, Luo J D, Hau S, et al. Large electro-optic activity and enhanced thermal stability from diarylaminophenyl-containing high-β nonlinear optical chromophores. Chem Mater, 2007, 19, 1154 doi: 10.1021/cm062340a
[62]
Davies J A, Elangovan A, Sullivan P A, et al. Rational enhancement of second-order nonlinearity: Bis-(4-methoxyphenyl) hetero-aryl-amino donor-based chromophores: Design, synthesis, and electrooptic activity. J Am Chem Soc, 2008, 130, 10565 doi: 10.1021/ja8007424
[63]
Yang Y H, Xu H J, Liu F G, et al. Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. J Mater Chem C, 2014, 2, 5124 doi: 10.1039/C4TC00508B
[64]
Yang Y H, Liu J L, Zhang M L, et al. The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. J Mater Chem C, 2015, 3, 3913 doi: 10.1039/C5TC00241A
[65]
Yang Y H, Wang H R, Liu F G, et al. The synthesis of new double-donor chromophores with excellent electro-optic activity by introducing modified bridges. Phys Chem Chem Phys, 2015, 17, 5776 doi: 10.1039/C4CP05829A
[66]
Jin W W, Johnston P V, Elder D L, et al. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Appl Phys Lett, 2014, 104, 243304 doi: 10.1063/1.4884829
[67]
Huang S, Kim T D, Luo J D, et al. Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode. Appl Phys Lett, 2010, 96, 243311 doi: 10.1063/1.3453659
[68]
Xu H J, Elder D L, Johnson L E, et al. Electro-optic activity in excess of 1000 pm V –1 achieved via theory-guided organic chromophore design. Adv Mater, 2021, 33, 2104174 doi: 10.1002/adma.202104174
[69]
Xu H J, Elder D L, Johnson L E, et al. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic-organic hybrid devices. Mater Horiz, 2022, 9, 261 doi: 10.1039/D1MH01206A
[70]
Brosi J M, Koos C, Andreani L C, et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt Express, 2008, 16, 4177 doi: 10.1364/OE.16.004177
[71]
Lin C Y, Wang X L, Chakravarty S, et al. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Appl Phys Lett, 2010, 97, 093304 doi: 10.1063/1.3486225
[72]
Zhang X Y, Hosseini A, Chakravarty S, et al. Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. Opt Lett, 2013, 38, 4931 doi: 10.1364/OL.38.004931
[73]
Zhang X Y, Chung C J, Hosseini A, et al. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J Lightwave Technol, 2016, 34, 2941 doi: 10.1109/JLT.2015.2471853
[74]
Alloatti L, Korn D, Palmer R, et al. 42.7 Gbit/s electro-optic modulator in silicon technology. Opt Express, 2011, 19, 11841 doi: 10.1364/OE.19.011841
[75]
Ummethala S, Kemal J N, Alam A S, et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica, 2021, 8, 511 doi: 10.1364/OPTICA.411161
[76]
Park D H, Yun V, Luo J, et al. EO polymer at cryogenic temperatures. Electron Lett, 2016, 52, 1703 doi: 10.1049/el.2016.1406
[77]
Lu G W, Hong J X, Qiu F, et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat Commun, 2020, 11, 4224 doi: 10.1038/s41467-020-18005-7
[78]
Zou Y H, Wang Y M, Zhang X X, et al. Optimal design and preparation of silicon-organic hybrid integrated electro-optic modulator. Opt Precision Eng, 2020, 28(10), 2138 doi: 10.37188/OPE.20202810.2138
[79]
Elder D L, Dalton L R. Organic electro-optics and optical rectification: From mesoscale to nanoscale hybrid devices and chip-scale integration of electronics and photonics. Ind Eng Chem Res, 2022, 61, 1207 doi: 10.1021/acs.iecr.1c03836
[80]
Heni W, Baeuerle B, Mardoyan H, et al. Ultra-high-speed 2: 1 digital selector and plasmonic modulator IM/DD transmitter operating at 222 GBaud for intra-datacenter applications. J Lightwave Technol, 2020, 38, 2734 doi: 10.1109/JLT.2020.2972637
[81]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562, 101 doi: 10.1038/s41586-018-0551-y
[82]
Weigel P O, Zhao J, Fang K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt Express, 2018, 26, 23728 doi: 10.1364/OE.26.023728
[83]
Zwickel H, Kemal J N, Kieninger C, et al. Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation. Opt Express, 2018, 26, 34580 doi: 10.1364/OE.26.034580
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1628 Times PDF downloads: 183 Times Cited by: 0 Times

    History

    Received: 06 April 2022 Revised: 13 May 2022 Online: Accepted Manuscript: 26 July 2022Uncorrected proof: 27 July 2022Published: 01 October 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yan Wang, Tongtong Liu, Jiangyi Liu, Chuanbo Li, Zhuo Chen, Shuhui Bo. Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators[J]. Journal of Semiconductors, 2022, 43(10): 101301. doi: 10.1088/1674-4926/43/10/101301 Y Wang, T T Liu, J Y Liu, C B Li, Z Chen, S H Bo. Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators[J]. J. Semicond, 2022, 43(10): 101301. doi: 10.1088/1674-4926/43/10/101301Export: BibTex EndNote
      Citation:
      Yan Wang, Tongtong Liu, Jiangyi Liu, Chuanbo Li, Zhuo Chen, Shuhui Bo. Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators[J]. Journal of Semiconductors, 2022, 43(10): 101301. doi: 10.1088/1674-4926/43/10/101301

      Y Wang, T T Liu, J Y Liu, C B Li, Z Chen, S H Bo. Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators[J]. J. Semicond, 2022, 43(10): 101301. doi: 10.1088/1674-4926/43/10/101301
      Export: BibTex EndNote

      Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators

      doi: 10.1088/1674-4926/43/10/101301
      More Information
      • Author Bio:

        Yan Wang got his BS from Tianjin University of Technology in 2019. Now he is a master degree candidate in Minzu University of China under the supervision of Prof. Shuhui Bo. His research interest is electro-optic modulator of organic polymer materials

        Zhuo Chen received his Ph.D. degree from Chinese Academy of Sciences, Beijing, China, in 2011. He is currently a research associate in Technical Institute of Physics and Chemistry, CAS. His research interests include organic electro-optic materials, micro-nano optical devices

        Shuhui Bo received her Ph.D. degree from Chinese Academy of Sciences, Beijing, China, in 2008. She is currently a professor in Optoelectronics Research Centre, Minzu University of China. Her research interests include organic electro-optic materials and organic-based modulators

      • Corresponding author: chenzhuo@mail.ipc.ac.cnboshuhui@muc.edu.cn
      • Received Date: 2022-04-06
      • Revised Date: 2022-05-13
      • Available Online: 2022-07-26

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return