ARTICLES

Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells

Bingbing Chen1, 2, 3, 4, Pengyang Wang1, 2, 3, 4, Ningyu Ren1, 2, 3, 4, 5, Renjie Li1, 2, 3, 4, Ying Zhao1, 2, 3, 4 and Xiaodan Zhang1, 2, 3, 4,

+ Author Affiliations

 Corresponding author: Xiaodan Zhang, xdzhang@nankai.edu.cn

PDF

Turn off MathJax

Abstract: Inverted perovskite solar cells (IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition (ALD) processed tin dioxide (SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm2, and fill factor of 81.07%. More importantly, the compact and stable SnO2 film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO2 provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future.

Key words: atomic layer depositiontin dioxideadditional buffer layerefficiency and stabilityinverted perovskite solar cells



[1]
[2]
Chen B, Ren N, Li Y, et al. Insights into the development of monolithic perovskite/silicon tandem solar cells. Adv Energy Mater, 2021, 2003628 doi: 10.1002/aenm.202003628
[3]
Hou F, Li Y, Yan L, et al. Control perovskite crystals vertical growth for obtaining high-performance monolithic perovskite/silicon heterojunction tandem solar cells with VOC of 1.93 V. Solar RRL, 2021, 5, 2100357 doi: 10.1002/solr.202100357
[4]
Chen B, Wang P, Li R, et al. Composite electron transport layer for efficient n-i-p type monolithic perovskite/silicon tandem solar cells with high open-circuit voltage. J Energy Chem, 2021, 63, 461 doi: 10.1016/j.jechem.2021.07.018
[5]
National Renewable Energy Laboratory, Best Research Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
[6]
Kim D, Jung H J, Park I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science, 2020, 368, 155 doi: 10.1126/science.aba3433
[7]
Xu J, Boyd C C, Yu Z J, et al. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367, 1097 doi: 10.1126/science.aaz5074
[8]
Zuo C, Ding L. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 133, 11342 doi: 10.1002/ange.202101868
[9]
Li F, Deng X, Qi F, et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J Am Chem Soc, 2020, 142, 20134 doi: 10.1021/jacs.0c09845
[10]
Unger EL, Kegelmann L, Suchan K, et al. Correction: Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 2017, 5, 15983 doi: 10.1039/C7TA90141K
[11]
Niu G, Li W, Li J, et al. Progress of interface engineering in perovskite solar cells. Sci China Mater, 2016, 59, 728 doi: 10.1007/s40843-016-5094-6
[12]
Xu C, Zhang Z, Hu Y, et al. Printed hole-conductor-free mesoscopic perovskite solar cells with excellent long-term stability using peai as an additive. J Energy Chem, 2018, 27, 764 doi: 10.1016/j.jechem.2018.01.030
[13]
Lu H, Liu Y, Ahlawat P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 2020, 370, eabb8985 doi: 10.1126/science.abb8985
[14]
Min H, Kim M, Lee S U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366, 749 doi: 10.1126/science.aay7044
[15]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[16]
Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234 doi: 10.1126/science.aaa9272
[17]
Ren Y, Duan B, Xu Y, et al. New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach. Sci China Mater, 2017, 60, 392 doi: 10.1007/s40843-017-9027-1
[18]
Zheng X, Hou Y, Bao C, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat Energy, 2020, 5, 131 doi: 10.1038/s41560-019-0538-4
[19]
Song W, Cao G. Surface-defect passivation through complexation with organic molecules leads to enhanced power conversion efficiency and long term stability of perovskite photovoltaics. Sci China Mater, 2020, 63, 479 doi: 10.1007/s40843-020-1249-3
[20]
Kim M, Kim G H, Lee T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3, 2179 doi: 10.1016/j.joule.2019.06.014
[21]
Yang X, Fu Y, Su R, et al. Superior carrier lifetimes exceeding 6 micros in polycrystalline halide perovskites. Adv Mater, 2020, 32, e2002585 doi: 10.1002/adma.202002585
[22]
Yao X, Liang J, Li T, et al. Electron transport layer driven to improve the open-circuit voltage of CH3NH3PbI3 planar perovskite solar cells. Sci China Mater, 2017, 61, 65 doi: 10.1007/s40843-017-9130-x
[23]
Zhu P, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO­2-KCl composite electron transport layer. Adv Energy Mater, 2020, 10, 1903083 doi: 10.1002/aenm.201903083
[24]
Wang P, Li R, Chen B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23. Adv Mater, 2020, 32, e1905766 doi: 10.1002/adma.201905766
[25]
Chen Y, Xu C, Xiong J, et al. Benefits of fullerene/SnO2 bilayers as electron transport layer for efficient planar perovskite solar cells. Organ Electron, 2018, 58, 294 doi: 10.1016/j.orgel.2018.03.041
[26]
Wang P, Chen B, Li R, et al. Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V. ACS Energy Lett, 2021, 6, 2121 doi: 10.1021/acsenergylett.1c00443
[27]
Liu Z, Krückemeier L, Krogmeier B, et al. Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells. ACS Energy Lett, 2018, 4, 110 doi: 10.1021/acsenergylett.8b01906
[28]
Wu S, Zhang J, Li Z, et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule, 2020, 4, 1248 doi: 10.1016/j.joule.2020.04.001
[29]
Xu C Y, Hu W, Wang G, et al. Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano, 2020, 14, 196 doi: 10.1021/acsnano.9b07594
[30]
Lee J W, Park N G. Chemical approaches for stabilizing perovskite solar cells. Adv Energy Mater, 2019, 10, 1903249 doi: 10.1002/aenm.201903249
[31]
Jia L, Zhang L, Ding L, et al. Using fluorinated and crosslinkable fullerene derivatives to improve the stability of perovskite solar cells. J Semicond, 2021, 42, 120201 doi: 10.1088/1674-4926/42/12/120201
[32]
Zhang L, Zuo C, Ding L. Efficient MAPbI3 solar cells made via drop-coating at room temperature. J Semicond, 2021, 42, 072201 doi: 10.1088/1674-4926/42/7/072201
[33]
Ramasamy E, Karthikeyan V, Rameshkumar K, et al. Glass-to-glass encapsulation with ultraviolet light curable epoxy edge sealing for stable perovskite solar cells. Mater Lett, 2019, 250, 51 doi: 10.1016/j.matlet.2019.04.082
[34]
Matteocci F, Cinà L, Lamanna E, et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 2016, 30, 162 doi: 10.1016/j.nanoen.2016.09.041
[35]
Zheng H, Dai S, Zhou K, et al. New-type highly stable 2D/3D perovskite materials: the effect of introducing ammonium cation on performance of perovskite solar cells. Sci China Mater, 2019, 62, 508 doi: 10.1007/s40843-018-9343-1
[36]
You J, Meng L, Song TB, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol, 2016, 11, 75 doi: 10.1038/nnano.2015.230
[37]
Fang R, Wu S, Chen W, et al. [6, 6]-phenyl-c61-butyric acid methyl ester/cerium oxide bilayer structure as efficient and stable electron transport layer for inverted perovskite solar cells. ACS Nano, 2018, 12, 2403 doi: 10.1021/acsnano.7b07754
[38]
Liu J, Aydin E, Yin J, et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule, 2021, 5, 1 doi: 10.1016/j.joule.2020.12.026
[39]
Köhnen E, Wagner P, Lang F. 27.9% efficient monolithic perovskite/silicon tandem solar cells on industry compatible bottom cells. Sol RRL, 2021, 5, 2100244 doi: 10.1002/solr.202100244
[40]
Isikgor F, Furlan F, Liu J, et al. Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule, 2021, 5, 1566 doi: 10.1016/j.joule.2021.05.013
[41]
Zhu Z, Bai Y, Liu X, et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater, 2016, 28, 6478 doi: 10.1002/adma.201600619
[42]
Raninga R D, Jagt R A, Béchu S, et al. Strong performance enhancement in lead-halide perovskite solar cells through rapid, atmospheric deposition of n-type buffer layer oxides. Nano Energy, 2020, 75, 104946 doi: 10.1016/j.nanoen.2020.104946
[43]
Chen Q, Zhou H, Song T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letter, 2014, 14, 4158 doi: 10.1021/nl501838y
[44]
Cheung S, Cheung N. Extraction of schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett, 1986, 49, 85 doi: 10.1063/1.97359
Fig. 1.  (Color online) Device structure and performance with different SnO2 thickness. (a) The architecture of the device in this work. (b) J–V curves with different SnO2 thickness. (c, d) The champion devices J–V and EQE curves with 30 nm SnO2 buffer layer, respectively.

Fig. 2.  (Color online) Device performance without the SnO2 buffer layer and with 30 nm SnO2 buffer layer. (a) TRPL curves of the devices. (b) Rsh of the devices. (c) J–V curves of the devices under dark condition. (d) Fitting curves for calculation the n and J0 from the dark J–V data.

Fig. 3.  (Color online) Top view SEM of SnO2 layer with various thicknesses based on the structure of ITO/PTAA/Perovskite/PCBM. (a), (b), (c), (d) and (e) with thickness of SnO2 of 0, 10, 20, 30 and 40 nm, respectively. (f) With a larger magnification to show a clearer morphology of SnO2 with the thickness of 30 nm. (g) RMS of the films with different thicknesses of SnO2. (h) The schematic diagram of the sample with a thinner BCP layer. (i) The schematic diagram of the sample with a BCP and SnO2 bilayer.

Fig. 4.  (Color online) (a, b) The water contact angle of the device without and with SnO2. (c–f) Normalized VOC, JSC, FF and PCE of perovskite devices without and with 30 nm SnO2 kept in the atmosphere (25 °C, 20–40 RH%) without encapsulation for 600 h, respectively.

[1]
[2]
Chen B, Ren N, Li Y, et al. Insights into the development of monolithic perovskite/silicon tandem solar cells. Adv Energy Mater, 2021, 2003628 doi: 10.1002/aenm.202003628
[3]
Hou F, Li Y, Yan L, et al. Control perovskite crystals vertical growth for obtaining high-performance monolithic perovskite/silicon heterojunction tandem solar cells with VOC of 1.93 V. Solar RRL, 2021, 5, 2100357 doi: 10.1002/solr.202100357
[4]
Chen B, Wang P, Li R, et al. Composite electron transport layer for efficient n-i-p type monolithic perovskite/silicon tandem solar cells with high open-circuit voltage. J Energy Chem, 2021, 63, 461 doi: 10.1016/j.jechem.2021.07.018
[5]
National Renewable Energy Laboratory, Best Research Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
[6]
Kim D, Jung H J, Park I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science, 2020, 368, 155 doi: 10.1126/science.aba3433
[7]
Xu J, Boyd C C, Yu Z J, et al. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367, 1097 doi: 10.1126/science.aaz5074
[8]
Zuo C, Ding L. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 133, 11342 doi: 10.1002/ange.202101868
[9]
Li F, Deng X, Qi F, et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J Am Chem Soc, 2020, 142, 20134 doi: 10.1021/jacs.0c09845
[10]
Unger EL, Kegelmann L, Suchan K, et al. Correction: Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 2017, 5, 15983 doi: 10.1039/C7TA90141K
[11]
Niu G, Li W, Li J, et al. Progress of interface engineering in perovskite solar cells. Sci China Mater, 2016, 59, 728 doi: 10.1007/s40843-016-5094-6
[12]
Xu C, Zhang Z, Hu Y, et al. Printed hole-conductor-free mesoscopic perovskite solar cells with excellent long-term stability using peai as an additive. J Energy Chem, 2018, 27, 764 doi: 10.1016/j.jechem.2018.01.030
[13]
Lu H, Liu Y, Ahlawat P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 2020, 370, eabb8985 doi: 10.1126/science.abb8985
[14]
Min H, Kim M, Lee S U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366, 749 doi: 10.1126/science.aay7044
[15]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[16]
Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234 doi: 10.1126/science.aaa9272
[17]
Ren Y, Duan B, Xu Y, et al. New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach. Sci China Mater, 2017, 60, 392 doi: 10.1007/s40843-017-9027-1
[18]
Zheng X, Hou Y, Bao C, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat Energy, 2020, 5, 131 doi: 10.1038/s41560-019-0538-4
[19]
Song W, Cao G. Surface-defect passivation through complexation with organic molecules leads to enhanced power conversion efficiency and long term stability of perovskite photovoltaics. Sci China Mater, 2020, 63, 479 doi: 10.1007/s40843-020-1249-3
[20]
Kim M, Kim G H, Lee T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3, 2179 doi: 10.1016/j.joule.2019.06.014
[21]
Yang X, Fu Y, Su R, et al. Superior carrier lifetimes exceeding 6 micros in polycrystalline halide perovskites. Adv Mater, 2020, 32, e2002585 doi: 10.1002/adma.202002585
[22]
Yao X, Liang J, Li T, et al. Electron transport layer driven to improve the open-circuit voltage of CH3NH3PbI3 planar perovskite solar cells. Sci China Mater, 2017, 61, 65 doi: 10.1007/s40843-017-9130-x
[23]
Zhu P, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO­2-KCl composite electron transport layer. Adv Energy Mater, 2020, 10, 1903083 doi: 10.1002/aenm.201903083
[24]
Wang P, Li R, Chen B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23. Adv Mater, 2020, 32, e1905766 doi: 10.1002/adma.201905766
[25]
Chen Y, Xu C, Xiong J, et al. Benefits of fullerene/SnO2 bilayers as electron transport layer for efficient planar perovskite solar cells. Organ Electron, 2018, 58, 294 doi: 10.1016/j.orgel.2018.03.041
[26]
Wang P, Chen B, Li R, et al. Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V. ACS Energy Lett, 2021, 6, 2121 doi: 10.1021/acsenergylett.1c00443
[27]
Liu Z, Krückemeier L, Krogmeier B, et al. Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells. ACS Energy Lett, 2018, 4, 110 doi: 10.1021/acsenergylett.8b01906
[28]
Wu S, Zhang J, Li Z, et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule, 2020, 4, 1248 doi: 10.1016/j.joule.2020.04.001
[29]
Xu C Y, Hu W, Wang G, et al. Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano, 2020, 14, 196 doi: 10.1021/acsnano.9b07594
[30]
Lee J W, Park N G. Chemical approaches for stabilizing perovskite solar cells. Adv Energy Mater, 2019, 10, 1903249 doi: 10.1002/aenm.201903249
[31]
Jia L, Zhang L, Ding L, et al. Using fluorinated and crosslinkable fullerene derivatives to improve the stability of perovskite solar cells. J Semicond, 2021, 42, 120201 doi: 10.1088/1674-4926/42/12/120201
[32]
Zhang L, Zuo C, Ding L. Efficient MAPbI3 solar cells made via drop-coating at room temperature. J Semicond, 2021, 42, 072201 doi: 10.1088/1674-4926/42/7/072201
[33]
Ramasamy E, Karthikeyan V, Rameshkumar K, et al. Glass-to-glass encapsulation with ultraviolet light curable epoxy edge sealing for stable perovskite solar cells. Mater Lett, 2019, 250, 51 doi: 10.1016/j.matlet.2019.04.082
[34]
Matteocci F, Cinà L, Lamanna E, et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 2016, 30, 162 doi: 10.1016/j.nanoen.2016.09.041
[35]
Zheng H, Dai S, Zhou K, et al. New-type highly stable 2D/3D perovskite materials: the effect of introducing ammonium cation on performance of perovskite solar cells. Sci China Mater, 2019, 62, 508 doi: 10.1007/s40843-018-9343-1
[36]
You J, Meng L, Song TB, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol, 2016, 11, 75 doi: 10.1038/nnano.2015.230
[37]
Fang R, Wu S, Chen W, et al. [6, 6]-phenyl-c61-butyric acid methyl ester/cerium oxide bilayer structure as efficient and stable electron transport layer for inverted perovskite solar cells. ACS Nano, 2018, 12, 2403 doi: 10.1021/acsnano.7b07754
[38]
Liu J, Aydin E, Yin J, et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule, 2021, 5, 1 doi: 10.1016/j.joule.2020.12.026
[39]
Köhnen E, Wagner P, Lang F. 27.9% efficient monolithic perovskite/silicon tandem solar cells on industry compatible bottom cells. Sol RRL, 2021, 5, 2100244 doi: 10.1002/solr.202100244
[40]
Isikgor F, Furlan F, Liu J, et al. Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule, 2021, 5, 1566 doi: 10.1016/j.joule.2021.05.013
[41]
Zhu Z, Bai Y, Liu X, et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater, 2016, 28, 6478 doi: 10.1002/adma.201600619
[42]
Raninga R D, Jagt R A, Béchu S, et al. Strong performance enhancement in lead-halide perovskite solar cells through rapid, atmospheric deposition of n-type buffer layer oxides. Nano Energy, 2020, 75, 104946 doi: 10.1016/j.nanoen.2020.104946
[43]
Chen Q, Zhou H, Song T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letter, 2014, 14, 4158 doi: 10.1021/nl501838y
[44]
Cheung S, Cheung N. Extraction of schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett, 1986, 49, 85 doi: 10.1063/1.97359

2022052201suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2303 Times PDF downloads: 136 Times Cited by: 0 Times

    History

    Received: 04 December 2021 Revised: 20 December 2021 Online: Accepted Manuscript: 19 February 2022Uncorrected proof: 19 April 2022Published: 01 May 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bingbing Chen, Pengyang Wang, Ningyu Ren, Renjie Li, Ying Zhao, Xiaodan Zhang. Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(5): 052201. doi: 10.1088/1674-4926/43/5/052201 B B Chen, P Y Wang, N Y Ren, R J Li, Y Zhao, X D Zhang. Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells[J]. J. Semicond, 2022, 43(5): 052201. doi: 10.1088/1674-4926/43/5/052201Export: BibTex EndNote
      Citation:
      Bingbing Chen, Pengyang Wang, Ningyu Ren, Renjie Li, Ying Zhao, Xiaodan Zhang. Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(5): 052201. doi: 10.1088/1674-4926/43/5/052201

      B B Chen, P Y Wang, N Y Ren, R J Li, Y Zhao, X D Zhang. Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells[J]. J. Semicond, 2022, 43(5): 052201. doi: 10.1088/1674-4926/43/5/052201
      Export: BibTex EndNote

      Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells

      doi: 10.1088/1674-4926/43/5/052201
      More Information
      • Author Bio:

        Bingbing Chen received her MS degree in Hebei University. She is currently a PhD student under the supervision of Prof. Xiaodan Zhang at Nankai University. Her research interests focus on the development of high-efficiency perovskite/silicon tandem solar cells

        Pengyang Wang received his PhD degree in 2018 at University of Chinese Academy of Sciences (UCAS). Then he joined Xiaodan Zhang group at Nankai University as a postdoc. His research interests focus on efficient and stable metal halide perovskite solar cells and perovskite/silicon tandem solar cells

        Xiaodan Zhang is the professor, doctorial supervisor and director of the Institute of Photoelectronic Thin Film Devices and Technology at Nankai University. Her research interests are mainly in silicon, perovskite and perovskite/silicon tandem solar cells

      • Corresponding author: xdzhang@nankai.edu.cn
      • Received Date: 2021-12-04
      • Accepted Date: 2022-02-16
      • Revised Date: 2021-12-20
      • Available Online: 2022-03-23

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return