RESEARCH HIGHLIGHTS

The physical origin of stimulated emission in perovskites

Ju Wang1, Shufeng Wang1, 2, 3, 4, and Liming Ding5,

+ Author Affiliations

 Corresponding author: Shufeng Wang, wangsf@pku.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Zhang Q, Shang Q, Su R, et al. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Lett, 2021, 21, 1903 doi: 10.1021/acs.nanolett.0c03593
[2]
Kondo S, Suzuki K, Saito T, et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation. Phys Rev B, 2004, 70, 2469 doi: 10.1103/PhysRevB.70.205322
[3]
Xing G, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13, 476 doi: 10.1038/nmat3911
[4]
Dhanker R, Brigeman A N, Larsen A V, et al. Random lasing in organo-lead halide perovskite microcrystal networks. Appl Phys Lett, 2014, 105, 151112 doi: 10.1063/1.4898703
[5]
Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14, 636 doi: 10.1038/nmat4271
[6]
Wang Y, Li X, Zhao X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett, 2016, 16, 448 doi: 10.1021/acs.nanolett.5b04110
[7]
Jia Y, Kerner R A, Grede A J, et al. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor. Nat Photonics, 2017, 11, 784 doi: 10.1038/s41566-017-0047-6
[8]
Li M, Gao Q, Liu P, et al. Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites. Adv Funct Mater, 2018, 28, 1707006 doi: 10.1002/adfm.201707006
[9]
Li M, Wei Q, Muduli S K, et al. Enhanced exciton and photon confinement in Ruddlesden-Popper perovskite microplatelets for highly stable low-threshold polarized lasing. Adv Mater, 2018, 30, 1707235 doi: 10.1002/adma.201707235
[10]
Huang C, Zhang C, Xiao S, et al. Ultrafast control of vortex microlasers. Science, 2020, 367, 1018 doi: 10.1126/science.aba4597
[11]
Qin C, Sandanayaka A S D, Zhao C, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585, 53 doi: 10.1038/s41586-020-2621-1
[12]
Jia Y, Kerner R A, Grede A J, et al. Factors that limit continuous-wave lasing in hybrid perovskite semiconductors. Adv Opt Mater, 2020, 8, 1901514 doi: 10.1002/adom.201901514
[13]
Wang W, Li Y, Wang X, et al. Density-dependent dynamical coexistence of excitons and free carriers in the organolead perovskite CH3NH3PbI3. Phys Rev B, 2016, 94, 140302 doi: 10.1103/PhysRevB.94.140302
[14]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[15]
Rainò G, Becker M A, Bodnarchuk M I, et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563, 671 doi: 10.1038/s41586-018-0683-0
[16]
Schlaus A P, Spencer M S, Miyata K, et al. How lasing happens in CsPbBr3 perovskite nanowires. Nat Commun, 2019, 10, 265 doi: 10.1038/s41467-018-07972-7
[17]
Booker E P, Price M B, Budden P J, et al. Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites. Adv Opt Mater, 2018, 6, 1800616 doi: 10.1002/adom.201800616
[18]
Du W, Zhang S, Zhang Q, et al. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv Mater, 2019, 31, 1804894 doi: 10.1002/adma.201804894
[19]
Kasprzak J, Richard M, Kundermann S, et al. Bose-Einstein condensation of exciton polaritons. Nature, 2006, 443, 409 doi: 10.1038/nature05131
[20]
Guillet T, Brimont C. Polariton condensates at room temperature. C R Phys, 2016, 17, 946 doi: 10.1016/j.crhy.2016.07.002
[21]
Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys, 2010, 82, 1489 doi: 10.1103/RevModPhys.82.1489
[22]
Bouteyre P, Nguyen H S, Lauret J S, et al. Room-temperature cavity polaritons with 3D hybrid perovskite: toward large-surface polaritonic devices. ACS Photonics, 2019, 6, 1804 doi: 10.1021/acsphotonics.9b00625
[23]
Evans T J S, Schlaus A, Fu Y, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater, 2018, 6, 1700982 doi: 10.1002/adom.201700982
[24]
Bao W, Liu X, Xue F, et al. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc Natl Acad Sci USA, 2019, 116, 20274 doi: 10.1073/pnas.1909948116
[25]
Zhang S, Chen J, Shi J, et al. Trapped exciton–polariton condensate by spatial confinement in a perovskite microcavity. ACS Photonics, 2020, 7, 327 doi: 10.1021/acsphotonics.9b01240
[26]
Su R, Ghosh S, Liew T C H, et al. Optical switching of topological phase in a perovskite polariton lattice. Sci Adv, 2021, 7, eabf8049 doi: 10.1126/sciadv.abf8049
[27]
Feng J, Wang J, Fieramosca A, et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci Adv, 2021, 7, eabj6627 doi: 10.1126/sciadv.abj6627
[28]
Su R, Fieramosca A, Zhang Q, et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat Mater, 2021, 20, 1315 doi: 10.1038/s41563-021-01035-x
[29]
Bonifacio R, Lugiato L A. Cooperative radiation processes in two-level systems: Superfluorescence. Phys Rev A, 1975, 11, 1507 doi: 10.1103/PhysRevA.11.1507
[30]
Malcuit M S, Maki J J, Simkin D J, et al. Transition from superfluorescence to amplified spontaneous emission. Phys Rev Lett, 1987, 59, 1189 doi: 10.1103/PhysRevLett.59.1189
[31]
Findik G, Biliroglu M, Seyitliyev D, et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat Photonics, 2021, 15, 676 doi: 10.1038/s41566-021-00830-x
[32]
Mattiotti F, Kuno M, Borgonovi F, et al. Thermal decoherence of superradiance in lead halide perovskite nanocrystal superlattices. Nano Lett, 2020, 20, 7382 doi: 10.1021/acs.nanolett.0c02784
[33]
Eaton S W, Lai M, Gibson N A, et al. Lasing in robust cesium lead halide perovskite nanowires. Proc Natl Acad Sci USA, 2016, 113, 1993 doi: 10.1073/pnas.1600789113
[34]
Pelant I, Valenta J. Luminescence spectroscopy of semiconductors. Oxford: Oxford University Press, 2012
[35]
He M, Jiang Y, Liu Q, et al. Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature. Phys Rev Appl, 2020, 13, 044072 doi: 10.1103/PhysRevApplied.13.044072
[36]
Wang J, Jia X, Wang Z, et al. Ultrafast plasmonic lasing from a metal/semiconductor interface. Nanoscale, 2020, 12, 16403 doi: 10.1039/D0NR02330B
[37]
Wang J, Yu H, Liu G, et al. Ultrafast lasing dynamics in a CsPbBr3 perovskite microplate. Adv Photonics Res, 2021, 2100182 doi: 10.1002/adpr.202100182
[38]
Cho K, Yamada T, Tahara H, et al. Luminescence fine structures in single lead halide perovskite nanocrystals: size dependence of the exciton–phonon coupling. Nano Lett, 2021, 21, 7206 doi: 10.1021/acs.nanolett.1c02122
[39]
Kondo T, Azuma T, Yuasa T, et al. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun, 1998, 105, 253 doi: 10.1016/S0038-1098(97)10085-0
[40]
Liu Y, Wang J, Zhang L, et al. Exciton and bi-exciton mechanisms in amplified spontaneous emission from CsPbBr3 perovskite thin films. Opt Express, 2019, 27, 29124 doi: 10.1364/OE.27.029124
[41]
Zhao W, Qin Z, Zhang C, et al. Optical gain from biexcitons in CsPbBr3 nanocrystals revealed by two-dimensional electronic spectroscopy. J Phys Chem Lett, 2019, 10, 1251 doi: 10.1021/acs.jpclett.9b00524
[42]
Wang Y, Zhi M, Chang Y Q, et al. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett, 2018, 18, 4976 doi: 10.1021/acs.nanolett.8b01817
[43]
Yumoto G, Tahara H, Kawawaki T, et al. Hot biexciton effect on optical gain in CsPbI3 perovskite nanocrystals. J Phys Chem Lett, 2018, 9, 2222 doi: 10.1021/acs.jpclett.8b01029
Fig. 1.  (Color online) Advances of stimulated emission in 3D, quasi-2D, 1D and 0D perovskites.

Fig. 2.  (Color online) (a) The coupling between photon and exciton in the cavity. (b) The dispersion curves for polaritons. (c) Angle-resolved photoluminescence spectrum measured above the lasing threshold. The ground state is massively occupied, symbolizing polariton condensation. Reproduced with permission[14], Copyright 2017, American Chemical Society. (d) SF in a typical four-energy-level system. (e) Time-resolved SF emission of CsPbBr3 QDs. Reproduced with permission[15], Copyright 2018, Springer Nature. (f) Exciton and EHP states with increasing electron-hole density. Eg and Ee refer to bandgap energy and exciton energy, respectively. (g) Time-resolved lasing of a single CsPbBr3 nanowire at 80 K. Reproduced with permission[16], Copyright 2019, Springer Nature. (h) PL spectrum at 10 K (black trace) and Gaussian fits to various peaks. X and XX refer to the emission of exciton and biexciton, respectively. X′ and X′X′ refer to the emission of exciton and biexciton in other phases. Reproduced with permission[17], Copyright 2018, Wiley.

[1]
Zhang Q, Shang Q, Su R, et al. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Lett, 2021, 21, 1903 doi: 10.1021/acs.nanolett.0c03593
[2]
Kondo S, Suzuki K, Saito T, et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation. Phys Rev B, 2004, 70, 2469 doi: 10.1103/PhysRevB.70.205322
[3]
Xing G, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13, 476 doi: 10.1038/nmat3911
[4]
Dhanker R, Brigeman A N, Larsen A V, et al. Random lasing in organo-lead halide perovskite microcrystal networks. Appl Phys Lett, 2014, 105, 151112 doi: 10.1063/1.4898703
[5]
Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14, 636 doi: 10.1038/nmat4271
[6]
Wang Y, Li X, Zhao X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett, 2016, 16, 448 doi: 10.1021/acs.nanolett.5b04110
[7]
Jia Y, Kerner R A, Grede A J, et al. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor. Nat Photonics, 2017, 11, 784 doi: 10.1038/s41566-017-0047-6
[8]
Li M, Gao Q, Liu P, et al. Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites. Adv Funct Mater, 2018, 28, 1707006 doi: 10.1002/adfm.201707006
[9]
Li M, Wei Q, Muduli S K, et al. Enhanced exciton and photon confinement in Ruddlesden-Popper perovskite microplatelets for highly stable low-threshold polarized lasing. Adv Mater, 2018, 30, 1707235 doi: 10.1002/adma.201707235
[10]
Huang C, Zhang C, Xiao S, et al. Ultrafast control of vortex microlasers. Science, 2020, 367, 1018 doi: 10.1126/science.aba4597
[11]
Qin C, Sandanayaka A S D, Zhao C, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585, 53 doi: 10.1038/s41586-020-2621-1
[12]
Jia Y, Kerner R A, Grede A J, et al. Factors that limit continuous-wave lasing in hybrid perovskite semiconductors. Adv Opt Mater, 2020, 8, 1901514 doi: 10.1002/adom.201901514
[13]
Wang W, Li Y, Wang X, et al. Density-dependent dynamical coexistence of excitons and free carriers in the organolead perovskite CH3NH3PbI3. Phys Rev B, 2016, 94, 140302 doi: 10.1103/PhysRevB.94.140302
[14]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[15]
Rainò G, Becker M A, Bodnarchuk M I, et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563, 671 doi: 10.1038/s41586-018-0683-0
[16]
Schlaus A P, Spencer M S, Miyata K, et al. How lasing happens in CsPbBr3 perovskite nanowires. Nat Commun, 2019, 10, 265 doi: 10.1038/s41467-018-07972-7
[17]
Booker E P, Price M B, Budden P J, et al. Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites. Adv Opt Mater, 2018, 6, 1800616 doi: 10.1002/adom.201800616
[18]
Du W, Zhang S, Zhang Q, et al. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv Mater, 2019, 31, 1804894 doi: 10.1002/adma.201804894
[19]
Kasprzak J, Richard M, Kundermann S, et al. Bose-Einstein condensation of exciton polaritons. Nature, 2006, 443, 409 doi: 10.1038/nature05131
[20]
Guillet T, Brimont C. Polariton condensates at room temperature. C R Phys, 2016, 17, 946 doi: 10.1016/j.crhy.2016.07.002
[21]
Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys, 2010, 82, 1489 doi: 10.1103/RevModPhys.82.1489
[22]
Bouteyre P, Nguyen H S, Lauret J S, et al. Room-temperature cavity polaritons with 3D hybrid perovskite: toward large-surface polaritonic devices. ACS Photonics, 2019, 6, 1804 doi: 10.1021/acsphotonics.9b00625
[23]
Evans T J S, Schlaus A, Fu Y, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater, 2018, 6, 1700982 doi: 10.1002/adom.201700982
[24]
Bao W, Liu X, Xue F, et al. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc Natl Acad Sci USA, 2019, 116, 20274 doi: 10.1073/pnas.1909948116
[25]
Zhang S, Chen J, Shi J, et al. Trapped exciton–polariton condensate by spatial confinement in a perovskite microcavity. ACS Photonics, 2020, 7, 327 doi: 10.1021/acsphotonics.9b01240
[26]
Su R, Ghosh S, Liew T C H, et al. Optical switching of topological phase in a perovskite polariton lattice. Sci Adv, 2021, 7, eabf8049 doi: 10.1126/sciadv.abf8049
[27]
Feng J, Wang J, Fieramosca A, et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci Adv, 2021, 7, eabj6627 doi: 10.1126/sciadv.abj6627
[28]
Su R, Fieramosca A, Zhang Q, et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat Mater, 2021, 20, 1315 doi: 10.1038/s41563-021-01035-x
[29]
Bonifacio R, Lugiato L A. Cooperative radiation processes in two-level systems: Superfluorescence. Phys Rev A, 1975, 11, 1507 doi: 10.1103/PhysRevA.11.1507
[30]
Malcuit M S, Maki J J, Simkin D J, et al. Transition from superfluorescence to amplified spontaneous emission. Phys Rev Lett, 1987, 59, 1189 doi: 10.1103/PhysRevLett.59.1189
[31]
Findik G, Biliroglu M, Seyitliyev D, et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat Photonics, 2021, 15, 676 doi: 10.1038/s41566-021-00830-x
[32]
Mattiotti F, Kuno M, Borgonovi F, et al. Thermal decoherence of superradiance in lead halide perovskite nanocrystal superlattices. Nano Lett, 2020, 20, 7382 doi: 10.1021/acs.nanolett.0c02784
[33]
Eaton S W, Lai M, Gibson N A, et al. Lasing in robust cesium lead halide perovskite nanowires. Proc Natl Acad Sci USA, 2016, 113, 1993 doi: 10.1073/pnas.1600789113
[34]
Pelant I, Valenta J. Luminescence spectroscopy of semiconductors. Oxford: Oxford University Press, 2012
[35]
He M, Jiang Y, Liu Q, et al. Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature. Phys Rev Appl, 2020, 13, 044072 doi: 10.1103/PhysRevApplied.13.044072
[36]
Wang J, Jia X, Wang Z, et al. Ultrafast plasmonic lasing from a metal/semiconductor interface. Nanoscale, 2020, 12, 16403 doi: 10.1039/D0NR02330B
[37]
Wang J, Yu H, Liu G, et al. Ultrafast lasing dynamics in a CsPbBr3 perovskite microplate. Adv Photonics Res, 2021, 2100182 doi: 10.1002/adpr.202100182
[38]
Cho K, Yamada T, Tahara H, et al. Luminescence fine structures in single lead halide perovskite nanocrystals: size dependence of the exciton–phonon coupling. Nano Lett, 2021, 21, 7206 doi: 10.1021/acs.nanolett.1c02122
[39]
Kondo T, Azuma T, Yuasa T, et al. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun, 1998, 105, 253 doi: 10.1016/S0038-1098(97)10085-0
[40]
Liu Y, Wang J, Zhang L, et al. Exciton and bi-exciton mechanisms in amplified spontaneous emission from CsPbBr3 perovskite thin films. Opt Express, 2019, 27, 29124 doi: 10.1364/OE.27.029124
[41]
Zhao W, Qin Z, Zhang C, et al. Optical gain from biexcitons in CsPbBr3 nanocrystals revealed by two-dimensional electronic spectroscopy. J Phys Chem Lett, 2019, 10, 1251 doi: 10.1021/acs.jpclett.9b00524
[42]
Wang Y, Zhi M, Chang Y Q, et al. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett, 2018, 18, 4976 doi: 10.1021/acs.nanolett.8b01817
[43]
Yumoto G, Tahara H, Kawawaki T, et al. Hot biexciton effect on optical gain in CsPbI3 perovskite nanocrystals. J Phys Chem Lett, 2018, 9, 2222 doi: 10.1021/acs.jpclett.8b01029
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 823 Times PDF downloads: 105 Times Cited by: 0 Times

    History

    Received: 17 March 2022 Revised: Online: Uncorrected proof: 24 March 2022Published: 01 May 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ju Wang, Shufeng Wang, Liming Ding. The physical origin of stimulated emission in perovskites[J]. Journal of Semiconductors, 2022, 43(5): 050202. doi: 10.1088/1674-4926/43/5/050202 J Wang, S F Wang, L M Ding. The physical origin of stimulated emission in perovskites[J]. J. Semicond, 2022, 43(5): 050202. doi: 10.1088/1674-4926/43/5/050202Export: BibTex EndNote
      Citation:
      Ju Wang, Shufeng Wang, Liming Ding. The physical origin of stimulated emission in perovskites[J]. Journal of Semiconductors, 2022, 43(5): 050202. doi: 10.1088/1674-4926/43/5/050202

      J Wang, S F Wang, L M Ding. The physical origin of stimulated emission in perovskites[J]. J. Semicond, 2022, 43(5): 050202. doi: 10.1088/1674-4926/43/5/050202
      Export: BibTex EndNote

      The physical origin of stimulated emission in perovskites

      doi: 10.1088/1674-4926/43/5/050202
      More Information
      • Author Bio:

        Ju Wang got her bachelor degree from Sun Yat-sen University in 2017. Now she is a PhD student at Peking University under the supervision of Professor Shufeng Wang. Her research focuses on stimulated emission in perovskites

        Shufeng Wang got his PhD from Peking University. After postdoctoral work at University of Illinois at Urbana-Champaign, he returned to School of Physics at Peking University to continue his study on ultrafast science. He is also a member of State Key Laboratory for Artificial Microstructure and Mesoscopic Physics and Institute of Modern Optics. His research is on ultrahigh spatial-temporal resolution technique, perovskites, and low-dimensional semiconductors

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Ingans Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors

      • Corresponding author: wangsf@pku.edu.cnding@nanoctr.cn
      • Received Date: 2022-03-17
        Available Online: 2022-03-24

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return