REVIEWS

Diamond semiconductor and elastic strain engineering

Chaoqun Dang1, Anliang Lu1, Heyi Wang1, Hongti Zhang2 and Yang Lu1, 3, 4,

+ Author Affiliations

 Corresponding author: Yang Lu, yanglu@cityu.edu.hk

PDF

Turn off MathJax

Abstract: Diamond, as an ultra-wide bandgap semiconductor, has become a promising candidate for next-generation microelectronics and optoelectronics due to its numerous advantages over conventional semiconductors, including ultrahigh carrier mobility and thermal conductivity, low thermal expansion coefficient, and ultra-high breakdown voltage, etc. Despite these extraordinary properties, diamond also faces various challenges before being practically used in the semiconductor industry. This review begins with a brief summary of previous efforts to model and construct diamond-based high-voltage switching diodes, high-power/high-frequency field-effect transistors, MEMS/NEMS, and devices operating at high temperatures. Following that, we will discuss recent developments to address scalable diamond device applications, emphasizing the synthesis of large-area, high-quality CVD diamond films and difficulties in diamond doping. Lastly, we show potential solutions to modulate diamond’s electronic properties by the “elastic strain engineering” strategy, which sheds light on the future development of diamond-based electronics, photonics and quantum systems.

Key words: diamondoptoelectronicspower electronicsnanomechanicselastic strain engineering



[1]
Jayaraman A. Diamond anvil cell and high-pressure physical investigations. Rev Mod Phys, 1983, 55, 65 doi: 10.1103/RevModPhys.55.65
[2]
Li B, Ji C, Yang W, et al. Diamond anvil cell behavior up to 4 Mbar. PNAS, 2018, 115, 1713 doi: 10.1073/pnas.1721425115
[3]
Xia J, Yan J X, Wang Z H, et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat Phys, 2021, 17, 92 doi: 10.1038/s41567-020-1005-7
[4]
May P W. The new diamond age. Science, 2008, 319, 1490 doi: 10.1126/science.1154949
[5]
Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11, 22 doi: 10.1016/S1369-7021(07)70349-8
[6]
Aharonovich I, Greentree A D, Prawer S. Diamond photonics. Nat Photonics, 2011, 5, 397 doi: 10.1038/nphoton.2011.54
[7]
Watanabe H, Nebel C E, Shikata S. Isotopic homojunction band engineering from diamond. Science, 2009, 324, 1425 doi: 10.1126/science.1172419
[8]
Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv Electron Mater, 2018, 4, 1600501 doi: 10.1002/aelm.201600501
[9]
Field J E. The properties of natural and synthetic diamond. Academic Press, 1992 doi: 10.1002/crat.2170280504
[10]
Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297, 1670 doi: 10.1126/science.1074374
[11]
Schreck M, Asmussen J, Shikata S, et al. Large-area high-quality single crystal diamond. MRS Bull, 2014, 39, 504 doi: 10.1557/mrs.2014.96
[12]
Friel I, Clewes S L, Dhillon H K, et al. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition. Diam Relat Mater, 2009, 18, 808 doi: 10.1016/j.diamond.2009.01.013
[13]
Tallaire A, Brinza O, Mille V, et al. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole. Adv Mater, 2017, 29, 1604823 doi: 10.1002/adma.201604823
[14]
Lu Y J, Lin C N, Shan C X. Optoelectronic diamond: Growth, properties, and photodetection applications. Adv Opt Mater, 2018, 6, 1800359 doi: 10.1002/adom.201800359
[15]
Reggiani L, Bosi S, Canali C, et al. Hole-drift velocity in natural diamond. Phys Rev B, 1981, 23, 3050 doi: 10.1103/PhysRevB.23.3050
[16]
Perez G, Maréchal A, Chicot G, et al. Diamond semiconductor performances in power electronics applications. Diam Relat Mater, 2020, 110, 108154 doi: 10.1016/j.diamond.2020.108154
[17]
Miyata K, Dreifus D L, Kobashi K. Metal-intrinsic semiconductor-semiconductor structures using polycrystalline diamond films. Appl Phys Lett, 1992, 60, 480 doi: 10.1063/1.106642
[18]
Miyata K, Kobashi K, Dreifus D L. Rectifying diodes with a metal/intrinsic semiconductor/semiconductor structure using polycrystalline diamond films. Diam Relat Mater, 1993, 2, 1107 doi: 10.1016/0925-9635(93)90281-6
[19]
Brezeanu M, Rashid S J, Amaratunga G A J, et al. On-state behaviour of diamond M-i-P structures. 2006 International Semiconductor Conference, 2006, 311 doi: 10.1109/SMICND.2006.284006
[20]
Volpe P N, Muret P, Pernot J, et al. Extreme dielectric strength in boron doped homoepitaxial diamond. Appl Phys Lett, 2010, 97, 223501 doi: 10.1063/1.3520140
[21]
Traoré A, Nakajima A, Makino T, et al. Reverse-recovery of diamond p-i-n diodes. IET Power Electron, 2018, 11, 695 doi: 10.1049/iet-pel.2017.0404
[22]
Traoré A, Muret P, Fiori A, et al. Zr/oxidized diamond interface for high power Schottky diodes. Appl Phys Lett, 2014, 104, 052105 doi: 10.1063/1.4864060
[23]
Bormashov V S, Terentiev S A, Buga S G, et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique. Diam Relat Mater, 2017, 75, 78 doi: 10.1016/j.diamond.2017.02.006
[24]
Umezawa H, Shikata S I, Funaki T. Diamond Schottky barrier diode for high-temperature, high-power, and fast switching applications. Jpn J Appl Phys, 2014, 53, 05FP06 doi: 10.7567/JJAP.53.05FP06
[25]
Shimaoka T, Umezawa H, Ichikawa K, et al. Ultrahigh conversion efficiency of betavoltaic cell using diamond pn junction. Appl Phys Lett, 2020, 117, 103902 doi: 10.1063/5.0020135
[26]
Lee Y T, Vardi A, Tordjman M. A hybrid self-aligned MIS-MESFET architecture for improved diamond-based transistors. Appl Phys Lett, 2020, 117, 202101 doi: 10.1063/5.0023662
[27]
Maier F, Riedel M, Mantel B, et al. Origin of surface conductivity in diamond. Phys Rev Lett, 2000, 85, 3472 doi: 10.1103/PhysRevLett.85.3472
[28]
Liu J L, Yu H, Shao S W, et al. Carrier mobility enhancement on the H-terminated diamond surface. Diam Relat Mater, 2020, 104, 107750 doi: 10.1016/j.diamond.2020.107750
[29]
Yang N J, Yu S Y, MacPherson J V, et al. Conductive diamond: Synthesis, properties, and electrochemical applications. Chem Soc Rev, 2019, 48, 157 doi: 10.1039/C7CS00757D
[30]
Zhang M H, Wang W, Chen G Q, et al. Electrical properties of yttrium gate hydrogen-terminated diamond field effect transistor with Al2O3 dielectric layer. Appl Phys Lett, 2021, 118, 053506 doi: 10.1063/5.0027882
[31]
Matsumoto T, Kato H, Oyama K, et al. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Sci Rep, 2016, 6, 31585 doi: 10.1038/srep31585
[32]
Masante C, Rouger N, Pernot J. Recent progress in deep-depletion diamond metal–oxide–semiconductor field-effect transistors. J Phys D, 2021, 54, 233002 doi: 10.1088/1361-6463/abe8fe
[33]
Masante C, Pernot J, Maréchal A, et al. High temperature operation of a monolithic bidirectional diamond switch. Diam Relat Mater, 2021, 111, 108185 doi: 10.1016/j.diamond.2020.108185
[34]
Kohn E, Gluche P, Adamschik M. Diamond MEMS—a new emerging technology. Diam Relat Mater, 1999, 8, 934 doi: 10.1016/S0925-9635(98)00294-5
[35]
Sumant A V, Auciello O, Carpick R W, et al. Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications. MRS Bull, 2010, 35, 281 doi: 10.1557/mrs2010.550
[36]
Possas-Abreu M, Rousseau L, Ghassemi F, et al. Biomimetic diamond MEMS sensors based on odorant-binding proteins: Sensors validation through an autonomous electronic system. 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), 2017, 1 doi: 10.1109/ISOEN.2017.7968909
[37]
Liao M Y, Sang L W, Teraji T, et al. Ultrahigh performance on-chip single crystal diamond NEMS/MEMS with electrically tailored self-sensing enhancing actuation. Adv Mater Technol, 2019, 4, 1800325 doi: 10.1002/admt.201800325
[38]
Liao M Y. Progress in semiconductor diamond photodetectors and MEMS sensors. Funct Diam, 2021, 1, 29 doi: 10.1080/26941112.2021.1877019
[39]
Auciello O, Aslam D M. Review on advances in microcrystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies. J Mater Sci, 2021, 56, 7171 doi: 10.1007/s10853-020-05699-9
[40]
Tao Y, Boss J M, Moores B A, et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat Commun, 2014, 5, 3638 doi: 10.1038/ncomms4638
[41]
Rath P, Khasminskaya S, Nebel C, et al. Diamond-integrated optomechanical circuits. Nat Commun, 2013, 4, 1690 doi: 10.1038/ncomms2710
[42]
Rath P, Ummethala S, Diewald S, et al. Diamond electro-optomechanical resonators integrated in nanophotonic circuits. Appl Phys Lett, 2014, 105, 251102 doi: 10.1063/1.4901105
[43]
Pályi A, Struck P R, Rudner M, et al. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys Rev Lett, 2012, 108, 206811 doi: 10.1103/PhysRevLett.108.206811
[44]
Wilson-Rae I, Zoller P, Imamoğlu A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys Rev Lett, 2004, 92, 075507 doi: 10.1103/PhysRevLett.92.075507
[45]
Teissier J, Barfuss A, Appel P, et al. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys Rev Lett, 2014, 113, 020503 doi: 10.1103/PhysRevLett.113.020503
[46]
Barfuss A, Teissier J, Neu E, et al. Strong mechanical driving of a single electron spin. Nat Phys, 2015, 11, 820 doi: 10.1038/nphys3411
[47]
Riedrich-Möller J, Kipfstuhl L, Hepp C, et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat Nanotechnol, 2012, 7, 69 doi: 10.1038/nnano.2011.190
[48]
Rath P, Ummethala S, Nebel C, et al. Diamond as a material for monolithically integrated optical and optomechanical devices. Phys Status Solidi A, 2015, 212, 2385 doi: 10.1002/pssa.201532494
[49]
Rani D, Opaluch O, Neu E. Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics. Micromachines, 2020, 12, 36 doi: 10.3390/mi12010036
[50]
Piracha A H, Rath P, Ganesan K, et al. Scalable fabrication of integrated nanophotonic circuits on arrays of thin single crystal diamond membrane windows. Nano Lett, 2016, 16, 3341 doi: 10.1021/acs.nanolett.6b00974
[51]
Tao Y, Degen C. Facile fabrication of single-crystal-diamond nanostructures with ultrahigh aspect ratio. Adv Mater, 2013, 25, 3962 doi: 10.1002/adma.201301343
[52]
Parikh N R, Hunn J D, McGucken E, et al. Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing. Appl Phys Lett, 1992, 61, 3124 doi: 10.1063/1.107981
[53]
Fairchild B A, Olivero P, Rubanov S, et al. Fabrication of ultrathin single-crystal diamond membranes. Adv Mater, 2008, 20, 4793 doi: 10.1002/adma.200801460
[54]
Liao M Y, Li C, Hishita S, et al. Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems. J Micromech Microeng, 2010, 20, 085002 doi: 10.1088/0960-1317/20/8/085002
[55]
Atikian H A, Latawiec P, Burek M J, et al. Freestanding nanostructures via reactive ion beam angled etching. APL Photonics, 2017, 2, 051301 doi: 10.1063/1.4982603
[56]
Bayn I, Mouradian S, Li L, et al. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks. Appl Phys Lett, 2014, 105, 211101 doi: 10.1063/1.4902562
[57]
Zalalutdinov M K, Ray M P, Photiadis D M, et al. Ultrathin single crystal diamond nanomechanical dome resonators. Nano Lett, 2011, 11, 4304 doi: 10.1021/nl202326e
[58]
McKenzie W R, Quadir M Z, Gass M H, et al. Focused Ion beam implantation of diamond. Diam Relat Mater, 2011, 20, 1125 doi: 10.1016/j.diamond.2011.06.022
[59]
Rubanov S, Suvorova A. Ion implantation in diamond using 30 keV Ga+ focused ion beam. Diam Relat Mater, 2011, 20, 1160 doi: 10.1016/j.diamond.2011.06.027
[60]
Tong Z, Luo X C. Investigation of focused ion beam induced damage in single crystal diamond tools. Appl Surf Sci, 2015, 347, 727 doi: 10.1016/j.apsusc.2015.04.120
[61]
Bayn I, Bolker A, Cytermann C, et al. Diamond processing by focused ion beam—surface damage and recovery. Appl Phys Lett, 2011, 99, 183109 doi: 10.1063/1.3658631
[62]
Němec P, Preclíková J, Kromka A, et al. Ultrafast dynamics of photoexcited charge carriers in nanocrystalline diamond. Appl Phys Lett, 2008, 93, 083102 doi: 10.1063/1.2970962
[63]
Fang C, Zhang Y W, Zhang Z F, et al. Preparation of “natural” diamonds by HPHT annealing of synthetic diamonds. CrystEngComm, 2018, 20, 505 doi: 10.1039/C7CE02013A
[64]
Bundy F P, Hall H T, Strong H M, et al. Man-made diamonds. Nature, 1955, 176, 51 doi: 10.1038/176051a0
[65]
Hall H T. Sintered diamond: A synthetic carbonado. Science, 1970, 169, 868 doi: 10.1126/science.169.3948.868
[66]
Yin L W, Wang N W, Zou Z D, et al. Formation and crystal structure of metallic inclusions in a HPHT as-grown diamond single crystal. Appl Phys A, 2000, 71, 473 doi: 10.1007/s003390000608
[67]
Angus J C, Will H A, Stanko W S. Growth of diamond seed crystals by vapor deposition. J Appl Phys, 1968, 39, 2915 doi: 10.1063/1.1656693
[68]
Shu G Y, Dai B, Ralchenko V G, et al. Vertical-substrate epitaxial growth of single-crystal diamond by microwave plasma-assisted chemical vapor deposition. J Cryst Growth, 2018, 486, 104 doi: 10.1016/j.jcrysgro.2018.01.024
[69]
Shu G, Dai B, Ralchenko V G, et al. Growth of three-dimensional diamond mosaics by microwave plasma-assisted chemical vapor deposition. CrystEngComm, 2018, 20, 198 doi: 10.1039/C7CE01706E
[70]
Burns R C, Chumakov A I, Connell S H, et al. HPHT growth and X-ray characterization of high-quality type IIa diamond. J Phys Condens Matter, 2009, 21, 364224 doi: 10.1088/0953-8984/21/36/364224
[71]
Polyakov S N, Denisov V N, N V Kuzmin, et al. Characterization of top-quality type IIa synthetic diamonds for new X-ray optics. Diam Relat Mater, 2011, 20, 726 doi: 10.1016/j.diamond.2011.03.012
[72]
Yurov V, Bushuev E, Bolshakov A, et al. Etching kinetics of (100) single crystal diamond surfaces in a hydrogen microwave plasma, studied with In Situ low-coherence interferometry. Phys Status Solidi A, 2017, 214, 1700177 doi: 10.1002/pssa.201700177
[73]
Liang Q, Chin C Y, Lai J, et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl Phys Lett, 2009, 94, 024103 doi: 10.1063/1.3072352
[74]
Füner M, Wild C, Koidl P. Novel microwave plasma reactor for diamond synthesis. Appl Phys Lett, 1998, 72, 1149 doi: 10.1063/1.120997
[75]
Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett, 2014, 104, 102110 doi: 10.1063/1.4868720
[76]
Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers. Sci Rep, 2017, 7, 44462 doi: 10.1038/srep44462
[77]
Ohmagari S, Yamada H, Tsubouchi N, et al. Schottky barrier diodes fabricated on diamond mosaic wafers: Dislocation reduction to mitigate the effect of coalescence boundaries. Appl Phys Lett, 2019, 114, 082104 doi: 10.1063/1.5085364
[78]
Argoitia A, Angus J C, Ma J S, et al. Heteroepitaxy of diamond on c-BN: Growth mechanisms and defect characterization. J Mater Res, 1994, 9, 1849 doi: 10.1557/JMR.1994.1849
[79]
Wang L, Pirouz P, Argoitia A, et al. Heteroepitaxially grown diamond on a c-BN {111} surface. Appl Phys Lett, 1993, 63, 1336 doi: 10.1063/1.109723
[80]
Tachibana T, Yokota Y, Miyata K, et al. Diamond films heteroepitaxially grown on platinum (111). Phys Rev B, 1997, 56, 15967 doi: 10.1103/PhysRevB.56.15967
[81]
Zhu W, Yang P C, Glass J T. Oriented diamond films grown on nickel substrates. Appl Phys Lett, 1993, 63, 1640 doi: 10.1063/1.110721
[82]
Liu W, Tucker D A, Yang P C, et al. Nucleation of oriented diamond particles on cobalt substrates. J Appl Phys, 1995, 78, 1291 doi: 10.1063/1.360768
[83]
Jiang X, Klages C P. Heteroepitaxial diamond growth on (100) silicon. Diam Relat Mater, 1993, 2, 1112 doi: 10.1016/0925-9635(93)90282-7
[84]
Kawarada H, Wild C, Herres N, et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide. J Appl Phys, 1997, 81, 3490 doi: 10.1063/1.365047
[85]
Wolter S D, McClure M T, Glass J T, et al. Bias-enhanced nucleation of highly oriented diamond on titanium carbide (111) substrates. Appl Phys Lett, 1995, 66, 2810 doi: 10.1063/1.113483
[86]
Bensalah H, Stenger I, Sakr G, et al. Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diam Relat Mater, 2016, 66, 188 doi: 10.1016/j.diamond.2016.04.006
[87]
Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater, 2019, 94, 92 doi: 10.1016/j.diamond.2019.01.027
[88]
Ohtsuka K, Suzuki K, Sawabe A, et al. Epitaxial growth of diamond on iridium. Jpn J Appl Phys, 1996, 35, L1072 doi: 10.1143/JJAP.35.L1072
[89]
Schreck M, Bauer T, Gsell S, et al. Domain formation in diamond nucleation on iridium. Diam Relat Mater, 2003, 12, 262 doi: 10.1016/S0925-9635(02)00361-8
[90]
Verstraete M J, Charlier J C. Why is iridium the best substrate for single crystal diamond growth. Appl Phys Lett, 2005, 86, 191917 doi: 10.1063/1.1922571
[91]
Kono S, Shiraishi M, Plusnin N I, et al. X-ray photoelectron diffraction study of the initial stages of CVD diamond heteroepitaxy on Ir (001)/SrTiO3. New Diam Front Carbon Technol, 2005, 15, 363
[92]
Vaissiere N, Saada S, Bouttemy M, et al. Heteroepitaxial diamond on iridium: New insights on domain formation. Diam Relat Mater, 2013, 36, 16 doi: 10.1016/j.diamond.2013.03.010
[93]
Washiyama S, Mita S, Suzuki K, et al. Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001). Appl Phys Express, 2011, 4, 095502 doi: 10.1143/APEX.4.095502
[94]
Fujisaki T, Tachiki M, Taniyama N, et al. Initial growth of heteroepitaxial diamond on Ir (001)/MgO (001) substrates using antenna-edge-type microwave plasma assisted chemical vapor deposition. Diam Relat Mater, 2003, 12, 246 doi: 10.1016/S0925-9635(03)00037-2
[95]
Kim S W, Kawamata Y, Takaya R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (11-20) sapphire substrate. Appl Phys Lett, 2020, 117, 202102 doi: 10.1063/5.0024070
[96]
Samoto A, Ito S, Hotta A, et al. Investigation of heterostructure between diamond and iridium on sapphire. Diam Relat Mater, 2008, 17, 1039 doi: 10.1016/j.diamond.2008.02.007
[97]
Bednarski C, Dai Z, Li A P, et al. Studies of heteroepitaxial growth of diamond. Diam Relat Mater, 2003, 12, 241 doi: 10.1016/S0925-9635(02)00287-X
[98]
Lee K H, Saada S, Arnault J C, et al. Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy. Diam Relat Mater, 2016, 66, 67 doi: 10.1016/j.diamond.2016.03.018
[99]
Bauer T, Gsell S, Schreck M, et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers. Diam Relat Mater, 2005, 14, 314 doi: 10.1016/j.diamond.2004.10.028
[100]
Fischer M, Brescia R, Gsell S, et al. Growth of twin-free heteroepitaxial diamond on Ir/YSZ/Si(111). J Appl Phys, 2008, 104, 123531 doi: 10.1063/1.3019046
[101]
Regmi M, More K, Eres G. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition. Diam Relat Mater, 2012, 23, 28 doi: 10.1016/j.diamond.2012.01.008
[102]
Lee S T, Lifshitz Y. The road to diamond wafers. Nature, 2003, 424, 500 doi: 10.1038/424500a
[103]
Gsell S, Bauer T, Goldfuß J, et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers. Appl Phys Lett, 2004, 84, 4541 doi: 10.1063/1.1758780
[104]
Zhang S S, Li Z H, Luo K, et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci Rev, 2021, in press doi: 10.1093/nsr/nwab140
[105]
Zhang S S, Wu Y J, Luo K, et al. Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene. Cell Rep Phys Sci, 2021, 2, 100575 doi: 10.1016/j.xcrp.2021.100575
[106]
Asmussen J, Grotjohn T A, Schuelke T, et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis. Appl Phys Lett, 2008, 93, 031502 doi: 10.1063/1.2961016
[107]
Chow T P, Tyagi R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans Electron Devices, 1994, 41, 1481 doi: 10.1109/16.297751
[108]
Laks D B, van de Walle C G, Neumark G F, et al. Role of native defects in wide-band-gap semiconductors. Phys Rev Lett, 1991, 66, 648 doi: 10.1103/PhysRevLett.66.648
[109]
Nesladek M. Conventional n-type doping in diamond: State of the art and recent progress. Semicond Sci Technol, 2005, 20, R19 doi: 10.1088/0268-1242/20/2/R01
[110]
Borst T H, Weis O. Boron-doped homoepitaxial diamond layers: Fabrication, characterization, and electronic applications. Phys Status Solidi A, 1996, 154, 423 doi: 10.1002/pssa.2211540130
[111]
Kalish R. The search for donors in diamond. Diam Relat Mater, 2001, 10, 1749 doi: 10.1016/S0925-9635(01)00426-5
[112]
Chrenko R M. Boron, the dominant acceptor in semiconducting diamond. Phys Rev B, 1973, 7, 4560 doi: 10.1103/PhysRevB.7.4560
[113]
Teukam Z, Chevallier J, Saguy C, et al. Shallow donors with high n-type electrical conductivity in homoepitaxial deuterated boron-doped diamond layers. Nat Mater, 2003, 2, 482 doi: 10.1038/nmat929
[114]
Ekimov E A, Sidorov V A, Bauer E D, et al. Superconductivity in diamond. Nature, 2004, 428, 542 doi: 10.1038/nature02449
[115]
Boeri L, Kortus J, Andersen O K. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys Rev Lett, 2004, 93, 237002 doi: 10.1103/PhysRevLett.93.237002
[116]
Lee K W, Pickett W E. Superconductivity in boron-doped diamond. Phys Rev Lett, 2004, 93, 237003 doi: 10.1103/PhysRevLett.93.237003
[117]
Xiang H J, Li Z Y, Yang J L, et al. Electron-phonon coupling in a boron-doped diamond superconductor. Phys Rev B, 2004, 70, 212504 doi: 10.1103/PhysRevB.70.212504
[118]
Blase X, Adessi C, Connétable D. Role of the dopant in the superconductivity of diamond. Phys Rev Lett, 2004, 93, 237004 doi: 10.1103/PhysRevLett.93.237004
[119]
Ma Y M, Tse J S, Cui T, et al. First-principles study of electron-phonon coupling in hole- and electron-doped diamonds in the virtual crystal approximation. Phys Rev B, 2005, 72, 014306 doi: 10.1103/physrevb.72.014306
[120]
Giustino F, Yates J R, Souza I, et al. Electron-phonon interaction via electronic and lattice wannier functions: Superconductivity in boron-doped diamond reexamined. Phys Rev Lett, 2007, 98, 047005 doi: 10.1103/PhysRevLett.98.047005
[121]
Kawano A, Ishiwata H, Iriyama S, et al. Superconductor-to-insulator transition in boron-doped diamond films grown using chemical vapor deposition. Phys Rev B, 2010, 82, 085318 doi: 10.1103/PhysRevB.82.085318
[122]
Lloret F, Eon D, Bustarret E, et al. Selectively boron doped homoepitaxial diamond growth for power device applications. Appl Phys Lett, 2021, 118, 023504 doi: 10.1063/5.0031478
[123]
Tsukioka K, Okushi H. Hall mobility and scattering mechanism of holes in boron-doped homoepitaxial chemical vapor deposition diamond thin films. Jpn J Appl Phys, 2006, 45, 8571 doi: 10.1143/JJAP.45.8571
[124]
Bormashov V S, Tarelkin S A, Buga S G, et al. Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam Relat Mater, 2013, 35, 19 doi: 10.1016/j.diamond.2013.02.011
[125]
Isberg J, Lindblom A, Tajani A, et al. Temperature dependence of hole drift mobility in high-purity single-crystal CVD diamond. Phys Status Solidi A, 2005, 202, 2194 doi: 10.1002/pssa.200561915
[126]
Kajihara S A, Antonelli A, Bernholc J, et al. Nitrogen and potentialn-type dopants in diamond. Phys Rev Lett, 1991, 66, 2010 doi: 10.1103/PhysRevLett.66.2010
[127]
Koizumi S, Kamo M, Sato Y, et al. Growth and characterization of phosphorus doped n-type diamond thin films. Diam Relat Mater, 1998, 7, 540 doi: 10.1016/S0925-9635(97)00250-1
[128]
Kalish R. Doping of diamond. Carbon, 1999, 37, 781 doi: 10.1016/S0008-6223(98)00270-X
[129]
Koizumi S, Teraji T, Kanda H. Phosphorus-doped chemical vapor deposition of diamond. Diam Relat Mater, 2000, 9, 935 doi: 10.1016/S0925-9635(00)00217-X
[130]
Gheeraert E, Koizumi S, Teraji T, et al. Electronic transitions of electrons bound to phosphorus donors in diamond. Solid State Commun, 2000, 113, 577 doi: 10.1016/S0038-1098(99)00546-3
[131]
Nesládek M, Meykens K, Haenen K, et al. Photocurrent and optical absorption spectroscopic study of n-type phosphorus-doped CVD diamond. Diam Relat Mater, 1999, 8, 882 doi: 10.1016/S0925-9635(98)00291-X
[132]
Yu S Y, Xu J, Kato H, et al. Phosphorus-doped nanocrystalline diamond for supercapacitor application. ChemElectroChem, 2019, 6, 1088 doi: 10.1002/celc.201801543
[133]
Kato H, Yamasaki S, Okushi H. N-type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl Phys Lett, 2005, 86, 222111 doi: 10.1063/1.1944228
[134]
Ohtani R, Yamamoto T, Janssens S D, et al. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond. Appl Phys Lett, 2014, 105, 232106 doi: 10.1063/1.4903779
[135]
Sakaguchi I, Gamo M N, Kikuchi Y, et al. Sulfur: A donor dopant forn-type diamond semiconductors. Phys Rev B, 1999, 60, R2139 doi: 10.1103/PhysRevB.60.R2139
[136]
Kalish R, Reznik A, Uzan-Saguy C, et al. Is sulfur a donor in diamond. Appl Phys Lett, 2000, 76(76), 757 doi: 10.1063/1.125885
[137]
Saada D, Adler J, Kalish R. Sulfur: A potential donor in diamond. Appl Phys Lett, 2000, 77, 878 doi: 10.1063/1.1306914
[138]
Li J, Shan Z W, Ma E. Elastic strain engineering for unprecedented materials properties. MRS Bull, 2014, 39, 108 doi: 10.1557/mrs.2014.3
[139]
Feng J, Qian X F, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics, 2012, 6, 866 doi: 10.1038/nphoton.2012.285
[140]
Chidambaram P R, Bowen C, Chakravarthi S, et al. Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing. IEEE Trans Electron Devices, 2006, 53, 944 doi: 10.1109/TED.2006.872912
[141]
Zhu T, Li J, Ogata S, et al. Mechanics of ultra-strength materials. MRS Bull, 2009, 34, 167 doi: 10.1557/mrs2009.47
[142]
Zhu T, Li J. Ultra-strength materials. Prog Mater Sci, 2010, 55, 710 doi: 10.1016/j.pmatsci.2010.04.001
[143]
Zhang H T, Tersoff J, Xu S, et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci Adv, 2016, 2, e1501382 doi: 10.1126/sciadv.1501382
[144]
Humble P, Hannink R H J. Plastic deformation of diamond at room temperature. Nature, 1978, 273, 37 doi: 10.1038/273037a0
[145]
Blank V, Popov M, Pivovarov G, et al. Ultrahard and superhard phases of fullerite C60: Comparison with diamond on hardness and wear. Diam Relat Mater, 1998, 7, 427 doi: 10.1016/S0925-9635(97)00232-X
[146]
Eremets M I, Trojan I A, Gwaze P, et al. The strength of diamond. Appl Phys Lett, 2005, 87, 141902 doi: 10.1063/1.2061853
[147]
Wheeler J M, Raghavan R, Wehrs J, et al. Approaching the limits of strength: Measuring the uniaxial compressive strength of diamond at small scales. Nano Lett, 2016, 16, 812 doi: 10.1021/acs.nanolett.5b04989
[148]
Banerjee A, Bernoulli D, Zhang H, et al. Ultralarge elastic deformation of nanoscale diamond. Science, 2018, 360, 300 doi: 10.1126/science.aar4165
[149]
Shi Z, Tsymbalov E, Dao M, et al. Deep elastic strain engineering of bandgap through machine learning. PNAS, 2019, 116, 4117 doi: 10.1073/pnas.1818555116
[150]
Liu C, Song X Q, Li Q, et al. Smooth flow in diamond: Atomistic ductility and electronic conductivity. Phys Rev Lett, 2019, 123, 195504 doi: 10.1103/PhysRevLett.123.195504
[151]
Nie A M, Bu Y Q, Li P H, et al. Approaching diamond's theoretical elasticity and strength limits. Nat Commun, 2019, 10, 5533 doi: 10.1038/s41467-019-13378-w
[152]
Dang C, Chou J P, Dai B, et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science, 2021, 371, 76 doi: 10.1126/science.abc4174
[153]
Shi Z, Dao M, Tsymbalov E, et al. Metallization of diamond. PNAS, 2020, 117, 24634 doi: 10.1073/pnas.2013565117
[154]
Liu C, Song X Q, Li Q, et al. Superconductivity in compression-shear deformed diamond. Phys Rev Lett, 2020, 124, 147001 doi: 10.1103/PhysRevLett.124.147001
[155]
Yang S, Wang Y, Rao D D B, et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat Photonics, 2016, 10, 507 doi: 10.1038/nphoton.2016.103
[156]
Yip K Y, Ho K O, Yu K Y, et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science, 2019, 366, 1355 doi: 10.1126/science.aaw4278
[157]
Gustafsson M V, Aref T, Kockum A F, et al. Propagating phonons coupled to an artificial atom. Science, 2014, 346, 207 doi: 10.1126/science.1257219
Fig. 1.  (Color online) Representative diamond devices. (a, b) A picture and schematic of a diamond SBD[16]. (c) Diamond SBD is placed in a metal/ceramic container with high-temperature turn-off capabilities[24]. (d) Switching characterization of a diamond vertical SBD at 50, 150, and 250 °C, respectively[24]. (e) Schematic cross-section along with the red dot in a top-view optical picture of a MOSFET[31]. S, D, and G represent the source, drain, and gate contacts, respectively. (f) Drain current (Id) versus drain voltage (Vds) of a diamond MOSFET at room temperature[31]. (g) Scanning electron micrograph (SEM) of diamond-on-insulator devices with multiple cantilevers[40]. (h) SEM image of a fabricated compact focusing grating coupler device[41]. (i) SEM image of a freestanding diamond resonator in a fabricated electro-optomechanical device[42].

Fig. 2.  (Color online) Synthetic diamonds. (a) Microwave plasma-assisted CVD growth of SCD over 70 large 3.5 × 3.5 mm2 HPHT seed crystals[11, 106]. (b) A mosaic wafer (40 × 40 mm2) in which CVD growth connects diamond plate fragments horizontally[77]. (c) A 155-carat freestanding pristine SCD with a thickness of 1.6 ± 0.25 mm and diameter of 90 mm fabricated by heteroepitaxy on Ir/YSZ/Si(001) in a microwave plasma CVD[76]. (d) An amorphous carbon material AM-III showing the intrinsic semiconducting nature with a bandgap of 1.5–2.2 eV[104].

Fig. 3.  (Color online) Elastic strain engineering of diamond. (a–c) Schematic of the "push-to-bend" deformation of the nanoscale diamond needle with maximum deformation just before fracture, corresponding FEM simulation reproducing the geometry of the bending and displaying the local elastic maximum principal strain[148]. (d) "Compress-to-bend" deformation test on a FIB-machined single-crystalline nanoscale diamond needle along with [100] direction to the maximum bending deformation just before fracture and corresponding FEM simulation replicating the crucial nanoneedle shape and distribution of maximum principal strain[151]. (e, f) Uniaxial tensile setup of the diamond bridge with loading-full-unloading deformation, corresponding FEM simulation reproducing the geometry of the diamond bridge illustrating the longitudinal distribution of elastic strain[152]. (g) Tensile deformation of a diamond array with multiple bridges reaching a maximum tensile strain of 6%[152]. (h) Diamond bandgap envelope expanding to the semiconductor area with decreased bandgap. The black and red dots respectively denote the upper- and lower-envelope functions. The right side shows an illustration of bandgap isosurfaces in the ε1ε2ε3 strain space[149]. (i) Detailed ε11ε22 strain space showing an area of direct metal strains (brown) within the area of direct bandgap strains (blue) and an area of indirect metal strains (brown) within the nonzero indirect bandgap strains (white region with magenta symbols)[153]. (j) Three semiconducting, conducting, and superconducting stages of electronic bandgap evolution in progressively deformed diamond under (11$ {\overline 2} $)[111] compression-shear strain and strain dependence of critical temperature Tc for a selected range of Coulomb pseudopotential μ*[154].

[1]
Jayaraman A. Diamond anvil cell and high-pressure physical investigations. Rev Mod Phys, 1983, 55, 65 doi: 10.1103/RevModPhys.55.65
[2]
Li B, Ji C, Yang W, et al. Diamond anvil cell behavior up to 4 Mbar. PNAS, 2018, 115, 1713 doi: 10.1073/pnas.1721425115
[3]
Xia J, Yan J X, Wang Z H, et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat Phys, 2021, 17, 92 doi: 10.1038/s41567-020-1005-7
[4]
May P W. The new diamond age. Science, 2008, 319, 1490 doi: 10.1126/science.1154949
[5]
Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11, 22 doi: 10.1016/S1369-7021(07)70349-8
[6]
Aharonovich I, Greentree A D, Prawer S. Diamond photonics. Nat Photonics, 2011, 5, 397 doi: 10.1038/nphoton.2011.54
[7]
Watanabe H, Nebel C E, Shikata S. Isotopic homojunction band engineering from diamond. Science, 2009, 324, 1425 doi: 10.1126/science.1172419
[8]
Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv Electron Mater, 2018, 4, 1600501 doi: 10.1002/aelm.201600501
[9]
Field J E. The properties of natural and synthetic diamond. Academic Press, 1992 doi: 10.1002/crat.2170280504
[10]
Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297, 1670 doi: 10.1126/science.1074374
[11]
Schreck M, Asmussen J, Shikata S, et al. Large-area high-quality single crystal diamond. MRS Bull, 2014, 39, 504 doi: 10.1557/mrs.2014.96
[12]
Friel I, Clewes S L, Dhillon H K, et al. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition. Diam Relat Mater, 2009, 18, 808 doi: 10.1016/j.diamond.2009.01.013
[13]
Tallaire A, Brinza O, Mille V, et al. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole. Adv Mater, 2017, 29, 1604823 doi: 10.1002/adma.201604823
[14]
Lu Y J, Lin C N, Shan C X. Optoelectronic diamond: Growth, properties, and photodetection applications. Adv Opt Mater, 2018, 6, 1800359 doi: 10.1002/adom.201800359
[15]
Reggiani L, Bosi S, Canali C, et al. Hole-drift velocity in natural diamond. Phys Rev B, 1981, 23, 3050 doi: 10.1103/PhysRevB.23.3050
[16]
Perez G, Maréchal A, Chicot G, et al. Diamond semiconductor performances in power electronics applications. Diam Relat Mater, 2020, 110, 108154 doi: 10.1016/j.diamond.2020.108154
[17]
Miyata K, Dreifus D L, Kobashi K. Metal-intrinsic semiconductor-semiconductor structures using polycrystalline diamond films. Appl Phys Lett, 1992, 60, 480 doi: 10.1063/1.106642
[18]
Miyata K, Kobashi K, Dreifus D L. Rectifying diodes with a metal/intrinsic semiconductor/semiconductor structure using polycrystalline diamond films. Diam Relat Mater, 1993, 2, 1107 doi: 10.1016/0925-9635(93)90281-6
[19]
Brezeanu M, Rashid S J, Amaratunga G A J, et al. On-state behaviour of diamond M-i-P structures. 2006 International Semiconductor Conference, 2006, 311 doi: 10.1109/SMICND.2006.284006
[20]
Volpe P N, Muret P, Pernot J, et al. Extreme dielectric strength in boron doped homoepitaxial diamond. Appl Phys Lett, 2010, 97, 223501 doi: 10.1063/1.3520140
[21]
Traoré A, Nakajima A, Makino T, et al. Reverse-recovery of diamond p-i-n diodes. IET Power Electron, 2018, 11, 695 doi: 10.1049/iet-pel.2017.0404
[22]
Traoré A, Muret P, Fiori A, et al. Zr/oxidized diamond interface for high power Schottky diodes. Appl Phys Lett, 2014, 104, 052105 doi: 10.1063/1.4864060
[23]
Bormashov V S, Terentiev S A, Buga S G, et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique. Diam Relat Mater, 2017, 75, 78 doi: 10.1016/j.diamond.2017.02.006
[24]
Umezawa H, Shikata S I, Funaki T. Diamond Schottky barrier diode for high-temperature, high-power, and fast switching applications. Jpn J Appl Phys, 2014, 53, 05FP06 doi: 10.7567/JJAP.53.05FP06
[25]
Shimaoka T, Umezawa H, Ichikawa K, et al. Ultrahigh conversion efficiency of betavoltaic cell using diamond pn junction. Appl Phys Lett, 2020, 117, 103902 doi: 10.1063/5.0020135
[26]
Lee Y T, Vardi A, Tordjman M. A hybrid self-aligned MIS-MESFET architecture for improved diamond-based transistors. Appl Phys Lett, 2020, 117, 202101 doi: 10.1063/5.0023662
[27]
Maier F, Riedel M, Mantel B, et al. Origin of surface conductivity in diamond. Phys Rev Lett, 2000, 85, 3472 doi: 10.1103/PhysRevLett.85.3472
[28]
Liu J L, Yu H, Shao S W, et al. Carrier mobility enhancement on the H-terminated diamond surface. Diam Relat Mater, 2020, 104, 107750 doi: 10.1016/j.diamond.2020.107750
[29]
Yang N J, Yu S Y, MacPherson J V, et al. Conductive diamond: Synthesis, properties, and electrochemical applications. Chem Soc Rev, 2019, 48, 157 doi: 10.1039/C7CS00757D
[30]
Zhang M H, Wang W, Chen G Q, et al. Electrical properties of yttrium gate hydrogen-terminated diamond field effect transistor with Al2O3 dielectric layer. Appl Phys Lett, 2021, 118, 053506 doi: 10.1063/5.0027882
[31]
Matsumoto T, Kato H, Oyama K, et al. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Sci Rep, 2016, 6, 31585 doi: 10.1038/srep31585
[32]
Masante C, Rouger N, Pernot J. Recent progress in deep-depletion diamond metal–oxide–semiconductor field-effect transistors. J Phys D, 2021, 54, 233002 doi: 10.1088/1361-6463/abe8fe
[33]
Masante C, Pernot J, Maréchal A, et al. High temperature operation of a monolithic bidirectional diamond switch. Diam Relat Mater, 2021, 111, 108185 doi: 10.1016/j.diamond.2020.108185
[34]
Kohn E, Gluche P, Adamschik M. Diamond MEMS—a new emerging technology. Diam Relat Mater, 1999, 8, 934 doi: 10.1016/S0925-9635(98)00294-5
[35]
Sumant A V, Auciello O, Carpick R W, et al. Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications. MRS Bull, 2010, 35, 281 doi: 10.1557/mrs2010.550
[36]
Possas-Abreu M, Rousseau L, Ghassemi F, et al. Biomimetic diamond MEMS sensors based on odorant-binding proteins: Sensors validation through an autonomous electronic system. 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), 2017, 1 doi: 10.1109/ISOEN.2017.7968909
[37]
Liao M Y, Sang L W, Teraji T, et al. Ultrahigh performance on-chip single crystal diamond NEMS/MEMS with electrically tailored self-sensing enhancing actuation. Adv Mater Technol, 2019, 4, 1800325 doi: 10.1002/admt.201800325
[38]
Liao M Y. Progress in semiconductor diamond photodetectors and MEMS sensors. Funct Diam, 2021, 1, 29 doi: 10.1080/26941112.2021.1877019
[39]
Auciello O, Aslam D M. Review on advances in microcrystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies. J Mater Sci, 2021, 56, 7171 doi: 10.1007/s10853-020-05699-9
[40]
Tao Y, Boss J M, Moores B A, et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat Commun, 2014, 5, 3638 doi: 10.1038/ncomms4638
[41]
Rath P, Khasminskaya S, Nebel C, et al. Diamond-integrated optomechanical circuits. Nat Commun, 2013, 4, 1690 doi: 10.1038/ncomms2710
[42]
Rath P, Ummethala S, Diewald S, et al. Diamond electro-optomechanical resonators integrated in nanophotonic circuits. Appl Phys Lett, 2014, 105, 251102 doi: 10.1063/1.4901105
[43]
Pályi A, Struck P R, Rudner M, et al. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys Rev Lett, 2012, 108, 206811 doi: 10.1103/PhysRevLett.108.206811
[44]
Wilson-Rae I, Zoller P, Imamoğlu A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys Rev Lett, 2004, 92, 075507 doi: 10.1103/PhysRevLett.92.075507
[45]
Teissier J, Barfuss A, Appel P, et al. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys Rev Lett, 2014, 113, 020503 doi: 10.1103/PhysRevLett.113.020503
[46]
Barfuss A, Teissier J, Neu E, et al. Strong mechanical driving of a single electron spin. Nat Phys, 2015, 11, 820 doi: 10.1038/nphys3411
[47]
Riedrich-Möller J, Kipfstuhl L, Hepp C, et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat Nanotechnol, 2012, 7, 69 doi: 10.1038/nnano.2011.190
[48]
Rath P, Ummethala S, Nebel C, et al. Diamond as a material for monolithically integrated optical and optomechanical devices. Phys Status Solidi A, 2015, 212, 2385 doi: 10.1002/pssa.201532494
[49]
Rani D, Opaluch O, Neu E. Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics. Micromachines, 2020, 12, 36 doi: 10.3390/mi12010036
[50]
Piracha A H, Rath P, Ganesan K, et al. Scalable fabrication of integrated nanophotonic circuits on arrays of thin single crystal diamond membrane windows. Nano Lett, 2016, 16, 3341 doi: 10.1021/acs.nanolett.6b00974
[51]
Tao Y, Degen C. Facile fabrication of single-crystal-diamond nanostructures with ultrahigh aspect ratio. Adv Mater, 2013, 25, 3962 doi: 10.1002/adma.201301343
[52]
Parikh N R, Hunn J D, McGucken E, et al. Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing. Appl Phys Lett, 1992, 61, 3124 doi: 10.1063/1.107981
[53]
Fairchild B A, Olivero P, Rubanov S, et al. Fabrication of ultrathin single-crystal diamond membranes. Adv Mater, 2008, 20, 4793 doi: 10.1002/adma.200801460
[54]
Liao M Y, Li C, Hishita S, et al. Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems. J Micromech Microeng, 2010, 20, 085002 doi: 10.1088/0960-1317/20/8/085002
[55]
Atikian H A, Latawiec P, Burek M J, et al. Freestanding nanostructures via reactive ion beam angled etching. APL Photonics, 2017, 2, 051301 doi: 10.1063/1.4982603
[56]
Bayn I, Mouradian S, Li L, et al. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks. Appl Phys Lett, 2014, 105, 211101 doi: 10.1063/1.4902562
[57]
Zalalutdinov M K, Ray M P, Photiadis D M, et al. Ultrathin single crystal diamond nanomechanical dome resonators. Nano Lett, 2011, 11, 4304 doi: 10.1021/nl202326e
[58]
McKenzie W R, Quadir M Z, Gass M H, et al. Focused Ion beam implantation of diamond. Diam Relat Mater, 2011, 20, 1125 doi: 10.1016/j.diamond.2011.06.022
[59]
Rubanov S, Suvorova A. Ion implantation in diamond using 30 keV Ga+ focused ion beam. Diam Relat Mater, 2011, 20, 1160 doi: 10.1016/j.diamond.2011.06.027
[60]
Tong Z, Luo X C. Investigation of focused ion beam induced damage in single crystal diamond tools. Appl Surf Sci, 2015, 347, 727 doi: 10.1016/j.apsusc.2015.04.120
[61]
Bayn I, Bolker A, Cytermann C, et al. Diamond processing by focused ion beam—surface damage and recovery. Appl Phys Lett, 2011, 99, 183109 doi: 10.1063/1.3658631
[62]
Němec P, Preclíková J, Kromka A, et al. Ultrafast dynamics of photoexcited charge carriers in nanocrystalline diamond. Appl Phys Lett, 2008, 93, 083102 doi: 10.1063/1.2970962
[63]
Fang C, Zhang Y W, Zhang Z F, et al. Preparation of “natural” diamonds by HPHT annealing of synthetic diamonds. CrystEngComm, 2018, 20, 505 doi: 10.1039/C7CE02013A
[64]
Bundy F P, Hall H T, Strong H M, et al. Man-made diamonds. Nature, 1955, 176, 51 doi: 10.1038/176051a0
[65]
Hall H T. Sintered diamond: A synthetic carbonado. Science, 1970, 169, 868 doi: 10.1126/science.169.3948.868
[66]
Yin L W, Wang N W, Zou Z D, et al. Formation and crystal structure of metallic inclusions in a HPHT as-grown diamond single crystal. Appl Phys A, 2000, 71, 473 doi: 10.1007/s003390000608
[67]
Angus J C, Will H A, Stanko W S. Growth of diamond seed crystals by vapor deposition. J Appl Phys, 1968, 39, 2915 doi: 10.1063/1.1656693
[68]
Shu G Y, Dai B, Ralchenko V G, et al. Vertical-substrate epitaxial growth of single-crystal diamond by microwave plasma-assisted chemical vapor deposition. J Cryst Growth, 2018, 486, 104 doi: 10.1016/j.jcrysgro.2018.01.024
[69]
Shu G, Dai B, Ralchenko V G, et al. Growth of three-dimensional diamond mosaics by microwave plasma-assisted chemical vapor deposition. CrystEngComm, 2018, 20, 198 doi: 10.1039/C7CE01706E
[70]
Burns R C, Chumakov A I, Connell S H, et al. HPHT growth and X-ray characterization of high-quality type IIa diamond. J Phys Condens Matter, 2009, 21, 364224 doi: 10.1088/0953-8984/21/36/364224
[71]
Polyakov S N, Denisov V N, N V Kuzmin, et al. Characterization of top-quality type IIa synthetic diamonds for new X-ray optics. Diam Relat Mater, 2011, 20, 726 doi: 10.1016/j.diamond.2011.03.012
[72]
Yurov V, Bushuev E, Bolshakov A, et al. Etching kinetics of (100) single crystal diamond surfaces in a hydrogen microwave plasma, studied with In Situ low-coherence interferometry. Phys Status Solidi A, 2017, 214, 1700177 doi: 10.1002/pssa.201700177
[73]
Liang Q, Chin C Y, Lai J, et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl Phys Lett, 2009, 94, 024103 doi: 10.1063/1.3072352
[74]
Füner M, Wild C, Koidl P. Novel microwave plasma reactor for diamond synthesis. Appl Phys Lett, 1998, 72, 1149 doi: 10.1063/1.120997
[75]
Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett, 2014, 104, 102110 doi: 10.1063/1.4868720
[76]
Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers. Sci Rep, 2017, 7, 44462 doi: 10.1038/srep44462
[77]
Ohmagari S, Yamada H, Tsubouchi N, et al. Schottky barrier diodes fabricated on diamond mosaic wafers: Dislocation reduction to mitigate the effect of coalescence boundaries. Appl Phys Lett, 2019, 114, 082104 doi: 10.1063/1.5085364
[78]
Argoitia A, Angus J C, Ma J S, et al. Heteroepitaxy of diamond on c-BN: Growth mechanisms and defect characterization. J Mater Res, 1994, 9, 1849 doi: 10.1557/JMR.1994.1849
[79]
Wang L, Pirouz P, Argoitia A, et al. Heteroepitaxially grown diamond on a c-BN {111} surface. Appl Phys Lett, 1993, 63, 1336 doi: 10.1063/1.109723
[80]
Tachibana T, Yokota Y, Miyata K, et al. Diamond films heteroepitaxially grown on platinum (111). Phys Rev B, 1997, 56, 15967 doi: 10.1103/PhysRevB.56.15967
[81]
Zhu W, Yang P C, Glass J T. Oriented diamond films grown on nickel substrates. Appl Phys Lett, 1993, 63, 1640 doi: 10.1063/1.110721
[82]
Liu W, Tucker D A, Yang P C, et al. Nucleation of oriented diamond particles on cobalt substrates. J Appl Phys, 1995, 78, 1291 doi: 10.1063/1.360768
[83]
Jiang X, Klages C P. Heteroepitaxial diamond growth on (100) silicon. Diam Relat Mater, 1993, 2, 1112 doi: 10.1016/0925-9635(93)90282-7
[84]
Kawarada H, Wild C, Herres N, et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide. J Appl Phys, 1997, 81, 3490 doi: 10.1063/1.365047
[85]
Wolter S D, McClure M T, Glass J T, et al. Bias-enhanced nucleation of highly oriented diamond on titanium carbide (111) substrates. Appl Phys Lett, 1995, 66, 2810 doi: 10.1063/1.113483
[86]
Bensalah H, Stenger I, Sakr G, et al. Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diam Relat Mater, 2016, 66, 188 doi: 10.1016/j.diamond.2016.04.006
[87]
Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater, 2019, 94, 92 doi: 10.1016/j.diamond.2019.01.027
[88]
Ohtsuka K, Suzuki K, Sawabe A, et al. Epitaxial growth of diamond on iridium. Jpn J Appl Phys, 1996, 35, L1072 doi: 10.1143/JJAP.35.L1072
[89]
Schreck M, Bauer T, Gsell S, et al. Domain formation in diamond nucleation on iridium. Diam Relat Mater, 2003, 12, 262 doi: 10.1016/S0925-9635(02)00361-8
[90]
Verstraete M J, Charlier J C. Why is iridium the best substrate for single crystal diamond growth. Appl Phys Lett, 2005, 86, 191917 doi: 10.1063/1.1922571
[91]
Kono S, Shiraishi M, Plusnin N I, et al. X-ray photoelectron diffraction study of the initial stages of CVD diamond heteroepitaxy on Ir (001)/SrTiO3. New Diam Front Carbon Technol, 2005, 15, 363
[92]
Vaissiere N, Saada S, Bouttemy M, et al. Heteroepitaxial diamond on iridium: New insights on domain formation. Diam Relat Mater, 2013, 36, 16 doi: 10.1016/j.diamond.2013.03.010
[93]
Washiyama S, Mita S, Suzuki K, et al. Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001). Appl Phys Express, 2011, 4, 095502 doi: 10.1143/APEX.4.095502
[94]
Fujisaki T, Tachiki M, Taniyama N, et al. Initial growth of heteroepitaxial diamond on Ir (001)/MgO (001) substrates using antenna-edge-type microwave plasma assisted chemical vapor deposition. Diam Relat Mater, 2003, 12, 246 doi: 10.1016/S0925-9635(03)00037-2
[95]
Kim S W, Kawamata Y, Takaya R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (11-20) sapphire substrate. Appl Phys Lett, 2020, 117, 202102 doi: 10.1063/5.0024070
[96]
Samoto A, Ito S, Hotta A, et al. Investigation of heterostructure between diamond and iridium on sapphire. Diam Relat Mater, 2008, 17, 1039 doi: 10.1016/j.diamond.2008.02.007
[97]
Bednarski C, Dai Z, Li A P, et al. Studies of heteroepitaxial growth of diamond. Diam Relat Mater, 2003, 12, 241 doi: 10.1016/S0925-9635(02)00287-X
[98]
Lee K H, Saada S, Arnault J C, et al. Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy. Diam Relat Mater, 2016, 66, 67 doi: 10.1016/j.diamond.2016.03.018
[99]
Bauer T, Gsell S, Schreck M, et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers. Diam Relat Mater, 2005, 14, 314 doi: 10.1016/j.diamond.2004.10.028
[100]
Fischer M, Brescia R, Gsell S, et al. Growth of twin-free heteroepitaxial diamond on Ir/YSZ/Si(111). J Appl Phys, 2008, 104, 123531 doi: 10.1063/1.3019046
[101]
Regmi M, More K, Eres G. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition. Diam Relat Mater, 2012, 23, 28 doi: 10.1016/j.diamond.2012.01.008
[102]
Lee S T, Lifshitz Y. The road to diamond wafers. Nature, 2003, 424, 500 doi: 10.1038/424500a
[103]
Gsell S, Bauer T, Goldfuß J, et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers. Appl Phys Lett, 2004, 84, 4541 doi: 10.1063/1.1758780
[104]
Zhang S S, Li Z H, Luo K, et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci Rev, 2021, in press doi: 10.1093/nsr/nwab140
[105]
Zhang S S, Wu Y J, Luo K, et al. Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene. Cell Rep Phys Sci, 2021, 2, 100575 doi: 10.1016/j.xcrp.2021.100575
[106]
Asmussen J, Grotjohn T A, Schuelke T, et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis. Appl Phys Lett, 2008, 93, 031502 doi: 10.1063/1.2961016
[107]
Chow T P, Tyagi R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans Electron Devices, 1994, 41, 1481 doi: 10.1109/16.297751
[108]
Laks D B, van de Walle C G, Neumark G F, et al. Role of native defects in wide-band-gap semiconductors. Phys Rev Lett, 1991, 66, 648 doi: 10.1103/PhysRevLett.66.648
[109]
Nesladek M. Conventional n-type doping in diamond: State of the art and recent progress. Semicond Sci Technol, 2005, 20, R19 doi: 10.1088/0268-1242/20/2/R01
[110]
Borst T H, Weis O. Boron-doped homoepitaxial diamond layers: Fabrication, characterization, and electronic applications. Phys Status Solidi A, 1996, 154, 423 doi: 10.1002/pssa.2211540130
[111]
Kalish R. The search for donors in diamond. Diam Relat Mater, 2001, 10, 1749 doi: 10.1016/S0925-9635(01)00426-5
[112]
Chrenko R M. Boron, the dominant acceptor in semiconducting diamond. Phys Rev B, 1973, 7, 4560 doi: 10.1103/PhysRevB.7.4560
[113]
Teukam Z, Chevallier J, Saguy C, et al. Shallow donors with high n-type electrical conductivity in homoepitaxial deuterated boron-doped diamond layers. Nat Mater, 2003, 2, 482 doi: 10.1038/nmat929
[114]
Ekimov E A, Sidorov V A, Bauer E D, et al. Superconductivity in diamond. Nature, 2004, 428, 542 doi: 10.1038/nature02449
[115]
Boeri L, Kortus J, Andersen O K. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys Rev Lett, 2004, 93, 237002 doi: 10.1103/PhysRevLett.93.237002
[116]
Lee K W, Pickett W E. Superconductivity in boron-doped diamond. Phys Rev Lett, 2004, 93, 237003 doi: 10.1103/PhysRevLett.93.237003
[117]
Xiang H J, Li Z Y, Yang J L, et al. Electron-phonon coupling in a boron-doped diamond superconductor. Phys Rev B, 2004, 70, 212504 doi: 10.1103/PhysRevB.70.212504
[118]
Blase X, Adessi C, Connétable D. Role of the dopant in the superconductivity of diamond. Phys Rev Lett, 2004, 93, 237004 doi: 10.1103/PhysRevLett.93.237004
[119]
Ma Y M, Tse J S, Cui T, et al. First-principles study of electron-phonon coupling in hole- and electron-doped diamonds in the virtual crystal approximation. Phys Rev B, 2005, 72, 014306 doi: 10.1103/physrevb.72.014306
[120]
Giustino F, Yates J R, Souza I, et al. Electron-phonon interaction via electronic and lattice wannier functions: Superconductivity in boron-doped diamond reexamined. Phys Rev Lett, 2007, 98, 047005 doi: 10.1103/PhysRevLett.98.047005
[121]
Kawano A, Ishiwata H, Iriyama S, et al. Superconductor-to-insulator transition in boron-doped diamond films grown using chemical vapor deposition. Phys Rev B, 2010, 82, 085318 doi: 10.1103/PhysRevB.82.085318
[122]
Lloret F, Eon D, Bustarret E, et al. Selectively boron doped homoepitaxial diamond growth for power device applications. Appl Phys Lett, 2021, 118, 023504 doi: 10.1063/5.0031478
[123]
Tsukioka K, Okushi H. Hall mobility and scattering mechanism of holes in boron-doped homoepitaxial chemical vapor deposition diamond thin films. Jpn J Appl Phys, 2006, 45, 8571 doi: 10.1143/JJAP.45.8571
[124]
Bormashov V S, Tarelkin S A, Buga S G, et al. Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam Relat Mater, 2013, 35, 19 doi: 10.1016/j.diamond.2013.02.011
[125]
Isberg J, Lindblom A, Tajani A, et al. Temperature dependence of hole drift mobility in high-purity single-crystal CVD diamond. Phys Status Solidi A, 2005, 202, 2194 doi: 10.1002/pssa.200561915
[126]
Kajihara S A, Antonelli A, Bernholc J, et al. Nitrogen and potentialn-type dopants in diamond. Phys Rev Lett, 1991, 66, 2010 doi: 10.1103/PhysRevLett.66.2010
[127]
Koizumi S, Kamo M, Sato Y, et al. Growth and characterization of phosphorus doped n-type diamond thin films. Diam Relat Mater, 1998, 7, 540 doi: 10.1016/S0925-9635(97)00250-1
[128]
Kalish R. Doping of diamond. Carbon, 1999, 37, 781 doi: 10.1016/S0008-6223(98)00270-X
[129]
Koizumi S, Teraji T, Kanda H. Phosphorus-doped chemical vapor deposition of diamond. Diam Relat Mater, 2000, 9, 935 doi: 10.1016/S0925-9635(00)00217-X
[130]
Gheeraert E, Koizumi S, Teraji T, et al. Electronic transitions of electrons bound to phosphorus donors in diamond. Solid State Commun, 2000, 113, 577 doi: 10.1016/S0038-1098(99)00546-3
[131]
Nesládek M, Meykens K, Haenen K, et al. Photocurrent and optical absorption spectroscopic study of n-type phosphorus-doped CVD diamond. Diam Relat Mater, 1999, 8, 882 doi: 10.1016/S0925-9635(98)00291-X
[132]
Yu S Y, Xu J, Kato H, et al. Phosphorus-doped nanocrystalline diamond for supercapacitor application. ChemElectroChem, 2019, 6, 1088 doi: 10.1002/celc.201801543
[133]
Kato H, Yamasaki S, Okushi H. N-type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl Phys Lett, 2005, 86, 222111 doi: 10.1063/1.1944228
[134]
Ohtani R, Yamamoto T, Janssens S D, et al. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond. Appl Phys Lett, 2014, 105, 232106 doi: 10.1063/1.4903779
[135]
Sakaguchi I, Gamo M N, Kikuchi Y, et al. Sulfur: A donor dopant forn-type diamond semiconductors. Phys Rev B, 1999, 60, R2139 doi: 10.1103/PhysRevB.60.R2139
[136]
Kalish R, Reznik A, Uzan-Saguy C, et al. Is sulfur a donor in diamond. Appl Phys Lett, 2000, 76(76), 757 doi: 10.1063/1.125885
[137]
Saada D, Adler J, Kalish R. Sulfur: A potential donor in diamond. Appl Phys Lett, 2000, 77, 878 doi: 10.1063/1.1306914
[138]
Li J, Shan Z W, Ma E. Elastic strain engineering for unprecedented materials properties. MRS Bull, 2014, 39, 108 doi: 10.1557/mrs.2014.3
[139]
Feng J, Qian X F, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics, 2012, 6, 866 doi: 10.1038/nphoton.2012.285
[140]
Chidambaram P R, Bowen C, Chakravarthi S, et al. Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing. IEEE Trans Electron Devices, 2006, 53, 944 doi: 10.1109/TED.2006.872912
[141]
Zhu T, Li J, Ogata S, et al. Mechanics of ultra-strength materials. MRS Bull, 2009, 34, 167 doi: 10.1557/mrs2009.47
[142]
Zhu T, Li J. Ultra-strength materials. Prog Mater Sci, 2010, 55, 710 doi: 10.1016/j.pmatsci.2010.04.001
[143]
Zhang H T, Tersoff J, Xu S, et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci Adv, 2016, 2, e1501382 doi: 10.1126/sciadv.1501382
[144]
Humble P, Hannink R H J. Plastic deformation of diamond at room temperature. Nature, 1978, 273, 37 doi: 10.1038/273037a0
[145]
Blank V, Popov M, Pivovarov G, et al. Ultrahard and superhard phases of fullerite C60: Comparison with diamond on hardness and wear. Diam Relat Mater, 1998, 7, 427 doi: 10.1016/S0925-9635(97)00232-X
[146]
Eremets M I, Trojan I A, Gwaze P, et al. The strength of diamond. Appl Phys Lett, 2005, 87, 141902 doi: 10.1063/1.2061853
[147]
Wheeler J M, Raghavan R, Wehrs J, et al. Approaching the limits of strength: Measuring the uniaxial compressive strength of diamond at small scales. Nano Lett, 2016, 16, 812 doi: 10.1021/acs.nanolett.5b04989
[148]
Banerjee A, Bernoulli D, Zhang H, et al. Ultralarge elastic deformation of nanoscale diamond. Science, 2018, 360, 300 doi: 10.1126/science.aar4165
[149]
Shi Z, Tsymbalov E, Dao M, et al. Deep elastic strain engineering of bandgap through machine learning. PNAS, 2019, 116, 4117 doi: 10.1073/pnas.1818555116
[150]
Liu C, Song X Q, Li Q, et al. Smooth flow in diamond: Atomistic ductility and electronic conductivity. Phys Rev Lett, 2019, 123, 195504 doi: 10.1103/PhysRevLett.123.195504
[151]
Nie A M, Bu Y Q, Li P H, et al. Approaching diamond's theoretical elasticity and strength limits. Nat Commun, 2019, 10, 5533 doi: 10.1038/s41467-019-13378-w
[152]
Dang C, Chou J P, Dai B, et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science, 2021, 371, 76 doi: 10.1126/science.abc4174
[153]
Shi Z, Dao M, Tsymbalov E, et al. Metallization of diamond. PNAS, 2020, 117, 24634 doi: 10.1073/pnas.2013565117
[154]
Liu C, Song X Q, Li Q, et al. Superconductivity in compression-shear deformed diamond. Phys Rev Lett, 2020, 124, 147001 doi: 10.1103/PhysRevLett.124.147001
[155]
Yang S, Wang Y, Rao D D B, et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat Photonics, 2016, 10, 507 doi: 10.1038/nphoton.2016.103
[156]
Yip K Y, Ho K O, Yu K Y, et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science, 2019, 366, 1355 doi: 10.1126/science.aaw4278
[157]
Gustafsson M V, Aref T, Kockum A F, et al. Propagating phonons coupled to an artificial atom. Science, 2014, 346, 207 doi: 10.1126/science.1257219
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3052 Times PDF downloads: 259 Times Cited by: 0 Times

    History

    Received: 21 August 2021 Revised: 16 September 2021 Online: Accepted Manuscript: 11 November 2021Uncorrected proof: 11 November 2021Published: 01 February 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chaoqun Dang, Anliang Lu, Heyi Wang, Hongti Zhang, Yang Lu. Diamond semiconductor and elastic strain engineering[J]. Journal of Semiconductors, 2022, 43(2): 021801. doi: 10.1088/1674-4926/43/2/021801 C Q Dang, A L Lu, H Y Wang, H T Zhang, Y Lu, Diamond semiconductor and elastic strain engineering[J]. J. Semicond., 2022, 43(2): 021801. doi: 10.1088/1674-4926/43/2/021801.Export: BibTex EndNote
      Citation:
      Chaoqun Dang, Anliang Lu, Heyi Wang, Hongti Zhang, Yang Lu. Diamond semiconductor and elastic strain engineering[J]. Journal of Semiconductors, 2022, 43(2): 021801. doi: 10.1088/1674-4926/43/2/021801

      C Q Dang, A L Lu, H Y Wang, H T Zhang, Y Lu, Diamond semiconductor and elastic strain engineering[J]. J. Semicond., 2022, 43(2): 021801. doi: 10.1088/1674-4926/43/2/021801.
      Export: BibTex EndNote

      Diamond semiconductor and elastic strain engineering

      doi: 10.1088/1674-4926/43/2/021801
      More Information
      • Author Bio:

        Chaoqun Dang is currently a research assistant at the City University of Hong Kong (CityU) starting from November 2020. She obtained her BE degree from the Taiyuan University of Technology in 2014, MS degree from Shanghai University joint ME with Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences in 2017, and a PhD degree from CityU in 2021. Her research focuses on experimental nanomechanics of metallic and semiconductor materials

        Anliang Lu got his BE degree from Northeastern University and MS degree from Shanghai Jiao Tong University. Now he is a PhD student at CityU under the supervision of Prof. Yang Lu. His research focuses on nanomechanics and elastic strain engineering of wide-bandgap semiconductor materials

        Yang Lu is currently a Professor in the Department of Mechanical Engineering and Department of Materials Science and Engineering at CityU. He obtained his BS degree from Nanjing University and PhD degree from Rice University. Before joining CityU, he did postdoctoral research at MIT for about two years. His research focuses on micro/nanomechanics, in situ electron microscopy and elastic strain engineering of wide-bandgap semiconductors including diamond

      • Corresponding author: yanglu@cityu.edu.hk
      • Received Date: 2021-08-21
      • Revised Date: 2021-09-16
      • Published Date: 2022-02-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return