ARTICLES

Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability

Shiqing Zhang1, Bing Song1, Shujing Jia2, Rongrong Cao1, Sen Liu1, Hui Xu1 and Qingjiang Li1,

+ Author Affiliations

 Corresponding author: Qingjiang Li, qingjiangli@nudt.edu.cn

PDF

Turn off MathJax

Abstract: Selector devices are indispensable components of large-scale memristor array systems. The thereinto, ovonic threshold switching (OTS) selector is one of the most suitable candidates for selector devices, owing to its high selectivity and scalability. However, OTS selectors suffer from poor endurance and stability which are persistent tricky problems for application. Here, we report on a multilayer OTS selector based on simple GeSe and doped-GeSe. The experimental results show improving selector performed extraordinary endurance up to 1010 and the fluctuation of threshold voltage is 2.5%. The reason for the improvement may lie in more interface states which strengthen the interaction among individual layers. These developments pave the way towards tuning a new class of OTS materials engineering, ensuring improvement of electrical performance.

Key words: ovonic threshold switchselectorGeSemultilayer structureendurancestability



[1]
Laudato M, Adinolfi V, Clarke R, et al. ALD GeAsSeTe ovonic threshold switch for 3D stackable crosspoint memory. 2020 IEEE Int Mem Work IMW, 2020, 1 doi: 10.1109/IMW48823.2020.9108152
[2]
Kim T, Lee D, Kim J, et al. Firing voltage reduction in thermally annealed Ge-As-Te thin film with ovonic threshold switching. J Vac Sci Technol B, 2020, 38, 032213 doi: 10.1116/1.5144736
[3]
Czubatyj W, Hudgens S J. Thin-film Ovonic threshold switch: Its operation and application in modern integrated circuits. Electron Mater Lett, 2012, 8, 157 doi: 10.1007/s13391-012-2040-z
[4]
Jeong D S, Lim H, Park G H, et al. Threshold resistive and capacitive switching behavior in binary amorphous GeSe. J Appl Phys, 2012, 111, 102807 doi: 10.1063/1.4714705
[5]
Ahn H W, Jeong D S, Cheong B K, et al. A study on the scalability of a selector device using threshold switching in Pt/GeSe/Pt. ECS Solid State Lett, 2013, 2, N31 doi: 10.1149/2.011309ssl
[6]
Kim S, Kim Y B, Kim K M, et al. Performance of threshold switching in chalcogenide glass for 3D stackable selector. 2013 Symp VLSI Technol, 2013, T240
[7]
Zhu M, Ren K, Song Z T. Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bull, 2019, 44, 715 doi: 10.1557/mrs.2019.206
[8]
Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21, 1450 doi: 10.1103/PhysRevLett.21.1450
[9]
Seo J, Ahn H W, Shin S Y, et al. Anomalous reduction of the switching voltage of Bi-doped Ge0.5Se0.5 ovonic threshold switching devices. Appl Phys Lett, 2014, 104, 153503 doi: 10.1063/1.4871385
[10]
Song B, Xu H, Liu S, et al. An ovonic threshold switching selector based on Se-rich GeSe chalcogenide. Appl Phys A, 2019, 125, 772 doi: 10.1007/s00339-019-3073-z
[11]
Verdy A, Navarro G, Sousa V, et al. Improved electrical performance thanks to Sb and N doping in Se-rich GeSe-based OTS selector devices. 2017 IEEE Int Mem Work IMW, 2017, 1 doi: 10.1109/IMW.2017.7939088
[12]
Noé P, Verdy A, d'Acapito F, et al. Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed. Sci Adv, 2020, 6, eaay2830 doi: 10.1126/sciadv.aay2830
[13]
Cheng H Y, Chien W C, Kuo I T, et al. An ultra high endurance and thermally stable selector based on TeAsGeSiSe chalcogenides compatible with BEOL IC Integration for cross-point PCM. 2017 IEEE Int Electron Devices Meet IEDM, 2017, 2.2.1 doi: 10.1109/IEDM.2017.8268310
[14]
Kau D, Tang S, Karpov I V, et al. A stackable cross point Phase Change Memory. 2009 IEEE Int Electron Devices Meet IEDM, 2009, 1 doi: 10.1109/IEDM.2009.5424263
[15]
Lee M J, Lee D, Cho S H, et al. A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat Commun, 2013, 4, 2629 doi: 10.1038/ncomms3629
[16]
Cheng H Y, Chien W C, Kuo I T, et al. Ultra-high endurance and low IOFF selector based on AsSeGe chalcogenides for wide memory window 3D stackable crosspoint memory. 2018 IEEE International Electron Devices Meeting, 2018, 37.3.1 doi: 10.1109/IEDM.2018.8614580
[17]
Navarro G, Verdy A, Castellani N, et al. Innovative PCM+OTS device with high sub-threshold non-linearity for non-switching reading operations and higher endurance performance. 2017 Symposium on VLSI Technology, 2017, T94 doi: 10.23919/VLSIT.2017.7998208
[18]
Velea A, Opsomer K, Devulder W, et al. Te-based chalcogenide materials for selector applications. Sci Rep, 2017, 7, 8103 doi: 10.1038/s41598-017-08251-z
[19]
Ding K Y, Wang J J, Zhou Y X, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science, 2019, 366, 210 doi: 10.1126/science.aay0291
[20]
Adinolfi V, Laudato M, Clarke R, et al. ALD heterojunction ovonic threshold switches. ACS Appl Electron Mater, 2020, 2, 3818 doi: 10.1021/acsaelm.0c00666
[21]
Laguna C, Castellani N, Bernard M, et al. Innovative multilayer OTS selectors for performance tuning and improved reliability. 2020 IEEE Int Mem Work IMW, 2020, 1 doi: 10.1109/IMW48823.2020.9108130
[22]
Laguna C, Bernard M, Bernier N, et al. Multilayer OTS selectors engineering for high temperature stability, scalability and high endurance. 2021 IEEE Int Mem Work IMW, 2021, 1 doi: 10.1109/IMW51353.2021.9439590
[23]
Govoreanu B, Donadio G L, Opsomer K, et al. Thermally stable integrated Se-based OTS selectors with >20 MA/cm2 current drive, >3.103 half-bias nonlinearity, tunable threshold voltage and excellent endurance. 2017 Symp VLSI Technol, 2017, T92 doi: 10.23919/VLSIT.2017.7998207
[24]
Koo Y, Baek K, Hwang H. Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications. 2016 IEEE Symp VLSI Technol, 2016, 1 doi: 10.1109/VLSIT.2016.7573389
[25]
Goyal D R, Maan A S. Far-infrared absorption in amorphous Sb15Ge xSe85– x glasses. J Non Cryst Solids, 1995, 183, 182 doi: 10.1016/0022-3093(94)00550-8
[26]
Ho Lee J, Hwan Kim G, Bae Ahn Y, et al. Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory. Appl Phys Lett, 2012, 100, 123505 doi: 10.1063/1.3696077
[27]
Lee M J, Lee D, Kim H, et al. Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays. 2012 Int Electron Devices Meet, 2012, 2.6.1 doi: 10.1109/IEDM.2012.6478966
[28]
Koo Y, Lee S M, Park S, et al. Simple binary ovonic threshold switching material SiTe and its excellent selector performance for high-density memory array application. IEEE Electron Device Lett, 2017, 38, 568 doi: 10.1109/LED.2017.2685435
Fig. 1.  (Color online) (a) TEM image of the multilayer selector device. (b) EDS line scanning spectrum along the direction marked by the line in (a). (c) EDS mapping of multilayer selector device.

Fig. 2.  (Color online) Cycle curves of triangle pulse test. (a) Monolayer GS sample. (b) Multilayer GSS sample. (c) Multilayer GSST sample. (d) Cumulative probability of Vth and Vh. The insets are the DC tests of each type of selector.

Fig. 3.  (Color online) Cycle curves of trapezoidal pulses test. (a) Monolayer GS sample. (b) Multilayer GSS sample. (c) Multilayer GSST sample. (d) Cumulative probability of delay time.

Fig. 4.  (Color online) Results of endurance test. (a) Monolayer GS sample. (b) Multilayer GSS sample. (c) Multilayer GSST sample. (d) Cumulative probability of ON and OFF resistance.

Table 1.   Comparison with other published selectors.

MaterialStructureThinkness (nm)Ioff (A)Cv (Vth)Ion/IoffEndurance
SeSbN/GeSeSbN [21]Multilayer2010–91062 × 109
AsTeGeSiN [27]Monolayer3010–7103108
SiTe [28]Monolayer1310–81045 × 105
GeSe (this work)Monolayer3010–82.7%103104
GeSe/GeSeSb (this work)Multilayer3010–735.7%103105
GeSe/GeSeSbTe (this work)Multilayer35.710–92.5%104>1010
DownLoad: CSV
[1]
Laudato M, Adinolfi V, Clarke R, et al. ALD GeAsSeTe ovonic threshold switch for 3D stackable crosspoint memory. 2020 IEEE Int Mem Work IMW, 2020, 1 doi: 10.1109/IMW48823.2020.9108152
[2]
Kim T, Lee D, Kim J, et al. Firing voltage reduction in thermally annealed Ge-As-Te thin film with ovonic threshold switching. J Vac Sci Technol B, 2020, 38, 032213 doi: 10.1116/1.5144736
[3]
Czubatyj W, Hudgens S J. Thin-film Ovonic threshold switch: Its operation and application in modern integrated circuits. Electron Mater Lett, 2012, 8, 157 doi: 10.1007/s13391-012-2040-z
[4]
Jeong D S, Lim H, Park G H, et al. Threshold resistive and capacitive switching behavior in binary amorphous GeSe. J Appl Phys, 2012, 111, 102807 doi: 10.1063/1.4714705
[5]
Ahn H W, Jeong D S, Cheong B K, et al. A study on the scalability of a selector device using threshold switching in Pt/GeSe/Pt. ECS Solid State Lett, 2013, 2, N31 doi: 10.1149/2.011309ssl
[6]
Kim S, Kim Y B, Kim K M, et al. Performance of threshold switching in chalcogenide glass for 3D stackable selector. 2013 Symp VLSI Technol, 2013, T240
[7]
Zhu M, Ren K, Song Z T. Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bull, 2019, 44, 715 doi: 10.1557/mrs.2019.206
[8]
Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21, 1450 doi: 10.1103/PhysRevLett.21.1450
[9]
Seo J, Ahn H W, Shin S Y, et al. Anomalous reduction of the switching voltage of Bi-doped Ge0.5Se0.5 ovonic threshold switching devices. Appl Phys Lett, 2014, 104, 153503 doi: 10.1063/1.4871385
[10]
Song B, Xu H, Liu S, et al. An ovonic threshold switching selector based on Se-rich GeSe chalcogenide. Appl Phys A, 2019, 125, 772 doi: 10.1007/s00339-019-3073-z
[11]
Verdy A, Navarro G, Sousa V, et al. Improved electrical performance thanks to Sb and N doping in Se-rich GeSe-based OTS selector devices. 2017 IEEE Int Mem Work IMW, 2017, 1 doi: 10.1109/IMW.2017.7939088
[12]
Noé P, Verdy A, d'Acapito F, et al. Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed. Sci Adv, 2020, 6, eaay2830 doi: 10.1126/sciadv.aay2830
[13]
Cheng H Y, Chien W C, Kuo I T, et al. An ultra high endurance and thermally stable selector based on TeAsGeSiSe chalcogenides compatible with BEOL IC Integration for cross-point PCM. 2017 IEEE Int Electron Devices Meet IEDM, 2017, 2.2.1 doi: 10.1109/IEDM.2017.8268310
[14]
Kau D, Tang S, Karpov I V, et al. A stackable cross point Phase Change Memory. 2009 IEEE Int Electron Devices Meet IEDM, 2009, 1 doi: 10.1109/IEDM.2009.5424263
[15]
Lee M J, Lee D, Cho S H, et al. A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat Commun, 2013, 4, 2629 doi: 10.1038/ncomms3629
[16]
Cheng H Y, Chien W C, Kuo I T, et al. Ultra-high endurance and low IOFF selector based on AsSeGe chalcogenides for wide memory window 3D stackable crosspoint memory. 2018 IEEE International Electron Devices Meeting, 2018, 37.3.1 doi: 10.1109/IEDM.2018.8614580
[17]
Navarro G, Verdy A, Castellani N, et al. Innovative PCM+OTS device with high sub-threshold non-linearity for non-switching reading operations and higher endurance performance. 2017 Symposium on VLSI Technology, 2017, T94 doi: 10.23919/VLSIT.2017.7998208
[18]
Velea A, Opsomer K, Devulder W, et al. Te-based chalcogenide materials for selector applications. Sci Rep, 2017, 7, 8103 doi: 10.1038/s41598-017-08251-z
[19]
Ding K Y, Wang J J, Zhou Y X, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science, 2019, 366, 210 doi: 10.1126/science.aay0291
[20]
Adinolfi V, Laudato M, Clarke R, et al. ALD heterojunction ovonic threshold switches. ACS Appl Electron Mater, 2020, 2, 3818 doi: 10.1021/acsaelm.0c00666
[21]
Laguna C, Castellani N, Bernard M, et al. Innovative multilayer OTS selectors for performance tuning and improved reliability. 2020 IEEE Int Mem Work IMW, 2020, 1 doi: 10.1109/IMW48823.2020.9108130
[22]
Laguna C, Bernard M, Bernier N, et al. Multilayer OTS selectors engineering for high temperature stability, scalability and high endurance. 2021 IEEE Int Mem Work IMW, 2021, 1 doi: 10.1109/IMW51353.2021.9439590
[23]
Govoreanu B, Donadio G L, Opsomer K, et al. Thermally stable integrated Se-based OTS selectors with >20 MA/cm2 current drive, >3.103 half-bias nonlinearity, tunable threshold voltage and excellent endurance. 2017 Symp VLSI Technol, 2017, T92 doi: 10.23919/VLSIT.2017.7998207
[24]
Koo Y, Baek K, Hwang H. Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications. 2016 IEEE Symp VLSI Technol, 2016, 1 doi: 10.1109/VLSIT.2016.7573389
[25]
Goyal D R, Maan A S. Far-infrared absorption in amorphous Sb15Ge xSe85– x glasses. J Non Cryst Solids, 1995, 183, 182 doi: 10.1016/0022-3093(94)00550-8
[26]
Ho Lee J, Hwan Kim G, Bae Ahn Y, et al. Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory. Appl Phys Lett, 2012, 100, 123505 doi: 10.1063/1.3696077
[27]
Lee M J, Lee D, Kim H, et al. Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays. 2012 Int Electron Devices Meet, 2012, 2.6.1 doi: 10.1109/IEDM.2012.6478966
[28]
Koo Y, Lee S M, Park S, et al. Simple binary ovonic threshold switching material SiTe and its excellent selector performance for high-density memory array application. IEEE Electron Device Lett, 2017, 38, 568 doi: 10.1109/LED.2017.2685435
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 985 Times PDF downloads: 114 Times Cited by: 0 Times

    History

    Received: 25 February 2022 Revised: 11 June 2022 Online: Uncorrected proof: 12 July 2022Published: 01 October 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shiqing Zhang, Bing Song, Shujing Jia, Rongrong Cao, Sen Liu, Hui Xu, Qingjiang Li. Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability[J]. Journal of Semiconductors, 2022, 43(10): 104101. doi: 10.1088/1674-4926/43/10/104101 S Q Zhang, B Song, S J Jia, R R Cao, S Liu, H Xu, Q J Li. Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability[J]. J. Semicond, 2022, 43(10): 104101. doi: 10.1088/1674-4926/43/10/104101Export: BibTex EndNote
      Citation:
      Shiqing Zhang, Bing Song, Shujing Jia, Rongrong Cao, Sen Liu, Hui Xu, Qingjiang Li. Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability[J]. Journal of Semiconductors, 2022, 43(10): 104101. doi: 10.1088/1674-4926/43/10/104101

      S Q Zhang, B Song, S J Jia, R R Cao, S Liu, H Xu, Q J Li. Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability[J]. J. Semicond, 2022, 43(10): 104101. doi: 10.1088/1674-4926/43/10/104101
      Export: BibTex EndNote

      Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability

      doi: 10.1088/1674-4926/43/10/104101
      More Information
      • Author Bio:

        Shiqing Zhang got her BS from Anhui University in 2019. Now she is a MS student at National University of Defense Technology under the supervision of Prof. Hui Xu. Her research focuses on ovonic threshold switching device and memristor

        Bing Song got his BS in 2011 at Beijing Institute of Technology and PhD degree in 2018 at National University of Defense Technology. He joined National University of Defense Technology as an associate professor in 2018. His research interests include intelligent device, circuit and system

        Qingjiang Li got his BS in 2008 and PhD degree in 2014 at National University of Defense Technology. He joined National University of Defense Technology as an associate professor in 2014. His research interests include intelligent device, circuit and system

      • Corresponding author: qingjiangli@nudt.edu.cn
      • Received Date: 2022-02-25
      • Revised Date: 2022-06-11
      • Available Online: 2022-07-12

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return