SHORT COMMUNICATION

Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities

Shun Tian, Chen Zou, Runchen Lai, Chungen Hsu, Xuhui Cao, Shiyu Xing, Baodan Zhao and Dawei Di

+ Author Affiliations

 Corresponding author: Baodan Zhao, baodanzhao@zju.edu.cn; Dawei Di, daweidi@zju.edu.cn

PDF

Turn off MathJax



[1]
Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX(3), X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15, 3692 doi: 10.1021/nl5048779
[2]
Quan L, Arquer F P, Sabatini R P, et al. Perovskites for light emission. Adv Mater, 2018, 30, e1801996 doi: 10.1002/adma.201801996
[3]
Zhao B, Lian Y, Cui L, et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat Electron, 2020, 3, 704 doi: 10.1038/s41928-020-00487-4
[4]
Liu X K, Xu W, Bai S, et al. Metal halide perovskites for light-emitting diodes. Nat Mater, 2020, 20, 10 doi: 10.1038/s41563-020-0784-7
[5]
Tan Z K, Moghaddam R S, Lai M, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687 doi: 10.1038/nnano.2014.149
[6]
Lin K, Xing J, Quan L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[7]
Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249 doi: 10.1038/s41586-018-0576-2
[8]
Zhao B, Bai S, Kim V, et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat Photon, 2018, 12, 783 doi: 10.1038/s41566-018-0283-4
[9]
Ma D, Lin K, Dong Y, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 2021, 599, 594 doi: 10.1038/s41586-021-03997-z
[10]
Xu W, Hu Q, Bai S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photon, 2019, 13, 418 doi: 10.1038/s41566-019-0390-x
[11]
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photon, 2018, 12, 681 doi: 10.1038/s41566-018-0260-y
[12]
Liu Z, Qiu W, Peng X, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv Mater, 2021, 33, e2103268 doi: 10.1002/adma.202103268
[13]
Hassan Y, Park J H, Crawford M L, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591, 72 doi: 10.1038/s41586-021-03217-8
[14]
Li J, Bade S G, Shan X, et al. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater, 2015, 27, 5196 doi: 10.1002/adma.201502490
[15]
Yuan M, Quan L, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11, 872 doi: 10.1038/nnano.2016.110
[16]
Kuang C, Hu Z, Yuan Z, et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule, 2021, 5, 618 doi: 10.1016/j.joule.2021.01.003
[17]
Ban M, Zou Y, Rivett J P, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat Commun, 2018, 9, 3892 doi: 10.1038/s41467-018-06425-5
[18]
Wu T, Li J, Zou Y, et al. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew Chem Int Ed, 2020, 59, 4099 doi: 10.1002/anie.201914000
[19]
Wang Y, Yuan F, Dong Y, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized alpha-CsPbI3 perovskite. Angew Chem Int Ed, 2021, 60, 16164 doi: 10.1002/anie.202104812
[20]
Wang H, Zhang X, Wu Q, et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat Commun, 2019, 10, 665 doi: 10.1038/s41467-019-08425-5
[21]
Yang X, Zhang X, Deng J, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun, 2018, 9, 570 doi: 10.1038/s41467-018-02978-7
[22]
Jin Y, Yuan S, Wang K L, et al. Morphology control of CsPbBr3 films by a surface active Lewis base for bright all-inorganic perovskite light-emitting diodes. Appl Phys Lett, 2019, 114, 163302 doi: 10.1063/1.5094041
[23]
Han B, Yuan S, Fang T, et al. Novel Lewis base cyclam self-passivation of perovskites without an anti-solvent process for efficient light-emitting diodes. ACS Appl Mater Interfaces, 2020, 12, 14224 doi: 10.1021/acsami.0c02768
[24]
Zhu L, Cao H, Xue C, et al. Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nat Commun, 2021, 12, 5081 doi: 10.1038/s41467-021-25407-8
[25]
Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photon, 2019, 13, 460 doi: 10.1038/s41566-019-0398-2
[26]
Hsu C, Tian S, Lian Y, et al. Efficient mini/micro-perovskite light-emitting diodes. Cell Rep Phys Sci, 2021, 2, 100582 doi: 10.1016/j.xcrp.2021.100582
[27]
Kong L, Zhang X, Li Y, et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat Commun, 2021, 12, 1246 doi: 10.1038/s41467-021-21522-8
[28]
Zhumekenov A A, Saidaminov M I, Haque M A, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett, 2016, 1, 32 doi: 10.1021/acsenergylett.6b00002
[29]
Miyata K, Meggiolaro D, Trinh M T, et al. Large polarons in lead halide perovskites. Sci Adv, 2017, 3, e1701217 doi: 10.1126/sciadv.1701217
[30]
Zhang L, Sun C, He T, et al. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci Appl, 2021, 10, 61 doi: 10.1038/s41377-021-00501-0
[31]
Stranks S D, Hoye R L, Di D, et al. The physics of light emission in halide perovskite devices. Adv Mater, 2019, 31, e1803336 doi: 10.1002/adma.201803336
[32]
Zou C, Lin L. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Opt Lett, 2020, 45, 4786 doi: 10.1364/OL.400814
[33]
Schmidt T D, Lampe T, Sylvinson M R, et al. Emitter orientation as a key parameter in organic light-emitting diodes. Phys Rev Appl, 2017, 8, 037001 doi: 10.1103/PhysRevApplied.8.037001
[34]
Zhu R, Luo, Z Wu S. Light extraction analysis and enhancement in a quantum dot light emitting diode. Opt Express, 2014, 22, A1783 doi: 10.1364/OE.22.0A1783
Fig. 1.  (Color online) SCLC analyses for MCFPB and MCFPB-C perovskite films. Current–voltage characteristics of devices with structures of (a) ITO/NiOx/PVK/MCFPB/MoOx/Ag, (b) ITO/NiOx/PVK/MCFPB-C/MoOx/Ag, (c) ITO/NiOx/PVK/LiF/MCFPB/MoOx/Ag and (d) ITO/NiOx/PVK/LiF/MCFPB-C/MoOx/Ag.

Fig. 2.  (Color online) Characterization of PeLEDs. (a) Device structure. (b) The energy levels of the device functional layer materials. (c) J–V–L and (e) EQE–J curves of devices based on ITO/NiOx/PVK/(with or without)LiF/MCFPB/TPBi/LiF/Al. (d) J–V–L and (f) EQE–J curves of devices based on ITO/NiOx/PVK/(with or without)LiF/MCFPB-C/TPBi/LiF/Al. Inset: a photograph of a working device. (g) Simulated power distribution of a PeLED with isotropic emitter orientation. The dashed lines divide the graph into four regions: (1) direction emission, (2) substrate mode, (3) waveguide mode, and (4) surface plasmon mode. (h) Fractional power distribution of different optical modes in PeLEDs as a function of perovskite layer thickness.

[1]
Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX(3), X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15, 3692 doi: 10.1021/nl5048779
[2]
Quan L, Arquer F P, Sabatini R P, et al. Perovskites for light emission. Adv Mater, 2018, 30, e1801996 doi: 10.1002/adma.201801996
[3]
Zhao B, Lian Y, Cui L, et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat Electron, 2020, 3, 704 doi: 10.1038/s41928-020-00487-4
[4]
Liu X K, Xu W, Bai S, et al. Metal halide perovskites for light-emitting diodes. Nat Mater, 2020, 20, 10 doi: 10.1038/s41563-020-0784-7
[5]
Tan Z K, Moghaddam R S, Lai M, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687 doi: 10.1038/nnano.2014.149
[6]
Lin K, Xing J, Quan L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[7]
Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249 doi: 10.1038/s41586-018-0576-2
[8]
Zhao B, Bai S, Kim V, et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat Photon, 2018, 12, 783 doi: 10.1038/s41566-018-0283-4
[9]
Ma D, Lin K, Dong Y, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 2021, 599, 594 doi: 10.1038/s41586-021-03997-z
[10]
Xu W, Hu Q, Bai S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photon, 2019, 13, 418 doi: 10.1038/s41566-019-0390-x
[11]
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photon, 2018, 12, 681 doi: 10.1038/s41566-018-0260-y
[12]
Liu Z, Qiu W, Peng X, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv Mater, 2021, 33, e2103268 doi: 10.1002/adma.202103268
[13]
Hassan Y, Park J H, Crawford M L, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591, 72 doi: 10.1038/s41586-021-03217-8
[14]
Li J, Bade S G, Shan X, et al. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater, 2015, 27, 5196 doi: 10.1002/adma.201502490
[15]
Yuan M, Quan L, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11, 872 doi: 10.1038/nnano.2016.110
[16]
Kuang C, Hu Z, Yuan Z, et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule, 2021, 5, 618 doi: 10.1016/j.joule.2021.01.003
[17]
Ban M, Zou Y, Rivett J P, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat Commun, 2018, 9, 3892 doi: 10.1038/s41467-018-06425-5
[18]
Wu T, Li J, Zou Y, et al. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew Chem Int Ed, 2020, 59, 4099 doi: 10.1002/anie.201914000
[19]
Wang Y, Yuan F, Dong Y, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized alpha-CsPbI3 perovskite. Angew Chem Int Ed, 2021, 60, 16164 doi: 10.1002/anie.202104812
[20]
Wang H, Zhang X, Wu Q, et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat Commun, 2019, 10, 665 doi: 10.1038/s41467-019-08425-5
[21]
Yang X, Zhang X, Deng J, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun, 2018, 9, 570 doi: 10.1038/s41467-018-02978-7
[22]
Jin Y, Yuan S, Wang K L, et al. Morphology control of CsPbBr3 films by a surface active Lewis base for bright all-inorganic perovskite light-emitting diodes. Appl Phys Lett, 2019, 114, 163302 doi: 10.1063/1.5094041
[23]
Han B, Yuan S, Fang T, et al. Novel Lewis base cyclam self-passivation of perovskites without an anti-solvent process for efficient light-emitting diodes. ACS Appl Mater Interfaces, 2020, 12, 14224 doi: 10.1021/acsami.0c02768
[24]
Zhu L, Cao H, Xue C, et al. Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nat Commun, 2021, 12, 5081 doi: 10.1038/s41467-021-25407-8
[25]
Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photon, 2019, 13, 460 doi: 10.1038/s41566-019-0398-2
[26]
Hsu C, Tian S, Lian Y, et al. Efficient mini/micro-perovskite light-emitting diodes. Cell Rep Phys Sci, 2021, 2, 100582 doi: 10.1016/j.xcrp.2021.100582
[27]
Kong L, Zhang X, Li Y, et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat Commun, 2021, 12, 1246 doi: 10.1038/s41467-021-21522-8
[28]
Zhumekenov A A, Saidaminov M I, Haque M A, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett, 2016, 1, 32 doi: 10.1021/acsenergylett.6b00002
[29]
Miyata K, Meggiolaro D, Trinh M T, et al. Large polarons in lead halide perovskites. Sci Adv, 2017, 3, e1701217 doi: 10.1126/sciadv.1701217
[30]
Zhang L, Sun C, He T, et al. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci Appl, 2021, 10, 61 doi: 10.1038/s41377-021-00501-0
[31]
Stranks S D, Hoye R L, Di D, et al. The physics of light emission in halide perovskite devices. Adv Mater, 2019, 31, e1803336 doi: 10.1002/adma.201803336
[32]
Zou C, Lin L. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Opt Lett, 2020, 45, 4786 doi: 10.1364/OL.400814
[33]
Schmidt T D, Lampe T, Sylvinson M R, et al. Emitter orientation as a key parameter in organic light-emitting diodes. Phys Rev Appl, 2017, 8, 037001 doi: 10.1103/PhysRevApplied.8.037001
[34]
Zhu R, Luo, Z Wu S. Light extraction analysis and enhancement in a quantum dot light emitting diode. Opt Express, 2014, 22, A1783 doi: 10.1364/OE.22.0A1783

2022050502suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1507 Times PDF downloads: 167 Times Cited by: 0 Times

    History

    Received: 29 January 2022 Revised: 05 March 2022 Online: Accepted Manuscript: 16 March 2022Uncorrected proof: 17 March 2022Published: 01 May 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shun Tian, Chen Zou, Runchen Lai, Chungen Hsu, Xuhui Cao, Shiyu Xing, Baodan Zhao, Dawei Di. Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities[J]. Journal of Semiconductors, 2022, 43(5): 050502. doi: 10.1088/1674-4926/43/5/050502 S Tian, C Zou, R Lai, C Hsu, X Cao, S Xing, B Zhao, D Di. Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities[J]. J. Semicond, 2022, 43(5): 050502. doi: 10.1088/1674-4926/43/5/050502Export: BibTex EndNote
      Citation:
      Shun Tian, Chen Zou, Runchen Lai, Chungen Hsu, Xuhui Cao, Shiyu Xing, Baodan Zhao, Dawei Di. Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities[J]. Journal of Semiconductors, 2022, 43(5): 050502. doi: 10.1088/1674-4926/43/5/050502

      S Tian, C Zou, R Lai, C Hsu, X Cao, S Xing, B Zhao, D Di. Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities[J]. J. Semicond, 2022, 43(5): 050502. doi: 10.1088/1674-4926/43/5/050502
      Export: BibTex EndNote

      Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities

      doi: 10.1088/1674-4926/43/5/050502
      More Information
      • Author Bio:

        Shun Tian received his BS degree in Optical Information Science and Technology from Beijing Institute of Technology in 2019. He is currently a master’s student in the College of Optical Science and Engineering, Zhejiang University, China. He is majoring in Optical Engineering with a research focus on perovskite light-emitting devices, including PeLEDs and micro-PeLEDs

        Baodan Zhao is a principal investigator at Zhejiang University. She received B.Sc. in Physics (2014) from Nanjing University and Ph.D. in Physics (2019) from the Cavendish Laboratory, University of Cambridge, where she continued her work as a postdoc (2019). Baodan Zhao’s research interests are perovskite optoelectronic devices and device physics. Her recent honors include the MIT Technology Review Innovators Under 35 China (2019), Alibaba Damo Academy Young Fellow (2020), and Forbes Asia 30 Under 30 (2021)

        Dawei Di is a professor at Zhejiang University. He received B.Eng. and Ph.D. (in Engineering) from the University of New South Wales (2004–2012), and a second Ph.D. (in Physics) from the Cavendish Laboratory, University of Cambridge (2012–2017). He continued his work as a postdoctoral researcher in the same laboratory at Cambridge (2017–2018). Dawei Di’s research interests include the physics and application of novel optoelectronic devices. In recognition of his research in next-generation light-emitting diodes, he was awarded to be one of the MIT Technology Review Innovators Under 35 (global, 2019). He is currently a member of the editorial board of the Journal of Semiconductors

      • Corresponding author: baodanzhao@zju.edu.cndaweidi@zju.edu.cn
      • Received Date: 2022-01-29
      • Accepted Date: 2022-03-16
      • Revised Date: 2022-03-05
      • Available Online: 2022-03-24

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return