ARTICLES

Influence of architecture and temperature of alkali atom vapor cells on absorption spectra

Yali Liu, Wei Li, Yudong Li, Xiaokuan Li, Liangsen Feng and Xinliang Li

+ Author Affiliations

 Corresponding author: Wei Li, livy09@163.com

PDF

Turn off MathJax

Abstract: Chip-sized alkali atom vapor cells with high hermeticity are successfully fabricated through deep silicon etching and two anodic bonding processes. A self-built absorption spectrum testing system is used to test the absorption spectra of the rubidium atoms in alkali atom vapor cells. The influence of silicon cavity size, filling amount of rubidium atoms and temperature on the absorption spectra of rubidium atom vapor in the atom vapor cells are studied in depth through a theoretical analysis. This study provides a reference for the design and preparation of high quality chip-sized atom vapor cells.

Key words: chip-sized alkali atom vapor cellabsorption spectrumsilicon cavityrubidium azide



[1]
Lemke N D, Martin K W, Beard R, et al. Measurement of optical rubidium clock frequency spanning 65 days. Sensors, 2022, 22, 1982 doi: 10.3390/s22051982
[2]
Liu Y L, Li W, Wu T F, et al. Research progress of chip scale atomic clock. Metrol Meas Technol, 2021, 41, 7 doi: 10.11823∕j.issn.1674-5795.2021.04.02
[3]
Hasegawa M, Chutani R K, Gorecki C, et al. Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks. Sens Actuat A, 2011, 167, 594 doi: 10.1016/j.sna.2011.02.039
[4]
Budker D, Romalis M. Optical magnetometry. Nat Phys, 2007, 3, 227 doi: 10.1038/nphys566
[5]
Brazhnikov D V, Ignatovich S M, Mesenzova I S, et al. Nonlinear enhanced-absorption resonances in compact alkali-vapor cells for applications in quantum metrology. J Phys: Conf Ser, 2021, 1859, 012019 doi: 10.1088/1742-6596/1859/1/012019
[6]
Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys, 1997, 69, 629 doi: 10.1103/RevModPhys.69.629
[7]
Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys Rev Lett, 2002, 89, 130801 doi: 10.1103/PhysRevLett.89.130801
[8]
Tsvetkov S, Gateva S, Mariotti E. Optical control of high-density alkali atom vapor in antirelaxation coated cells. J Phys: Conf Ser, 2021, 1859, 012055 doi: 10.1088/1742-6596/1859/1/012055
[9]
Shun K, Yoshikazu H, Osamu T, et al. Microfabricated alkali metal vapor cells filled with an on-chip dispensing component. Jpn J Appl Phys, 2021, 60, SCCL01 doi: 10.35848/1347-4065/abe203
[10]
Jia S, Jiang Z Y, Jiao B B, et al. The microfabricated alkali vapor cell with high hermeticity for chip-scale atomic clock. Appl Sci, 2022, 12, 436 doi: 10.3390/app12010436
[11]
Li Y C, Hu X W, Liu Z J, et al. Research progress of atom vapor cell for chip-scale atomic clock. Laser Optoelectron Prog, 2018, 55, 060003 doi: 10.3788/LOP55.060003
[12]
GJB548B-2005. Test methods and procedures for microelectronic device. 2006
[13]
You Z, Ma B, Ruan Y, et al. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices. Opt Precis Eng, 2013, 21, 1440 doi: 10.3788/OPE.20132106.1440
[14]
Kitching J. Chip-scale atomic devices. Appl Phys Rev, 2018, 5, 031302 doi: 10.1063/1.5026238
[15]
Piccolo B, O’Connor R T. Atomic absorption spectroscopy. J Am Oil Chem Soc, 1968, 45, 789 doi: 10.1007/BF02631956
[16]
Romalis M V, Miron E, Cates G D. Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings. Phys Rev A, 1997, 56, 4569 doi: 10.1103/PhysRevA.56.4569
[17]
Zhou Y M. Measurement and analysis of alkali-metal-atom density distribution in gyroscopes. Master Dissertation, East China Normal University, 2020 (in Chinese)
[18]
Yang J. Study and exploration on physics package of coherent population trapping atomic clock. PhD Dissertation, University of Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics, 2014 (in Chinese)
[19]
Steck D A. Rubidium 85 D line data. Revision 2.1. 6, 2013
Fig. 1.  Image of chip-sized alkali atom vapor cells.

Fig. 2.  (Color online) The preparation process of MEMS atom vapor cell.

Fig. 3.  (Color online) Schematic diagram of the absorption spectrum testing system. Optical beams are shown in red lines. Electrical connections are shown in blue lines. Light source; C, chopper; L1, collimating lens; L2, focusing lens; S, Sample; L3, focusing lens; A1, entrance slit; Monochromator; A2, exit slit; PD, detector; Lock-in amplifier; Computer.

Fig. 4.  (Color online) Energy level spectrum of the Rb atom.

Fig. 5.  (Color online) Absorption spectra of alkali atom vapor cells at different temperatures. (a) The atom vapor cell with 4 mm diameter cavity. (b) The atom vapor cell with 5 mm diameter cavity. (c) The atom vapor cell with 6 mm diameter cavity.

Fig. 6.  (Color online) The relationship between the intensities of the two absorption peaks of the alkali atom vapor cells and the silicon cavity diameters. The heating temperatures of the alkali atom vapor cells are (a) 100 °C, (b) 120 °C, (c) 130 °C, (d) 140 °C.

Fig. 7.  (Color online) Comparison of the absorption spectra of the alkali atom vapor cells with RbN3 filling amounts of 125, 250, 375 and 500 μg in the silicon cavities. The heating temperatures of the alkali atom vapor cells are (a) 110 °C, (b) 120 °C, (c) 130 °C, (d) 140 °C.

[1]
Lemke N D, Martin K W, Beard R, et al. Measurement of optical rubidium clock frequency spanning 65 days. Sensors, 2022, 22, 1982 doi: 10.3390/s22051982
[2]
Liu Y L, Li W, Wu T F, et al. Research progress of chip scale atomic clock. Metrol Meas Technol, 2021, 41, 7 doi: 10.11823∕j.issn.1674-5795.2021.04.02
[3]
Hasegawa M, Chutani R K, Gorecki C, et al. Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks. Sens Actuat A, 2011, 167, 594 doi: 10.1016/j.sna.2011.02.039
[4]
Budker D, Romalis M. Optical magnetometry. Nat Phys, 2007, 3, 227 doi: 10.1038/nphys566
[5]
Brazhnikov D V, Ignatovich S M, Mesenzova I S, et al. Nonlinear enhanced-absorption resonances in compact alkali-vapor cells for applications in quantum metrology. J Phys: Conf Ser, 2021, 1859, 012019 doi: 10.1088/1742-6596/1859/1/012019
[6]
Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys, 1997, 69, 629 doi: 10.1103/RevModPhys.69.629
[7]
Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys Rev Lett, 2002, 89, 130801 doi: 10.1103/PhysRevLett.89.130801
[8]
Tsvetkov S, Gateva S, Mariotti E. Optical control of high-density alkali atom vapor in antirelaxation coated cells. J Phys: Conf Ser, 2021, 1859, 012055 doi: 10.1088/1742-6596/1859/1/012055
[9]
Shun K, Yoshikazu H, Osamu T, et al. Microfabricated alkali metal vapor cells filled with an on-chip dispensing component. Jpn J Appl Phys, 2021, 60, SCCL01 doi: 10.35848/1347-4065/abe203
[10]
Jia S, Jiang Z Y, Jiao B B, et al. The microfabricated alkali vapor cell with high hermeticity for chip-scale atomic clock. Appl Sci, 2022, 12, 436 doi: 10.3390/app12010436
[11]
Li Y C, Hu X W, Liu Z J, et al. Research progress of atom vapor cell for chip-scale atomic clock. Laser Optoelectron Prog, 2018, 55, 060003 doi: 10.3788/LOP55.060003
[12]
GJB548B-2005. Test methods and procedures for microelectronic device. 2006
[13]
You Z, Ma B, Ruan Y, et al. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices. Opt Precis Eng, 2013, 21, 1440 doi: 10.3788/OPE.20132106.1440
[14]
Kitching J. Chip-scale atomic devices. Appl Phys Rev, 2018, 5, 031302 doi: 10.1063/1.5026238
[15]
Piccolo B, O’Connor R T. Atomic absorption spectroscopy. J Am Oil Chem Soc, 1968, 45, 789 doi: 10.1007/BF02631956
[16]
Romalis M V, Miron E, Cates G D. Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings. Phys Rev A, 1997, 56, 4569 doi: 10.1103/PhysRevA.56.4569
[17]
Zhou Y M. Measurement and analysis of alkali-metal-atom density distribution in gyroscopes. Master Dissertation, East China Normal University, 2020 (in Chinese)
[18]
Yang J. Study and exploration on physics package of coherent population trapping atomic clock. PhD Dissertation, University of Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics, 2014 (in Chinese)
[19]
Steck D A. Rubidium 85 D line data. Revision 2.1. 6, 2013
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1021 Times PDF downloads: 105 Times Cited by: 0 Times

    History

    Received: 08 July 2022 Revised: 04 August 2022 Online: Accepted Manuscript: 16 September 2022Uncorrected proof: 19 September 2022Published: 02 December 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yali Liu, Wei Li, Yudong Li, Xiaokuan Li, Liangsen Feng, Xinliang Li. Influence of architecture and temperature of alkali atom vapor cells on absorption spectra[J]. Journal of Semiconductors, 2022, 43(12): 122901. doi: 10.1088/1674-4926/43/12/122901 Y L Liu, W Li, Y D Li, X K Li, L S Feng, X L Li. Influence of architecture and temperature of alkali atom vapor cells on absorption spectra[J]. J. Semicond, 2022, 43(12): 122901. doi: 10.1088/1674-4926/43/12/122901Export: BibTex EndNote
      Citation:
      Yali Liu, Wei Li, Yudong Li, Xiaokuan Li, Liangsen Feng, Xinliang Li. Influence of architecture and temperature of alkali atom vapor cells on absorption spectra[J]. Journal of Semiconductors, 2022, 43(12): 122901. doi: 10.1088/1674-4926/43/12/122901

      Y L Liu, W Li, Y D Li, X K Li, L S Feng, X L Li. Influence of architecture and temperature of alkali atom vapor cells on absorption spectra[J]. J. Semicond, 2022, 43(12): 122901. doi: 10.1088/1674-4926/43/12/122901
      Export: BibTex EndNote

      Influence of architecture and temperature of alkali atom vapor cells on absorption spectra

      doi: 10.1088/1674-4926/43/12/122901
      More Information
      • Author Bio:

        Yali Liu got her PhD degree in 2016 at Institute of Semiconductors, Chinese Academy of Sciences. She joined Science and Technology on Metrology and Calibration Laboratory, Changcheng Institute of Metrology & Measurement, Aviation Industry Corporation of China as a postdoc in 2020. Her research focuses on the preparation and application of atom vapor cells

        Wei Li received his BS from Hubei University in 2009 and PhD from Institute of Semiconductors, Chinese Academy of Sciences in 2014. Then he joined Science and Technology on Metrology and Calibration Laboratory, Changcheng Institute of Metrology & Measurement, Aviation Industry Corporation of China as a senior engineer. His research focuses on chip-scale metrology and sensing

      • Corresponding author: livy09@163.com
      • Received Date: 2022-07-08
      • Revised Date: 2022-08-04
      • Available Online: 2022-09-16

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return