ARTICLES

High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K

Tingting He1, 2, Xiaohong Yang1, 2, , Yongsheng Tang1, 2, Rui Wang1, 2 and Yijun Liu1, 2

+ Author Affiliations

 Corresponding author: Xiaohong Yang, xhyang@semi.ac.cn

PDF

Turn off MathJax

Abstract: Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication. However, even with well-designed structures and well-controlled operational conditions, the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche process and the growth quality of InGaAs/InP materials. It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present. In this paper, we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer. The quantum efficiency of this device reaches 83.2%. We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinusoidal pulse gating. The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination, and the detection of small avalanche pulse amplitude signal is realized. The maximum detection efficiency is 55.4% with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96 × 10−17 W/Hz1/2 at 247 K. Compared with other reported detectors, this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature.

Key words: single period sinusoidal pulseInGaAs/InP single photon avalanche diodeparallel balancedphoton detection efficiencydark count ratenoise-equivalent power



[1]
Slenders E, Castello M, Buttafava M, et al. Confocal-based fluorescence fluctuation spectroscopy with a SPAD array detector. Light Sci Appl, 2021, 10, 31 doi: 10.1038/s41377-021-00475-z
[2]
Nambu Y, Takahashi S, Yoshino K, et al. Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution. Opt Express, 2011, 19, 20531 doi: 10.1364/OE.19.020531
[3]
Martelli P, Brunero M, Fasiello A, et al. Quantum key distribution exploiting a faraday rotator and a single spad. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, 2019, 34 doi: 10.1109/CLEOE-EQEC.2019.8871921
[4]
Hanke R, Fuchs T, Uhlmann N. X-ray based methods for non-destructive testing and material characterization. Nucl Instrum Methods Phys Res A, 2008, 591, 14 doi: 10.1016/j.nima.2008.03.016
[5]
Nedbal J, Rocca F M D, Walker R, et al. Correction of time-resolved SPAD array measurements for accurate single-photon time-resolved biological imaging. Proc SPIE, 2021, 1172(1), 65 doi: 10.1117/12.2587755
[6]
Kekkonen J, Nissinen J, Kostamovaara J, et al. Distance-resolving Raman radar based on a time-correlated CMOS single-photon avalanche diode line sensor. Sensors, 2018, 18, 3200 doi: 10.3390/s18103200
[7]
Buller G S, McCarthy A, Maccarone A, et al. Single-photon lidar used in extreme imaging scenarios. Conference on Lasers and Electro-Optics, 2021, 1 doi: 10.1364/CLEO_AT.2021.JM4E.1
[8]
Hu J H, Zhao Q Y, Zhang X P, et al. Photon-counting optical time-domain reflectometry using a superconducting nanowire single-photon detector. J Lightwave Technol, 2012, 30, 2583 doi: 10.1109/JLT.2012.2203786
[9]
Hu W L, Qi Z Q, Sun H C. Single photo detector epitaxial design and optimization. Proc SPIE, 2021, 11763, 555 doi: 10.1117/12.2586324
[10]
Losev A V, Zavodilenko V V, Koziy A A, et al. Single photon detectors based on SPADs: Circuit solutions and operating modes. Russ Microelectron, 2021, 50, 108 doi: 10.1134/S1063739721010078
[11]
Tosi A, Dalla Mora A, Della Frera A, et al. Fast-gated SPAD for ultra-wide dynamic range optical investigations. 2010 23rd Annual Meeting of the IEEE Photonics Society, 2010, 185 doi: 10.1109/PHOTONICS.2010.5698820
[12]
Itzler M A, Ben-Michael R, Hsu C F, et al. Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications. J Mod Opt, 2007, 54, 283 doi: 10.1080/09500340600792291
[13]
Yuan Z L, Kardynal B E, Sharpe A W, et al. High speed single photon detection in the near infrared. Appl Phys Lett, 2007, 91, 041114 doi: 10.1063/1.2760135
[14]
Restelli A, Bienfang J C. Avalanche discrimination and high-speed counting in periodically gated single-photon avalanche diodes. SProc SPIE, 2012, 8375, 224 doi: 10.1117/12.919803
[15]
Wu Q L, Liu Y, Han Z F, et al. Gated-mode integrated single photon detector for telecom wavelengths. Proc SPIE, 2007, 6771, 289 doi: 10.1117/12.747007
[16]
Tomita A, Nakamura K. Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm. Opt Lett, 2002, 27, 1827 doi: 10.1364/OL.27.001827
[17]
Lu Z W, Sun W L, Campbell J C, et al. Pulsed gating with balanced InGaAs/InP single photon avalanche diodes. IEEE J Quantum Electron, 2013, 49, 485 doi: 10.1109/JQE.2013.2253762
[18]
Zhang Y X, Xie F, Yang G W, et al. Balanced single photon avalanche detector with variode-based spike noise cancellation. Microw Opt Technol Lett, 2013, 55, 2877 doi: 10.1002/mop.27961
[19]
Zheng F, Zhu G, Liu X F, et al. Double balanced differential configuration for high speed InGaAs/InP single photon detector at telecommunication wavelengths. Optoelectron Lett, 2015, 11, 121 doi: 10.1007/s11801-015-4213-0
[20]
Campbell J C, Sun W L, Lu Z W, et al. Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes. IEEE J Quantum Electron, 2012, 48, 1505 doi: 10.1109/JQE.2012.2223200
[21]
Lu Z W, Sun W L, Zheng X G, et al. Balanced InGaAs/InP avalanche photodiodes for single photon detection. Proc SPIE, 2012, 8460, 84601H-1 doi: 10.1117/12.2000154
[22]
Acerbi F, Anti M, Tosi A, et al. Design criteria for InGaAs/InP single-photon avalanche diode. IEEE Photonics J, 2013, 5, 6800209 doi: 10.1109/JPHOT.2013.2258664
[23]
Liu M G, Hu C, Bai X G, et al. High-performance InGaAs/InP single-photon avalanche photodiode. IEEE J Sel Top Quantum Electron, 2007, 13, 887 doi: 10.1109/JSTQE.2007.903855
[24]
Sanzaro M, Calandri N, Ruggeri A, et al. InGaAs/InP SPAD with monolithically integrated zinc-diffused resistor. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2016.2567063
[25]
Hu C, Zheng X G, Campbell J C, et al. High-performance InGaAs/InP-based single-photon avalanche diode with reduced afterpulsing. Proc SPIE, 2010, 7681, 182 doi: 10.1117/12.851356
[26]
Signorelli F, Telesca F, Conca E, et al. InGaAs/InP SPAD detecting single photons at 1550 nm with up to 50% efficiency and low noise. 2021 IEEE International Electron Devices Meeting, 2021
[27]
Fang Y Q, Chen W, Ao T H, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm. Rev Sci Instrum, 2020, 91, 083102 doi: 10.1063/5.0014123
[28]
Zhang B J, Yin S Z, Liu Y J, et al. High performance InGaAs/InP single-photon avalanche diode using DBR-metal reflector and backside micro-lens. J Lightwave Technol, 2022, 40, 3832 doi: 10.1109/JLT.2022.3153455
[29]
Kizilkan E, Karaca U, Pešić V, et al. Guard-ring-free InGaAs/InP single-photon avalanche diode based on a novel one-step Zn-diffusion technique. IEEE J Sel Top Quantum Electron, 2022, 28, 1 doi: 10.1109/JSTQE.2022.3162527
[30]
Kai Z. III-V single photon avalanche detector with built-in negative feedback for NIR photon detection. University of California, 2008
[31]
He T T, Yang X H, Tang Y S, et al. Quantitative analysis of edge breakdown effect of Geiger mode avalanche photo-diodes utilizing optical probe scanning method. Semicond Sci Technol, 2022, 37, 055006 doi: 10.1088/1361-6641/ac5bf7
[32]
Lee K, Lee B, Yoon S, et al. A low noise planar-type avalanche photodiode using a single-diffusion process in geiger-mode operation. Jpn J Appl Phys, 2013, 52, 072201 doi: 10.7567/JJAP.52.072201
[33]
Tada A, Namekata N, Inoue S. Saturated detection efficiency of single-photon detector based on an InGaAs/InP single-photon avalanche diode gated with a large-amplitude sinusoidal voltage. Jpn J Appl Phys, 2020, 59, 072004 doi: 10.35848/1347-4065/ab9625
Fig. 1.  (Color online) Structure Diagram of the SPAD.

Fig. 2.  (Color online) (a) Edge of double diffusion profile of the optimized device observed by SEM. (b) Simulated optimized device electric field diagram after breakdown (Vex = 0.5 V).

Fig. 3.  (Color online) (a) Dark current versus reverse bias voltage at different temperatures and the photo current versus reverse bias voltage at 298 K. (b) Breakdown voltage versus temperature data (symbols) and linear fitting (line).

Fig. 4.  (Color online) Dark current versus multiplication factor and its linear curve fit at 298 K.

Fig. 5.  (Color online) Natural logarithm of Id /T2 versus e/kT at different reverse voltages.

Fig. 6.  (Color online) The test system diagram of dual-balanced single-photon detectors.

Fig. 7.  (Color online) Dual SPADs balanced detector with fiber-coupled package.

Fig. 8.  (Color online) Oscilloscope output under different conditions. (a) The external single period sinusoidal pulse gating signal. (b) Capacitive spike pulse responses of the individual APD1 in the dark with a single sinusoidal signal biased. (c) Output in the absence of incident photons, two SPAD sinusoidal bursts biased. (d) Output when a photon is incident and an avalanche pulse is generated.

Fig. 9.  (Color online) The photon detection efficiency versus dark count rate at different temperatures.

Fig. 10.  (Color online) The relationship between NEP and excess bias voltage at different temperatures.

Table 1.   Comparision of our detector with similar detectors recently described in literature.

Ref.Active area diameter (μm)Temperature (K)Photon wavelength (nm)DCR (kcps)
@ PDE (%)
NEP (10−17 W/Hz1/2)Year
[33]16238155059.3a@48%9.2b2020
[27]252331550340@60%17.6b2020
[26]10225155020@50%5.13b2021
[28]1223315500.665@30%1.56b2022
[29]70225155055@43%9.89b2022
This work20247155043.8@55.4%6.52022
aCalculated from dark count probability and 150ps pulse width. bCalculated from DCR and PDE.
DownLoad: CSV
[1]
Slenders E, Castello M, Buttafava M, et al. Confocal-based fluorescence fluctuation spectroscopy with a SPAD array detector. Light Sci Appl, 2021, 10, 31 doi: 10.1038/s41377-021-00475-z
[2]
Nambu Y, Takahashi S, Yoshino K, et al. Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution. Opt Express, 2011, 19, 20531 doi: 10.1364/OE.19.020531
[3]
Martelli P, Brunero M, Fasiello A, et al. Quantum key distribution exploiting a faraday rotator and a single spad. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, 2019, 34 doi: 10.1109/CLEOE-EQEC.2019.8871921
[4]
Hanke R, Fuchs T, Uhlmann N. X-ray based methods for non-destructive testing and material characterization. Nucl Instrum Methods Phys Res A, 2008, 591, 14 doi: 10.1016/j.nima.2008.03.016
[5]
Nedbal J, Rocca F M D, Walker R, et al. Correction of time-resolved SPAD array measurements for accurate single-photon time-resolved biological imaging. Proc SPIE, 2021, 1172(1), 65 doi: 10.1117/12.2587755
[6]
Kekkonen J, Nissinen J, Kostamovaara J, et al. Distance-resolving Raman radar based on a time-correlated CMOS single-photon avalanche diode line sensor. Sensors, 2018, 18, 3200 doi: 10.3390/s18103200
[7]
Buller G S, McCarthy A, Maccarone A, et al. Single-photon lidar used in extreme imaging scenarios. Conference on Lasers and Electro-Optics, 2021, 1 doi: 10.1364/CLEO_AT.2021.JM4E.1
[8]
Hu J H, Zhao Q Y, Zhang X P, et al. Photon-counting optical time-domain reflectometry using a superconducting nanowire single-photon detector. J Lightwave Technol, 2012, 30, 2583 doi: 10.1109/JLT.2012.2203786
[9]
Hu W L, Qi Z Q, Sun H C. Single photo detector epitaxial design and optimization. Proc SPIE, 2021, 11763, 555 doi: 10.1117/12.2586324
[10]
Losev A V, Zavodilenko V V, Koziy A A, et al. Single photon detectors based on SPADs: Circuit solutions and operating modes. Russ Microelectron, 2021, 50, 108 doi: 10.1134/S1063739721010078
[11]
Tosi A, Dalla Mora A, Della Frera A, et al. Fast-gated SPAD for ultra-wide dynamic range optical investigations. 2010 23rd Annual Meeting of the IEEE Photonics Society, 2010, 185 doi: 10.1109/PHOTONICS.2010.5698820
[12]
Itzler M A, Ben-Michael R, Hsu C F, et al. Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications. J Mod Opt, 2007, 54, 283 doi: 10.1080/09500340600792291
[13]
Yuan Z L, Kardynal B E, Sharpe A W, et al. High speed single photon detection in the near infrared. Appl Phys Lett, 2007, 91, 041114 doi: 10.1063/1.2760135
[14]
Restelli A, Bienfang J C. Avalanche discrimination and high-speed counting in periodically gated single-photon avalanche diodes. SProc SPIE, 2012, 8375, 224 doi: 10.1117/12.919803
[15]
Wu Q L, Liu Y, Han Z F, et al. Gated-mode integrated single photon detector for telecom wavelengths. Proc SPIE, 2007, 6771, 289 doi: 10.1117/12.747007
[16]
Tomita A, Nakamura K. Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm. Opt Lett, 2002, 27, 1827 doi: 10.1364/OL.27.001827
[17]
Lu Z W, Sun W L, Campbell J C, et al. Pulsed gating with balanced InGaAs/InP single photon avalanche diodes. IEEE J Quantum Electron, 2013, 49, 485 doi: 10.1109/JQE.2013.2253762
[18]
Zhang Y X, Xie F, Yang G W, et al. Balanced single photon avalanche detector with variode-based spike noise cancellation. Microw Opt Technol Lett, 2013, 55, 2877 doi: 10.1002/mop.27961
[19]
Zheng F, Zhu G, Liu X F, et al. Double balanced differential configuration for high speed InGaAs/InP single photon detector at telecommunication wavelengths. Optoelectron Lett, 2015, 11, 121 doi: 10.1007/s11801-015-4213-0
[20]
Campbell J C, Sun W L, Lu Z W, et al. Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes. IEEE J Quantum Electron, 2012, 48, 1505 doi: 10.1109/JQE.2012.2223200
[21]
Lu Z W, Sun W L, Zheng X G, et al. Balanced InGaAs/InP avalanche photodiodes for single photon detection. Proc SPIE, 2012, 8460, 84601H-1 doi: 10.1117/12.2000154
[22]
Acerbi F, Anti M, Tosi A, et al. Design criteria for InGaAs/InP single-photon avalanche diode. IEEE Photonics J, 2013, 5, 6800209 doi: 10.1109/JPHOT.2013.2258664
[23]
Liu M G, Hu C, Bai X G, et al. High-performance InGaAs/InP single-photon avalanche photodiode. IEEE J Sel Top Quantum Electron, 2007, 13, 887 doi: 10.1109/JSTQE.2007.903855
[24]
Sanzaro M, Calandri N, Ruggeri A, et al. InGaAs/InP SPAD with monolithically integrated zinc-diffused resistor. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2016.2567063
[25]
Hu C, Zheng X G, Campbell J C, et al. High-performance InGaAs/InP-based single-photon avalanche diode with reduced afterpulsing. Proc SPIE, 2010, 7681, 182 doi: 10.1117/12.851356
[26]
Signorelli F, Telesca F, Conca E, et al. InGaAs/InP SPAD detecting single photons at 1550 nm with up to 50% efficiency and low noise. 2021 IEEE International Electron Devices Meeting, 2021
[27]
Fang Y Q, Chen W, Ao T H, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm. Rev Sci Instrum, 2020, 91, 083102 doi: 10.1063/5.0014123
[28]
Zhang B J, Yin S Z, Liu Y J, et al. High performance InGaAs/InP single-photon avalanche diode using DBR-metal reflector and backside micro-lens. J Lightwave Technol, 2022, 40, 3832 doi: 10.1109/JLT.2022.3153455
[29]
Kizilkan E, Karaca U, Pešić V, et al. Guard-ring-free InGaAs/InP single-photon avalanche diode based on a novel one-step Zn-diffusion technique. IEEE J Sel Top Quantum Electron, 2022, 28, 1 doi: 10.1109/JSTQE.2022.3162527
[30]
Kai Z. III-V single photon avalanche detector with built-in negative feedback for NIR photon detection. University of California, 2008
[31]
He T T, Yang X H, Tang Y S, et al. Quantitative analysis of edge breakdown effect of Geiger mode avalanche photo-diodes utilizing optical probe scanning method. Semicond Sci Technol, 2022, 37, 055006 doi: 10.1088/1361-6641/ac5bf7
[32]
Lee K, Lee B, Yoon S, et al. A low noise planar-type avalanche photodiode using a single-diffusion process in geiger-mode operation. Jpn J Appl Phys, 2013, 52, 072201 doi: 10.7567/JJAP.52.072201
[33]
Tada A, Namekata N, Inoue S. Saturated detection efficiency of single-photon detector based on an InGaAs/InP single-photon avalanche diode gated with a large-amplitude sinusoidal voltage. Jpn J Appl Phys, 2020, 59, 072004 doi: 10.35848/1347-4065/ab9625
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1300 Times PDF downloads: 153 Times Cited by: 0 Times

    History

    Received: 16 April 2022 Revised: 07 May 2022 Online: Accepted Manuscript: 29 July 2022Uncorrected proof: 29 July 2022Published: 01 October 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tingting He, Xiaohong Yang, Yongsheng Tang, Rui Wang, Yijun Liu. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K[J]. Journal of Semiconductors, 2022, 43(10): 102301. doi: 10.1088/1674-4926/43/10/102301 T T He, X H Yang, Y S Tang, R Wang, Y J Liu. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K[J]. J. Semicond, 2022, 43(10): 102301. doi: 10.1088/1674-4926/43/10/102301Export: BibTex EndNote
      Citation:
      Tingting He, Xiaohong Yang, Yongsheng Tang, Rui Wang, Yijun Liu. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K[J]. Journal of Semiconductors, 2022, 43(10): 102301. doi: 10.1088/1674-4926/43/10/102301

      T T He, X H Yang, Y S Tang, R Wang, Y J Liu. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K[J]. J. Semicond, 2022, 43(10): 102301. doi: 10.1088/1674-4926/43/10/102301
      Export: BibTex EndNote

      High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K

      doi: 10.1088/1674-4926/43/10/102301
      More Information
      • Author Bio:

        Tingting He received the B.S. degree in electronic information science and technology from Southwest Jiaotong University, Chengdu, China, in 2014. She is currently working toward the Ph.D. degree with the State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China. Her current research focuses on single photon avalanche diodes

        Xiaohong Yang received the Ph.D. degree in microelectronics and solid state electronics from the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, in 2001. Since then, she has been with there. She is currently a Professor working on high speed and high sensitive photo-detections, such as the high gain-bandwidth-product APDs, avalanche single-photon detectors, wide bandwidth PIN photodiodes, and photonic integrations

      • Corresponding author: xhyang@semi.ac.cn
      • Received Date: 2022-04-16
      • Revised Date: 2022-05-07
      • Available Online: 2022-07-29

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return