REVIEWS

In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes

Zhen Fang1, 2, Yao Liu3, Chengyi Song1, 2, Peng Tao1, 2, Wen Shang1, 2, Tao Deng1, 2, Xiaoqin Zeng3, and Jianbo Wu1, 2, 4, 5,

+ Author Affiliations

 Corresponding author: Xiaoqin Zeng, xqzeng@sjtu.edu.cn; Jianbo Wu, jianbowu@sjtu.edu.cn

PDF

Turn off MathJax

Abstract: Semiconductor photocatalysis, as a key part of solar energy utilization, has far-reaching implications for industrial, agricultural, and commercial development. Lack of understanding of the catalyst evolution and the reaction mechanism is a critical obstacle for designing efficient and stable photocatalysts. This review summarizes the recent progress of in-situ exploring the dynamic behavior of catalyst materials and reaction intermediates. Semiconductor photocatalytic processes and two major classes of in-situ techniques that include microscopic imaging and spectroscopic characterization are presented. Finally, problems and challenges in in-situ characterization are proposed, geared toward developing more advanced in-situ techniques and monitoring more accurate and realistic reaction processes, to guide designing advanced photocatalysts.

Key words: in-situsemiconductor photocatalystmaterials evolutionreaction intermediate



[1]
Maeda K, Teramura K, Lu D, et al. Photocatalyst releasing hydrogen from water. Nature, 2006, 440, 295 doi: 10.1038/440295a
[2]
Zhang Y C, Afzal N, Pan L, et al. Structure-activity relationship of defective metal-based photocatalysts for water splitting: Experimental and theoretical perspectives. Adv Sci, 2019, 6, 1900053 doi: 10.1002/advs.201900053
[3]
Foster S L, Bakovic S I P, Duda R D, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal, 2018, 1, 490 doi: 10.1038/s41929-018-0092-7
[4]
Xu Q L, Zhang L Y, Cheng B, et al. S-scheme heterojunction photocatalyst. Chem, 2020, 6, 1543 doi: 10.1016/j.chempr.2020.06.010
[5]
Chao Y G, Zhou P, Li N, et al. Ultrathin visible-light-driven Mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv Mater, 2019, 31, 1807226 doi: 10.1002/adma.201807226
[6]
Gu Y, Wu A P, Jiao Y Q, et al. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew Chem Int Ed, 2021, 60, 6673 doi: 10.1002/anie.202016102
[7]
Khan S, Je M, Ton N N T, et al. C-doped ZnS-ZnO/Rh nanosheets as multijunctioned photocatalysts for effective H2 generation from pure water under solar simulating light. Appl Catal B, 2021, 297, 120473 doi: 10.1016/j.apcatb.2021.120473
[8]
Ran L, Hou J G, Cao S Y, et al. Defect engineering of photocatalysts for solar energy conversion. Sol RRL, 2020, 4, 1900487 doi: 10.1002/solr.201900487
[9]
Liu M, Chen Y, Su J, et al. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiS x co-catalyst. Nat Energy, 2016, 1, 16151 doi: 10.1038/nenergy.2016.151
[10]
Barawi M, Collado L, Gomez-Mendoza M, et al. Conjugated porous polymers: Ground-breaking materials for solar energy conversion. Adv Energy Mater, 2021, 11, 2101530 doi: 10.1002/aenm.202101530
[11]
Wang J G, Chen Y J, Zhou W, et al. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution. J Mater Chem A, 2017, 5, 8451 doi: 10.1039/C7TA01914A
[12]
Yu H B, Huang J H, Jiang L B, et al. Enhanced photocatalytic tetracycline degradation using N-CQDs/OV-BiOBr composites: Unraveling the complementary effects between N-CQDs and oxygen vacancy. Chem Eng J, 2020, 402, 126187 doi: 10.1016/j.cej.2020.126187
[13]
Gao D D, Wu X H, Wang P, et al. Selenium-enriched amorphous NiSe1+ x nanoclusters as a highly efficient cocatalyst for photocatalytic H2 evolution. Chem Eng J, 2021, 408, 127230 doi: 10.1016/j.cej.2020.127230
[14]
Bai S, Jiang J, Zhang Q, et al. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev, 2015, 44, 2893 doi: 10.1039/C5CS00064E
[15]
Chen F Y, Wu Z Y, Adler Z, et al. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule, 2021, 5, 1704 doi: 10.1016/j.joule.2021.05.005
[16]
Zhang S R, Nguyen L, Zhu Y, et al. In-situ studies of nanocatalysis. Acc Chem Res, 2013, 46, 1731 doi: 10.1021/ar300245g
[17]
Zaera F. In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions. J Catal, 2021, 404, 900 doi: 10.1016/j.jcat.2021.08.013
[18]
van der Wal L I, Turner S J, Zečević J. Developments and advances in in situ transmission electron microscopy for catalysis research. Catal Sci Technol, 2021, 11, 3634 doi: 10.1039/D1CY00258A
[19]
Knop-Gericke A, Kleimenov E, Hävecker M, et al. X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal, 2009, 52, 213 doi: 10.1016/B978-0-12-409547-2.12829-X
[20]
Ahmed M H M, Temperton R H, O'Shea J N. An in situ exploration of subsurface defect migration to a liquid water-exposed rutile TiO2(110) surface by XPS. Surf Interface Anal, 2021, 53, 1013 doi: 10.1002/sia.6906
[21]
Zhang P, Li Y K, Zhang Y S, et al. Photogenerated electron transfer process in heterojunctions: in situ irradiation XPS. Small Methods, 2020, 4, 2000214 doi: 10.1002/smtd.202000214
[22]
Bordiga S, Groppo E, Agostini G, et al. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev, 2013, 113, 1736 doi: 10.1021/cr2000898
[23]
Zaera F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem Soc Rev, 2014, 43, 7624 doi: 10.1039/C3CS60374A
[24]
Wachs I E, Roberts C A. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chem Soc Rev, 2010, 39, 5002 doi: 10.1039/c0cs00145g
[25]
Kim H, Kosuda K M, van Duyne R P, et al. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev, 2010, 39, 4820 doi: 10.1039/c0cs00044b
[26]
Bakker M G, Fowler B, Bowman M K, et al. Experimental methods in chemical engineering: Electron paramagnetic resonance spectroscopy-EPR/ESR. Can J Chem Eng, 2020, 98, 1668 doi: 10.1002/cjce.23784
[27]
Wu J B, Shan H, Chen W L, et al. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv Mater, 2016, 28, 9686 doi: 10.1002/adma.201602519
[28]
Grogger W, Hofer F, Kothleitner G, et al. An introduction to high-resolution EELS in transmission electron microscopy. Top Catal, 2008, 50, 200 doi: 10.1007/s11244-008-9101-4
[29]
Besenbacher F, Lauritsen J V, Wendt S. STM studies of model catalysts. Nano Today, 2007, 2, 30 doi: 10.1016/S1748-0132(07)70115-9
[30]
Preet A, Lin T E. A review: Scanning electrochemical microscopy (SECM) for visualizing the real-time local catalytic activity. Catalysts, 2021, 11, 594 doi: 10.3390/catal11050594
[31]
Zhuang G X, Chen Y W, Zhuang Z Y, et al. Oxygen vacancies in metal oxides: Recent progress towards advanced catalyst design. Sci China Mater, 2020, 63, 2089 doi: 10.1007/s40843-020-1305-6
[32]
Feng H F, Xu Z F, Ren L, et al. Activating titania for efficient electrocatalysis by vacancy engineering. ACS Catal, 2018, 8, 4288 doi: 10.1021/acscatal.8b00719
[33]
Hou T T, Xiao Y, Cui P X, et al. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation. Adv Energy Mater, 2019, 9, 1902319 doi: 10.1002/aenm.201902319
[34]
Kolmakova N, Kolmakov A. Scanning electron microscopy for in situ monitoring of semiconductor−liquid interfacial processes: Electron assisted reduction of Ag ions from aqueous solution on the surface of TiO2 rutile nanowire. J Phys Chem C, 2010, 114, 17233 doi: 10.1021/jp1044546
[35]
Möbus G, Saghi Z, Sayle D C, et al. Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution. Adv Funct Mater, 2011, 21, 1971 doi: 10.1002/adfm.201002135
[36]
Bugnet M, Overbury S H, Wu Z L, et al. Direct visualization and control of atomic mobility at {100} surfaces of ceria in the environmental transmission electron microscope. Nano Lett, 2017, 17, 7652 doi: 10.1021/acs.nanolett.7b03680
[37]
Cavalca F, Laursen A B, Kardynal B E, et al. In situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology, 2012, 23, 075705 doi: 10.1088/0957-4484/23/7/075705
[38]
Zhang L X, Miller B K, Crozier P A. Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett, 2013, 13, 679 doi: 10.1021/nl304333h
[39]
Lu Y, Yin W J, Peng K L, et al. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat Commun, 2018, 9, 2752 doi: 10.1038/s41467-018-05144-1
[40]
Yu S H, Jiang Y H, Sun Y, et al. Real time imaging of photocatalytic active site formation during H2 evolution by in situ TEM. Appl Catal B, 2021, 284, 119743 doi: 10.1016/j.apcatb.2020.119743
[41]
Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev, 2011, 111, 3669 doi: 10.1021/cr100275d
[42]
Bamwenda G R, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water-ethanol solution: A comparison of activities of Au–TiO2 and Pt–TiO2. J Photochem Photobiol A, 1995, 89, 177 doi: 10.1016/1010-6030(95)04039-I
[43]
Priebe J B, Karnahl M, Junge H, et al. Water reduction with visible light: Synergy between optical transitions and electron transfer in Au-TiO2 catalysts visualized by in situ EPR spectroscopy. Angew Chem Int Ed, 2013, 52, 11420 doi: 10.1002/anie.201306504
[44]
Yang K S, Lu Y R, Hsu Y Y, et al. Plasmon-induced visible-light photocatalytic activity of Au nanoparticle-decorated hollow mesoporous TiO2: A view by X-ray spectroscopy. J Phys Chem C, 2018, 122, 6955 doi: 10.1021/acs.jpcc.8b00205
[45]
Ekande O S, Kumar M. Review on polyaniline as reductive photocatalyst for the construction of the visible light active heterojunction for the generation of reactive oxygen species. J Environ Chem Eng, 2021, 9, 105725 doi: 10.1016/j.jece.2021.105725
[46]
Yuan Y, Guo R T, Hong L F, et al. A review of metal oxide-based Z-scheme heterojunction photocatalysts: Actualities and developments. Mater Today Energy, 2021, 21, 100829 doi: 10.1016/j.mtener.2021.100829
[47]
Di T M, Xu Q L, Ho W, et al. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem, 2019, 11, 1394 doi: 10.1002/cctc.201802024
[48]
Sai L M, Kong X Y. Type II hybrid structures of TiO2 nanorods conjugated with CdS quantum dots: Assembly and optical properties. Appl Phys A, 2014, 114, 605 doi: 10.1007/s00339-013-7631-5
[49]
Zhu Y Y, Liu Y F, Lv Y H, et al. Enhancement of photocatalytic activity for BiPO4 via phase junction. J Mater Chem A, 2014, 2, 13041 doi: 10.1039/C4TA01807A
[50]
Xue J W, Bao J. Interfacial charge transfer of heterojunction photocatalysts: Characterization and calculation. Surf Interfaces, 2021, 25, 101265 doi: 10.1016/j.surfin.2021.101265
[51]
Yang H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater Res Bull, 2021, 142, 111406 doi: 10.1016/j.materresbull.2021.111406
[52]
Wang L B, Cheng B, Zhang L Y, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17, 2103447 doi: 10.1002/smll.202103447
[53]
Beck A, Huang X, Artiglia L, et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat Commun, 2020, 11, 3220 doi: 10.1038/s41467-020-17070-2
[54]
Vincent J L, Crozier P A. Atomic level fluxional behavior and activity of CeO2-supported Pt catalysts for CO oxidation. Nat Commun, 2021, 12, 5789 doi: 10.1038/s41467-021-26047-8
[55]
Simpson B H, Rodríguez-López J. Emerging techniques for the in situ analysis of reaction intermediates on photo-electrochemical interfaces. Anal Methods, 2015, 7, 7029 doi: 10.1039/C5AY00503E
[56]
Nosaka Y, Nosaka A Y. Generation and detection of reactive oxygen species in photocatalysis. Chem Rev, 2017, 117, 11302 doi: 10.1021/acs.chemrev.7b00161
[57]
Liu J Y, Wei Z D, Shangguan W F. Defects engineering in photocatalytic water splitting materials. ChemCatChem, 2019, 11, 6177 doi: 10.1002/cctc.201901579
[58]
Connor P A, Dobson K D, McQuillan A J. Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir, 1999, 15, 2402 doi: 10.1021/la980855d
[59]
Haschke S, Mader M, Schlicht S, et al. Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface. Nat Commun, 2018, 9, 4565 doi: 10.1038/s41467-018-07031-1
[60]
Lin W Y, Frei H. Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti silicalite sieve. J Am Chem Soc, 2002, 124, 9292 doi: 10.1021/ja012477w
[61]
Rong X, Parolin J, Kolpak A M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal, 2016, 6, 1153 doi: 10.1021/acscatal.5b02432
[62]
Zandi O, Hamann T W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat Chem, 2016, 8, 778 doi: 10.1038/nchem.2557
[63]
Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414, 625 doi: 10.1038/414625a
[64]
Guo S H, Li Y H, Tang S W, et al. Monitoring hydrogen evolution reaction intermediates of transition metal dichalcogenides via operando Raman spectroscopy. Adv Funct Mater, 2020, 30, 2003035 doi: 10.1002/adfm.202003035
[65]
Peng Y H, Geng M J, Yu J Q, et al. Vacancy-induced 2H@1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution. Appl Catal B, 2021, 298, 120570 doi: 10.1016/j.apcatb.2021.120570
[66]
Ye L Q, Ma Z Y, Deng Y, et al. Robust and efficient photocatalytic hydrogen generation of ReS2/CdS and mechanistic study by on-line mass spectrometry and in situ infrared spectroscopy. Appl Catal B, 2019, 257, 117897 doi: 10.1016/j.apcatb.2019.117897
[67]
Wang X, Wang X, Huang J, et al. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat Commun, 2021, 12, 4112 doi: 10.1038/s41467-021-24511-z
[68]
Nakamura R, Nakato Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc, 2004, 126, 1290 doi: 10.1021/ja0388764
[69]
Zhang M, de Respinis M, Frei H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem, 2014, 6, 362 doi: 10.1038/nchem.1874
[70]
Ding Q, Liu Y, Chen T, et al. Unravelling the water oxidation mechanism on NaTaO3-based photocatalysts. J Mater Chem A, 2020, 8, 6812 doi: 10.1039/C9TA14235E
[71]
Fresno F, Galdón S, Barawi M, et al. Selectivity in UV photocatalytic CO2 conversion over bare and silver-decorated niobium-tantalum perovskites. Catal Today, 2021, 361, 85 doi: 10.1016/j.cattod.2020.01.013
[72]
Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature, 1978, 275, 115 doi: 10.1038/275115a0
[73]
Marszewski M, Cao S W, Yu J G, et al. Semiconductor-based photocatalytic CO2 conversion. Mater Horiz, 2015, 2, 261 doi: 10.1039/C4MH00176A
[74]
Rao H, Schmidt L C, Bonin J, et al. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature, 2017, 548, 74 doi: 10.1038/nature23016
[75]
Schreier M, Héroguel F, Steier L, et al. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat Energy, 2017, 2, 17087 doi: 10.1038/nenergy.2017.87
[76]
Wang Y, Shang X, Shen J, et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat Commun, 2020, 11, 3043 doi: 10.1038/s41467-020-16742-3
[77]
Kou Y, Nabetani Y, Dai M S, et al. Direct detection of key reaction intermediates in photochemical CO2 reduction sensitized by a rhenium bipyridine complex. J Am Chem Soc, 2014, 136, 6021 doi: 10.1021/ja500403e
[78]
Liu L J, Li Y. Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: A review. Aerosol Air Qual Res, 2014, 14, 453 doi: 10.4209/aaqr.2013.06.0186
[79]
Liu L J, Zhao C Y, Miller J T, et al. Mechanistic study of CO2 photoreduction with H2O on Cu/TiO2 nanocomposites by in situ X-ray absorption and infrared spectroscopies. J Phys Chem C, 2017, 121, 490 doi: 10.1021/acs.jpcc.6b10835
[80]
Wu J, Li X D, Shi W, et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew Chem Int Ed, 2018, 57, 8719 doi: 10.1002/anie.201803514
[81]
Chen S, Wang H, Kang Z, et al. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat Commun, 2019, 10, 788 doi: 10.1038/s41467-019-08697-x
[82]
Zhu J C, Shao W W, Li X D, et al. Asymmetric triple-atom sites confined in ternary oxide enabling selective CO2 photothermal reduction to acetate. J Am Chem Soc, 2021, 143, 18233 doi: 10.1021/jacs.1c08033
[83]
Ren X J, Gao M C, Zhang Y F, et al. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism. Appl Catal B, 2020, 274, 119063 doi: 10.1016/j.apcatb.2020.119063
[84]
MacKay B A, Fryzuk M D. Dinitrogen coordination chemistry: The biomimetic borderlands. ChemInform, 2004, 35, 703 doi: 10.1002/chin.200430145
[85]
Shen H D, Yang M M, Hao L D, et al. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res, 2021, 275, 115 doi: 10.1007/s12274-021-3725-0
[86]
Guo J P, Chen P. Catalyst: NH3 as an energy carrier. Chem, 2017, 3, 709 doi: 10.1016/j.chempr.2017.10.004
[87]
Medford A J, Hatzell M C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook. ACS Catal, 2017, 7, 2624 doi: 10.1021/acscatal.7b00439
[88]
Hoffman B M, Lukoyanov D, Yang Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem Rev, 2014, 114, 4041 doi: 10.1021/cr400641x
[89]
Jia H P, Quadrelli E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem Soc Rev, 2014, 43, 547 doi: 10.1039/C3CS60206K
[90]
Yuzawa H, Mori T, Itoh H, et al. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst. J Phys Chem C, 2012, 116, 4126 doi: 10.1021/jp209795t
[91]
Hirakawa H, Hashimoto M, Shiraishi Y, et al. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J Am Chem Soc, 2017, 139, 10929 doi: 10.1021/jacs.7b06634
[92]
Li C C, Wang T, Zhao Z J, et al. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew Chem, 2018, 130, 5376 doi: 10.1002/ange.201713229
[93]
Li H, Shang J, Ai Z H, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc, 2015, 137, 6393 doi: 10.1021/jacs.5b03105
[94]
Li P S, Zhou Z A, Wang Q, et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: Enhanced performance by oxygen vacancies. J Am Chem Soc, 2020, 142, 12430 doi: 10.1021/jacs.0c05097
[95]
Wang S Y, Hai X, Ding X, et al. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv Mater, 2017, 29, 1701774 doi: 10.1002/adma.201701774
[96]
Yang J H, Guo Y Z, Jiang R B, et al. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J Am Chem Soc, 2018, 140, 8497 doi: 10.1021/jacs.8b03537
[97]
Rao F, Zhu G Q, Zhang W B, et al. In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photocatalytic NO removal. Appl Catal B, 2021, 281, 119481 doi: 10.1016/j.apcatb.2020.119481
[98]
Shang H, Li M Q, Li H, et al. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ Sci Technol, 2019, 53, 6444 doi: 10.1021/acs.est.8b07322
[99]
Jin H, You R, Zhou S, et al. In-situ DRIFTS and XANES identification of copper species in the ternary composite oxide catalysts CuMnCeO during CO preferential oxidation. Int J Hydrog Energy, 2015, 40, 3919 doi: 10.1016/j.ijhydene.2015.01.086
[100]
Zigah D, Rodríguez-López J, Bard A J. Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy. Phys Chem Chem Phys, 2012, 14, 12764 doi: 10.1039/c2cp40907k
[101]
Kreuzer L B, Patel C K. Nitric oxide air pollution: Detection by optoacoustic spectroscopy. Science, 1971, 173, 45 doi: 10.1126/science.173.3991.45
[102]
Jin S, Dong G H, Luo J M, et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst. Appl Catal B, 2018, 227, 24 doi: 10.1016/j.apcatb.2018.01.020
[103]
Lu Y F, Huang Y, Zhang Y F, et al. Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal. Appl Catal B, 2018, 231, 357 doi: 10.1016/j.apcatb.2018.01.008
[104]
Nakamura R, Imanishi A, Murakoshi K, et al. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J Am Chem Soc, 2003, 125, 7443 doi: 10.1021/ja029503q
Fig. 1.  (Color online) In-situ characterization of semiconducting photocatalysts for material research and mechanism disclosure in solar energy conversion and the storage process.

Fig. 2.  (Color online) Energy band diagram and electron distribution of three typical types of semiconductors, including (a) intrinsic type, (b) negative-type, and (c) positive-type. (d) Mechanism displays of semiconductor photocatalysis.

Fig. 3.  (Color online) Schematic diagram of the interaction between particles (electrons and photons) and materials.

Fig. 4.  (Color online) (a) In-situ STM observation of oxygen vacancies dynamic changes on TiO2(110) surface. (b) In-situ XPS, in-situ EPR, in-situ XAS (XANES) and in-situ EXAFS spectra in R space of WO3-600. (c) Series of in-situ TEM images of a CeO2 nanoparticle. (d) In-situ TEM images of atom mobility on CeO2 surface at {100} facet in high vacuum, oxygen, and carbon dioxide atmospheres. Modified with permission from (a) Ref. [32] Copyright 2018 American Chemical Society, (b) Ref. [33] Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, (c) Ref. [35] Copyright 2017 American Chemical Society, (d) Ref. [36] Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA.

Fig. 5.  (Color online) (a) In-situ TEM images of TiO2 under water vapor conditions, with (b) EELS spectra and (c) XPS spectra of TiO2 particles. In-situ TEM study of TiO2 photocatalytic water splitting under UV light: (d) formation and evolution of bubbles, (e) magnified views of the surface shell on TiO2, (f) schematic diagrams of fluidic TEM holder with in-situ UV illumination, (g) surface shell thickness on TiO2 under UV illumination and (h) EELS spectra of the TiO2. (i) HRTEM images of Cu2O samples irradiated for 1, 2, and 3 h, as well as schematic diagrams of Cu2O structure change during irradiation. Modified with permission from (a), (b) and (c) Ref. [38] Copyright 2013 American Chemical Society, (d), (e), (f), (g) and (h) Ref. [39] Copyright 2018 Springer Nature, (i) Ref. [40] Copyright 2020 Elsevier Ltd.

Fig. 6.  (Color online) (a) Schematic diagram of water reduction in Au-TiO2 with UV- (right) and visible-light (left) driven. (b) In-situ EPR spectra of TiO2 and Au-TiO2. (c) In-situ XAS spectra of THMSs and Au THMSs. (d) Schematic illustration of the electron transfer mechanism between TiO2/ZnIn2S4 S-scheme heterojunction. (e) In-situ XPS spectra of TiO2, ZnIn2S4, and TiO2/ZnIn2S4. (f) In-situ TEM observations about evolution and dynamic structural changes of the overlayer in a strong metal-support interaction. (g) Time-series in-situ ETEM image of Pt-loaded CeO2. Modified with permission from (a) and (b) Ref. [43] Copyright 2013 Wiley-VCH Verlag GmbH & Co. KGaA, (c) Ref. [44] Copyright 2018 American Chemical Society, (d) and (e) Ref. [52] Copyright 2021 Wiley-VCH GmbH, (f) Ref. [53] Copyright 2021 Springer Nature, (g) Ref. [54] Copyright 2020 Springer Nature.

Fig. 7.  (Color online) In-situ characterization of reaction intermediates in the photocatalytic HER and OER processes. (a) Mechanism scheme of HER and OER. (b) LSV curve (left) and (c) operando Raman spectra (right) of MoS0.9Se1.1. (d) Schematic illustration of the HER process in MoS2xSe2(1–x). (e) In-situ DRIFT spectra of H2O on the ZnIn2S4@MoS2 with 2 h H2O-saturated flow under He and (f) with a 2 h irradiation time under Xe lamp, and (g) proposed reaction pathway for the HER process over the ZnIn2S4@MoS2. In-situ FTIR spectra of the HER process on ReS2/CdS with two different sacrificial agents, (h) Na2S-Na2SO3 and (i) lactic acid. Modified with permission from (b), (c) and (d) Ref. [64] Copyright 2020 Wiley-VCH Verlag GmbH & Co. KGaA, (e), (f) and (g) Ref. [65] Copyright 2021 Elsevier Ltd., (h) and (i) Ref. [66] Copyright 2019 Elsevier Ltd.

Fig. 8.  (Color online) In-situ characterization of reaction intermediates in the photocatalytic CO2 conversion processes. (a) Mechanism scheme of CO2 conversion. (b) In-situ FTIR spectra of CO2 adsorbed on the BiOBr layers with oxygen vacancy in the presence of H2O vapor. (c) Schematic illustration for CO2 photoconversion into CO over the oxygen-vacancy BiOBr. (d) In-situ DRIFTS spectra for the conversion process of CO2 in the presence of CH3OH under Xe lamp for oxygen vacancy-rich-Bi2O3 nanosheets. (e) Schematic illustration for CO2 photofixation to long-chain chemicals. (f) In-situ DRIFTS spectra of CO2 reduction reaction and (g) possible photocatalytic pathways over the TiO2@ZnIn2S4. In-situ FTIR spectra of atmospheric 0.03 vol % CO2/Ar photothermal reduction over the oxygen vacancy-rich Zn2GeO4 nanobelts at (h) 293 K and (i) 348 K. (j) Function mechanism of photoinduced heat during CO2 photoreduction to CH3COOH. Modified with permission from (b) and (c) Ref. [80] Copyright 2021 Wiley-VCH GmbH, (d) and (e) Ref. [81] Copyright 2019 Springer Nature, (f) and (g) Ref. [52] Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, (h), (i) and (j) Ref. [82] Copyright 2021 American Chemical Society.

Fig. 9.  (Color online) In-situ characterization of reaction intermediates in the N2 photofixation process. (a) Mechanism scheme of N2 fixation. In-situ IR spectra of Bi5O7Br-40 in the process of (b) N2 adsorption from 0 to 40 min in the dark, (c) afterward receive visible light illumination, (d) then visible light illumination lasts 35 min, and (e) finally the visible light illumination is turned off. (f) In-situ DRFTIRS spectra were obtained and (g) a reaction pathway of N2 photofixation over the Bi5O7Br nanotubes. Modified with permission from (b), (c), (d) and (e) Ref. [94] Copyright 2020 American Chemical Society, (f) and (g) Ref. [95] Copyright 2020 American Chemical Society.

Fig. 10.  (Color online) In-situ characterization of reaction intermediates in other catalytic processes. In-situ FTIR spectra of (a) TiO2-OV and (b) TiO2. (c) Selective removal mechanism during the NO removal process over the TiO2-OV and TiO2. (d) In-situ FTIR spectra and (e) NO removal mechanism of Bi0OVs-(BiO)2CO3. Modified with permission from (a), (b) and (c) Ref. [98] Copyright 2019 American Chemical Society, (d) and (e) Ref. [97] Copyright 2019 Elsevier Ltd.

[1]
Maeda K, Teramura K, Lu D, et al. Photocatalyst releasing hydrogen from water. Nature, 2006, 440, 295 doi: 10.1038/440295a
[2]
Zhang Y C, Afzal N, Pan L, et al. Structure-activity relationship of defective metal-based photocatalysts for water splitting: Experimental and theoretical perspectives. Adv Sci, 2019, 6, 1900053 doi: 10.1002/advs.201900053
[3]
Foster S L, Bakovic S I P, Duda R D, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal, 2018, 1, 490 doi: 10.1038/s41929-018-0092-7
[4]
Xu Q L, Zhang L Y, Cheng B, et al. S-scheme heterojunction photocatalyst. Chem, 2020, 6, 1543 doi: 10.1016/j.chempr.2020.06.010
[5]
Chao Y G, Zhou P, Li N, et al. Ultrathin visible-light-driven Mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv Mater, 2019, 31, 1807226 doi: 10.1002/adma.201807226
[6]
Gu Y, Wu A P, Jiao Y Q, et al. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew Chem Int Ed, 2021, 60, 6673 doi: 10.1002/anie.202016102
[7]
Khan S, Je M, Ton N N T, et al. C-doped ZnS-ZnO/Rh nanosheets as multijunctioned photocatalysts for effective H2 generation from pure water under solar simulating light. Appl Catal B, 2021, 297, 120473 doi: 10.1016/j.apcatb.2021.120473
[8]
Ran L, Hou J G, Cao S Y, et al. Defect engineering of photocatalysts for solar energy conversion. Sol RRL, 2020, 4, 1900487 doi: 10.1002/solr.201900487
[9]
Liu M, Chen Y, Su J, et al. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiS x co-catalyst. Nat Energy, 2016, 1, 16151 doi: 10.1038/nenergy.2016.151
[10]
Barawi M, Collado L, Gomez-Mendoza M, et al. Conjugated porous polymers: Ground-breaking materials for solar energy conversion. Adv Energy Mater, 2021, 11, 2101530 doi: 10.1002/aenm.202101530
[11]
Wang J G, Chen Y J, Zhou W, et al. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution. J Mater Chem A, 2017, 5, 8451 doi: 10.1039/C7TA01914A
[12]
Yu H B, Huang J H, Jiang L B, et al. Enhanced photocatalytic tetracycline degradation using N-CQDs/OV-BiOBr composites: Unraveling the complementary effects between N-CQDs and oxygen vacancy. Chem Eng J, 2020, 402, 126187 doi: 10.1016/j.cej.2020.126187
[13]
Gao D D, Wu X H, Wang P, et al. Selenium-enriched amorphous NiSe1+ x nanoclusters as a highly efficient cocatalyst for photocatalytic H2 evolution. Chem Eng J, 2021, 408, 127230 doi: 10.1016/j.cej.2020.127230
[14]
Bai S, Jiang J, Zhang Q, et al. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev, 2015, 44, 2893 doi: 10.1039/C5CS00064E
[15]
Chen F Y, Wu Z Y, Adler Z, et al. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule, 2021, 5, 1704 doi: 10.1016/j.joule.2021.05.005
[16]
Zhang S R, Nguyen L, Zhu Y, et al. In-situ studies of nanocatalysis. Acc Chem Res, 2013, 46, 1731 doi: 10.1021/ar300245g
[17]
Zaera F. In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions. J Catal, 2021, 404, 900 doi: 10.1016/j.jcat.2021.08.013
[18]
van der Wal L I, Turner S J, Zečević J. Developments and advances in in situ transmission electron microscopy for catalysis research. Catal Sci Technol, 2021, 11, 3634 doi: 10.1039/D1CY00258A
[19]
Knop-Gericke A, Kleimenov E, Hävecker M, et al. X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal, 2009, 52, 213 doi: 10.1016/B978-0-12-409547-2.12829-X
[20]
Ahmed M H M, Temperton R H, O'Shea J N. An in situ exploration of subsurface defect migration to a liquid water-exposed rutile TiO2(110) surface by XPS. Surf Interface Anal, 2021, 53, 1013 doi: 10.1002/sia.6906
[21]
Zhang P, Li Y K, Zhang Y S, et al. Photogenerated electron transfer process in heterojunctions: in situ irradiation XPS. Small Methods, 2020, 4, 2000214 doi: 10.1002/smtd.202000214
[22]
Bordiga S, Groppo E, Agostini G, et al. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev, 2013, 113, 1736 doi: 10.1021/cr2000898
[23]
Zaera F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem Soc Rev, 2014, 43, 7624 doi: 10.1039/C3CS60374A
[24]
Wachs I E, Roberts C A. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chem Soc Rev, 2010, 39, 5002 doi: 10.1039/c0cs00145g
[25]
Kim H, Kosuda K M, van Duyne R P, et al. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev, 2010, 39, 4820 doi: 10.1039/c0cs00044b
[26]
Bakker M G, Fowler B, Bowman M K, et al. Experimental methods in chemical engineering: Electron paramagnetic resonance spectroscopy-EPR/ESR. Can J Chem Eng, 2020, 98, 1668 doi: 10.1002/cjce.23784
[27]
Wu J B, Shan H, Chen W L, et al. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv Mater, 2016, 28, 9686 doi: 10.1002/adma.201602519
[28]
Grogger W, Hofer F, Kothleitner G, et al. An introduction to high-resolution EELS in transmission electron microscopy. Top Catal, 2008, 50, 200 doi: 10.1007/s11244-008-9101-4
[29]
Besenbacher F, Lauritsen J V, Wendt S. STM studies of model catalysts. Nano Today, 2007, 2, 30 doi: 10.1016/S1748-0132(07)70115-9
[30]
Preet A, Lin T E. A review: Scanning electrochemical microscopy (SECM) for visualizing the real-time local catalytic activity. Catalysts, 2021, 11, 594 doi: 10.3390/catal11050594
[31]
Zhuang G X, Chen Y W, Zhuang Z Y, et al. Oxygen vacancies in metal oxides: Recent progress towards advanced catalyst design. Sci China Mater, 2020, 63, 2089 doi: 10.1007/s40843-020-1305-6
[32]
Feng H F, Xu Z F, Ren L, et al. Activating titania for efficient electrocatalysis by vacancy engineering. ACS Catal, 2018, 8, 4288 doi: 10.1021/acscatal.8b00719
[33]
Hou T T, Xiao Y, Cui P X, et al. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation. Adv Energy Mater, 2019, 9, 1902319 doi: 10.1002/aenm.201902319
[34]
Kolmakova N, Kolmakov A. Scanning electron microscopy for in situ monitoring of semiconductor−liquid interfacial processes: Electron assisted reduction of Ag ions from aqueous solution on the surface of TiO2 rutile nanowire. J Phys Chem C, 2010, 114, 17233 doi: 10.1021/jp1044546
[35]
Möbus G, Saghi Z, Sayle D C, et al. Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution. Adv Funct Mater, 2011, 21, 1971 doi: 10.1002/adfm.201002135
[36]
Bugnet M, Overbury S H, Wu Z L, et al. Direct visualization and control of atomic mobility at {100} surfaces of ceria in the environmental transmission electron microscope. Nano Lett, 2017, 17, 7652 doi: 10.1021/acs.nanolett.7b03680
[37]
Cavalca F, Laursen A B, Kardynal B E, et al. In situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology, 2012, 23, 075705 doi: 10.1088/0957-4484/23/7/075705
[38]
Zhang L X, Miller B K, Crozier P A. Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett, 2013, 13, 679 doi: 10.1021/nl304333h
[39]
Lu Y, Yin W J, Peng K L, et al. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat Commun, 2018, 9, 2752 doi: 10.1038/s41467-018-05144-1
[40]
Yu S H, Jiang Y H, Sun Y, et al. Real time imaging of photocatalytic active site formation during H2 evolution by in situ TEM. Appl Catal B, 2021, 284, 119743 doi: 10.1016/j.apcatb.2020.119743
[41]
Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev, 2011, 111, 3669 doi: 10.1021/cr100275d
[42]
Bamwenda G R, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water-ethanol solution: A comparison of activities of Au–TiO2 and Pt–TiO2. J Photochem Photobiol A, 1995, 89, 177 doi: 10.1016/1010-6030(95)04039-I
[43]
Priebe J B, Karnahl M, Junge H, et al. Water reduction with visible light: Synergy between optical transitions and electron transfer in Au-TiO2 catalysts visualized by in situ EPR spectroscopy. Angew Chem Int Ed, 2013, 52, 11420 doi: 10.1002/anie.201306504
[44]
Yang K S, Lu Y R, Hsu Y Y, et al. Plasmon-induced visible-light photocatalytic activity of Au nanoparticle-decorated hollow mesoporous TiO2: A view by X-ray spectroscopy. J Phys Chem C, 2018, 122, 6955 doi: 10.1021/acs.jpcc.8b00205
[45]
Ekande O S, Kumar M. Review on polyaniline as reductive photocatalyst for the construction of the visible light active heterojunction for the generation of reactive oxygen species. J Environ Chem Eng, 2021, 9, 105725 doi: 10.1016/j.jece.2021.105725
[46]
Yuan Y, Guo R T, Hong L F, et al. A review of metal oxide-based Z-scheme heterojunction photocatalysts: Actualities and developments. Mater Today Energy, 2021, 21, 100829 doi: 10.1016/j.mtener.2021.100829
[47]
Di T M, Xu Q L, Ho W, et al. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem, 2019, 11, 1394 doi: 10.1002/cctc.201802024
[48]
Sai L M, Kong X Y. Type II hybrid structures of TiO2 nanorods conjugated with CdS quantum dots: Assembly and optical properties. Appl Phys A, 2014, 114, 605 doi: 10.1007/s00339-013-7631-5
[49]
Zhu Y Y, Liu Y F, Lv Y H, et al. Enhancement of photocatalytic activity for BiPO4 via phase junction. J Mater Chem A, 2014, 2, 13041 doi: 10.1039/C4TA01807A
[50]
Xue J W, Bao J. Interfacial charge transfer of heterojunction photocatalysts: Characterization and calculation. Surf Interfaces, 2021, 25, 101265 doi: 10.1016/j.surfin.2021.101265
[51]
Yang H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater Res Bull, 2021, 142, 111406 doi: 10.1016/j.materresbull.2021.111406
[52]
Wang L B, Cheng B, Zhang L Y, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17, 2103447 doi: 10.1002/smll.202103447
[53]
Beck A, Huang X, Artiglia L, et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat Commun, 2020, 11, 3220 doi: 10.1038/s41467-020-17070-2
[54]
Vincent J L, Crozier P A. Atomic level fluxional behavior and activity of CeO2-supported Pt catalysts for CO oxidation. Nat Commun, 2021, 12, 5789 doi: 10.1038/s41467-021-26047-8
[55]
Simpson B H, Rodríguez-López J. Emerging techniques for the in situ analysis of reaction intermediates on photo-electrochemical interfaces. Anal Methods, 2015, 7, 7029 doi: 10.1039/C5AY00503E
[56]
Nosaka Y, Nosaka A Y. Generation and detection of reactive oxygen species in photocatalysis. Chem Rev, 2017, 117, 11302 doi: 10.1021/acs.chemrev.7b00161
[57]
Liu J Y, Wei Z D, Shangguan W F. Defects engineering in photocatalytic water splitting materials. ChemCatChem, 2019, 11, 6177 doi: 10.1002/cctc.201901579
[58]
Connor P A, Dobson K D, McQuillan A J. Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir, 1999, 15, 2402 doi: 10.1021/la980855d
[59]
Haschke S, Mader M, Schlicht S, et al. Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface. Nat Commun, 2018, 9, 4565 doi: 10.1038/s41467-018-07031-1
[60]
Lin W Y, Frei H. Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti silicalite sieve. J Am Chem Soc, 2002, 124, 9292 doi: 10.1021/ja012477w
[61]
Rong X, Parolin J, Kolpak A M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal, 2016, 6, 1153 doi: 10.1021/acscatal.5b02432
[62]
Zandi O, Hamann T W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat Chem, 2016, 8, 778 doi: 10.1038/nchem.2557
[63]
Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414, 625 doi: 10.1038/414625a
[64]
Guo S H, Li Y H, Tang S W, et al. Monitoring hydrogen evolution reaction intermediates of transition metal dichalcogenides via operando Raman spectroscopy. Adv Funct Mater, 2020, 30, 2003035 doi: 10.1002/adfm.202003035
[65]
Peng Y H, Geng M J, Yu J Q, et al. Vacancy-induced 2H@1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution. Appl Catal B, 2021, 298, 120570 doi: 10.1016/j.apcatb.2021.120570
[66]
Ye L Q, Ma Z Y, Deng Y, et al. Robust and efficient photocatalytic hydrogen generation of ReS2/CdS and mechanistic study by on-line mass spectrometry and in situ infrared spectroscopy. Appl Catal B, 2019, 257, 117897 doi: 10.1016/j.apcatb.2019.117897
[67]
Wang X, Wang X, Huang J, et al. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat Commun, 2021, 12, 4112 doi: 10.1038/s41467-021-24511-z
[68]
Nakamura R, Nakato Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc, 2004, 126, 1290 doi: 10.1021/ja0388764
[69]
Zhang M, de Respinis M, Frei H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem, 2014, 6, 362 doi: 10.1038/nchem.1874
[70]
Ding Q, Liu Y, Chen T, et al. Unravelling the water oxidation mechanism on NaTaO3-based photocatalysts. J Mater Chem A, 2020, 8, 6812 doi: 10.1039/C9TA14235E
[71]
Fresno F, Galdón S, Barawi M, et al. Selectivity in UV photocatalytic CO2 conversion over bare and silver-decorated niobium-tantalum perovskites. Catal Today, 2021, 361, 85 doi: 10.1016/j.cattod.2020.01.013
[72]
Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature, 1978, 275, 115 doi: 10.1038/275115a0
[73]
Marszewski M, Cao S W, Yu J G, et al. Semiconductor-based photocatalytic CO2 conversion. Mater Horiz, 2015, 2, 261 doi: 10.1039/C4MH00176A
[74]
Rao H, Schmidt L C, Bonin J, et al. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature, 2017, 548, 74 doi: 10.1038/nature23016
[75]
Schreier M, Héroguel F, Steier L, et al. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat Energy, 2017, 2, 17087 doi: 10.1038/nenergy.2017.87
[76]
Wang Y, Shang X, Shen J, et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat Commun, 2020, 11, 3043 doi: 10.1038/s41467-020-16742-3
[77]
Kou Y, Nabetani Y, Dai M S, et al. Direct detection of key reaction intermediates in photochemical CO2 reduction sensitized by a rhenium bipyridine complex. J Am Chem Soc, 2014, 136, 6021 doi: 10.1021/ja500403e
[78]
Liu L J, Li Y. Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: A review. Aerosol Air Qual Res, 2014, 14, 453 doi: 10.4209/aaqr.2013.06.0186
[79]
Liu L J, Zhao C Y, Miller J T, et al. Mechanistic study of CO2 photoreduction with H2O on Cu/TiO2 nanocomposites by in situ X-ray absorption and infrared spectroscopies. J Phys Chem C, 2017, 121, 490 doi: 10.1021/acs.jpcc.6b10835
[80]
Wu J, Li X D, Shi W, et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew Chem Int Ed, 2018, 57, 8719 doi: 10.1002/anie.201803514
[81]
Chen S, Wang H, Kang Z, et al. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat Commun, 2019, 10, 788 doi: 10.1038/s41467-019-08697-x
[82]
Zhu J C, Shao W W, Li X D, et al. Asymmetric triple-atom sites confined in ternary oxide enabling selective CO2 photothermal reduction to acetate. J Am Chem Soc, 2021, 143, 18233 doi: 10.1021/jacs.1c08033
[83]
Ren X J, Gao M C, Zhang Y F, et al. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism. Appl Catal B, 2020, 274, 119063 doi: 10.1016/j.apcatb.2020.119063
[84]
MacKay B A, Fryzuk M D. Dinitrogen coordination chemistry: The biomimetic borderlands. ChemInform, 2004, 35, 703 doi: 10.1002/chin.200430145
[85]
Shen H D, Yang M M, Hao L D, et al. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res, 2021, 275, 115 doi: 10.1007/s12274-021-3725-0
[86]
Guo J P, Chen P. Catalyst: NH3 as an energy carrier. Chem, 2017, 3, 709 doi: 10.1016/j.chempr.2017.10.004
[87]
Medford A J, Hatzell M C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook. ACS Catal, 2017, 7, 2624 doi: 10.1021/acscatal.7b00439
[88]
Hoffman B M, Lukoyanov D, Yang Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem Rev, 2014, 114, 4041 doi: 10.1021/cr400641x
[89]
Jia H P, Quadrelli E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem Soc Rev, 2014, 43, 547 doi: 10.1039/C3CS60206K
[90]
Yuzawa H, Mori T, Itoh H, et al. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst. J Phys Chem C, 2012, 116, 4126 doi: 10.1021/jp209795t
[91]
Hirakawa H, Hashimoto M, Shiraishi Y, et al. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J Am Chem Soc, 2017, 139, 10929 doi: 10.1021/jacs.7b06634
[92]
Li C C, Wang T, Zhao Z J, et al. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew Chem, 2018, 130, 5376 doi: 10.1002/ange.201713229
[93]
Li H, Shang J, Ai Z H, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc, 2015, 137, 6393 doi: 10.1021/jacs.5b03105
[94]
Li P S, Zhou Z A, Wang Q, et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: Enhanced performance by oxygen vacancies. J Am Chem Soc, 2020, 142, 12430 doi: 10.1021/jacs.0c05097
[95]
Wang S Y, Hai X, Ding X, et al. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv Mater, 2017, 29, 1701774 doi: 10.1002/adma.201701774
[96]
Yang J H, Guo Y Z, Jiang R B, et al. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J Am Chem Soc, 2018, 140, 8497 doi: 10.1021/jacs.8b03537
[97]
Rao F, Zhu G Q, Zhang W B, et al. In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photocatalytic NO removal. Appl Catal B, 2021, 281, 119481 doi: 10.1016/j.apcatb.2020.119481
[98]
Shang H, Li M Q, Li H, et al. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ Sci Technol, 2019, 53, 6444 doi: 10.1021/acs.est.8b07322
[99]
Jin H, You R, Zhou S, et al. In-situ DRIFTS and XANES identification of copper species in the ternary composite oxide catalysts CuMnCeO during CO preferential oxidation. Int J Hydrog Energy, 2015, 40, 3919 doi: 10.1016/j.ijhydene.2015.01.086
[100]
Zigah D, Rodríguez-López J, Bard A J. Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy. Phys Chem Chem Phys, 2012, 14, 12764 doi: 10.1039/c2cp40907k
[101]
Kreuzer L B, Patel C K. Nitric oxide air pollution: Detection by optoacoustic spectroscopy. Science, 1971, 173, 45 doi: 10.1126/science.173.3991.45
[102]
Jin S, Dong G H, Luo J M, et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst. Appl Catal B, 2018, 227, 24 doi: 10.1016/j.apcatb.2018.01.020
[103]
Lu Y F, Huang Y, Zhang Y F, et al. Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal. Appl Catal B, 2018, 231, 357 doi: 10.1016/j.apcatb.2018.01.008
[104]
Nakamura R, Imanishi A, Murakoshi K, et al. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J Am Chem Soc, 2003, 125, 7443 doi: 10.1021/ja029503q
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2298 Times PDF downloads: 300 Times Cited by: 0 Times

    History

    Received: 02 December 2021 Revised: 12 January 2022 Online: Accepted Manuscript: 14 March 2022Uncorrected proof: 15 March 2022Published: 18 April 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhen Fang, Yao Liu, Chengyi Song, Peng Tao, Wen Shang, Tao Deng, Xiaoqin Zeng, Jianbo Wu. In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes[J]. Journal of Semiconductors, 2022, 43(4): 041104. doi: 10.1088/1674-4926/43/4/041104 Z Fang, Y Liu, C Y Song, P Tao, W Shang, T Deng, X Q Zeng, J B Wu. In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes[J]. J. Semicond, 2022, 43(4): 041104. doi: 10.1088/1674-4926/43/4/041104Export: BibTex EndNote
      Citation:
      Zhen Fang, Yao Liu, Chengyi Song, Peng Tao, Wen Shang, Tao Deng, Xiaoqin Zeng, Jianbo Wu. In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes[J]. Journal of Semiconductors, 2022, 43(4): 041104. doi: 10.1088/1674-4926/43/4/041104

      Z Fang, Y Liu, C Y Song, P Tao, W Shang, T Deng, X Q Zeng, J B Wu. In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes[J]. J. Semicond, 2022, 43(4): 041104. doi: 10.1088/1674-4926/43/4/041104
      Export: BibTex EndNote

      In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes

      doi: 10.1088/1674-4926/43/4/041104
      More Information
      • Author Bio:

        Zhen Fang received his MS from Wuhan University of Technology in 2021. Now he is a PhD candidate student at Shanghai Jiao Tong University under the supervision of Prof. Jianbo Wu. His research focuses on in-situ TEM characterization, and platinum-based electrocatalyst

        Yao Liu received her MS from Hunan University in 2021. Now she is a PhD candidate student at Shanghai Jiao Tong University under the supervision of Prof. Xiaoqin Zeng. Her research focuses on in-situ corrosion of metals and alloys

        Xiaoqin Zeng received his PhD degree from Shanghai Jiao Tong University in 2001, and now he is a professor in the School of Materials Science and Engineering at Shanghai Jiao Tong University. He was a recipient of the National Science Foundation for outstanding young scholars. His main research interests include strengthening theory and method of alloys and design and preparation of advanced Mg alloys

        Jianbo Wu is a professor in the School of Materials Science and Engineering at Shanghai Jiao Tong University. He received his PhD degree in Chemical Engineering from University of Rochester in 2012, his MS degree in 2007 and BE degree in 2005 both in Materials Science and Engineering from Zhejiang University. He received postdoctoral training in the Department of Materials Science and Engineering at the University of Illinois at Urbana-Champaign. His current research focuses on facet and composition controlled nanocrystals, fuel cell electrocatalysts, functional materials for energy and environmental applications, and in situ TEM characterization

      • Corresponding author: xqzeng@sjtu.edu.cnjianbowu@sjtu.edu.cn
      • Received Date: 2021-12-02
      • Accepted Date: 2022-03-11
      • Revised Date: 2022-01-12
      • Available Online: 2022-03-25

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return