RESEARCH HIGHLIGHTS

Perovskite films for X-ray detection

Pei Yuan1, Lixiu Zhang2, Menghua Zhu1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Menghua Zhu, mhzhu@nwpu.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Zhou Y, Chen J, Bakr O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett, 2021, 6, 739 doi: 10.1021/acsenergylett.0c02430
[2]
Wu H, Ge Y, Niu G, et al. Metal halide perovskites for X-ray detection and imaging. Matter, 2021, 4, 144 doi: 10.1016/j.matt.2020.11.015
[3]
Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nat Commun, 2019, 10, 1066 doi: 10.1038/s41467-019-08981-w
[4]
Olivo A, Chana D, Speller R. A preliminary investigation of the potential of phase contrast X-ray imaging in the field of homeland security. J Phys D, 2008, 41, 225503 doi: 10.1088/0022-3727/41/22/225503
[5]
Guerra M, Manso M, Longelin S, et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications. J Instrum, 2012, 7, C10004 doi: 10.1088/1748-0221/7/10/C10004
[6]
Kasap S. X-ray sensitivity of photoconductors: application to stabilized α-Se. J Phys D, 2000, 33, 2853 doi: 10.1088/0022-3727/33/21/326
[7]
Street R, Ready S, Van Schuylenbergh K, et al. Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J Appl Phys, 2002, 91, 3345 doi: 10.1063/1.1436298
[8]
Del Sordo S, Abbene L, Caroli E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors, 2009, 9, 3491 doi: 10.3390/s90503491
[9]
Su Y, Ma W, Yang Y M. Perovskite semiconductors for direct X-ray detection and imaging. J Semicond, 2020, 41, 051204 doi: 10.1088/1674-4926/41/5/051204
[10]
Yakunin S, Dirin D N, Shynkarenko Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat Photonics, 2016, 10, 585 doi: 10.1038/nphoton.2016.139
[11]
Huang J, Yuan Y, Shao Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater, 2017, 2, 17042 doi: 10.1038/natrevmats.2017.42
[12]
Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics, 2016, 10, 333 doi: 10.1038/nphoton.2016.41
[13]
Zhou F, Li Z, Lan W, et al. Halide perovskite, a potential scintillator for X-ray detection. Small Methods, 2020, 4, 2000506 doi: 10.1002/smtd.202000506
[14]
Li C, Ma Y, Xiao Y, et al. Advances in perovskite photodetectors. InfoMat, 2020, 2, 1247 doi: 10.1002/inf2.12141
[15]
Song Y, Li L, Bi W, et al. Atomistic surface passivation of CH3NH3PbI3 perovskite single crystals for highly sensitive coplanar-structure X-ray detectors. Research, 2020, 2020, 5958243 doi: 10.34133/2020/5958243
[16]
Zheng X, Zhao W, Wang P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J Energy Chem, 2020, 49, 299 doi: 10.1016/j.jechem.2020.02.049
[17]
Pan W, Yang B, Niu G, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv Mater, 2019, 31, 1904405 doi: 10.1002/adma.201904405
[18]
Thirimanne H, Jayawardena K, Parnell A, et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat Commun, 2018, 9, 2926 doi: 10.1038/s41467-018-05301-6
[19]
Demchyshyn S, Verdi M, Basirico L, et al. Designing ultraflexible perovskite X-ray detectors through interface engineering. Adv Sci, 2020, 7, 2002586 doi: 10.1002/advs.202002586
[20]
Liu J, Shabbir B, Wang C, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv Mater, 2019, 31, 1901644 doi: 10.1002/adma.201901644
[21]
Zhao J, Zhao L, Deng Y, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat Photonics, 2020, 14, 612 doi: 10.1038/s41566-020-0678-x
[22]
Kim Y C, Kim K H, Son D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550, 87 doi: 10.1038/nature24032
[23]
He X, Xia M, Wu H, et al. Quasi-2D perovskite thick film for X-ray detection with low detection limit. Adv Funct Mater, 2021, 32, 2109458 doi: 10.1002/adfm.202109458
[24]
Datta A, Zhong Z, Motakef S. A new generation of direct X-ray detectors for medical and synchrotron imaging applications. Sci Rep, 2020, 10, 20097 doi: 10.1038/s41598-020-76647-5
[25]
Brenner D J, Elliston C D, Hall E J, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol, 2001, 176, 289 doi: 10.2214/ajr.176.2.1760289
[26]
Yang B, Pan W, Wu H, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat Commun, 2019, 10, 1989 doi: 10.1038/s41467-018-07882-8
[27]
Zhou Y, Zhao L, Ni Z, et al. Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci Adv, 2021, 7, eabg6716 doi: 10.1126/sciadv.abg6716
[28]
Gill H S, Elshahat B, Kokil A, et al. Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Phys Med, 2018, 5, 20 doi: 10.1016/j.phmed.2018.04.001
[29]
Chen S, Xiao X, Chen B, et al. Crystallization in one-step solution deposition of perovskite films: Upward or downward. Sci Adv, 2021, 7, eabb2412 doi: 10.1126/sciadv.abb2412
[30]
Qian W, Xu X, Wang J, et al. An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter, 2021, 4, 942 doi: 10.1016/j.matt.2021.01.020
Fig. 1.  (Color online) (a) Perovskite-filled membrane (PFM). (b) A 400 cm2 nylon membrane without (left) and with (right) perovskites. (c) Current density for the PFM device changes with the dose rate. (d) Dependence of the sensitivity and flexibility of PFM devices on device thicknesses. Inset: the bending of a PFM device. The error bars were obtained from three devices. Reproduced with permission[21], Copyright 2020, Springer Nature. (e) Illustration for an all-solution-processed X-ray detector. (f) Printed MPC on PI-MAPbI3. (g) Signal current and sensitivity change with bias voltage. Reproduced with permission[22], Copyright 2017, Springer Nature.

Fig. 2.  (Color online) (a) The lamination technique. (b) Heterojunction perovskite film. (c) Response of single-composition and heterojunction perovskite detectors. Reproduced with permission[27], Copyright 2021, AAAS. (d) Wet film fabrication by spin-coating or blade-coating. (e) The ALS method. (f) The nucleation and growth process in (d). (g) Nucleation and growth process in ALS method. Reproduced with permission[30], Copyright 2021, Elsevier.

[1]
Zhou Y, Chen J, Bakr O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett, 2021, 6, 739 doi: 10.1021/acsenergylett.0c02430
[2]
Wu H, Ge Y, Niu G, et al. Metal halide perovskites for X-ray detection and imaging. Matter, 2021, 4, 144 doi: 10.1016/j.matt.2020.11.015
[3]
Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nat Commun, 2019, 10, 1066 doi: 10.1038/s41467-019-08981-w
[4]
Olivo A, Chana D, Speller R. A preliminary investigation of the potential of phase contrast X-ray imaging in the field of homeland security. J Phys D, 2008, 41, 225503 doi: 10.1088/0022-3727/41/22/225503
[5]
Guerra M, Manso M, Longelin S, et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications. J Instrum, 2012, 7, C10004 doi: 10.1088/1748-0221/7/10/C10004
[6]
Kasap S. X-ray sensitivity of photoconductors: application to stabilized α-Se. J Phys D, 2000, 33, 2853 doi: 10.1088/0022-3727/33/21/326
[7]
Street R, Ready S, Van Schuylenbergh K, et al. Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J Appl Phys, 2002, 91, 3345 doi: 10.1063/1.1436298
[8]
Del Sordo S, Abbene L, Caroli E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors, 2009, 9, 3491 doi: 10.3390/s90503491
[9]
Su Y, Ma W, Yang Y M. Perovskite semiconductors for direct X-ray detection and imaging. J Semicond, 2020, 41, 051204 doi: 10.1088/1674-4926/41/5/051204
[10]
Yakunin S, Dirin D N, Shynkarenko Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat Photonics, 2016, 10, 585 doi: 10.1038/nphoton.2016.139
[11]
Huang J, Yuan Y, Shao Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater, 2017, 2, 17042 doi: 10.1038/natrevmats.2017.42
[12]
Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics, 2016, 10, 333 doi: 10.1038/nphoton.2016.41
[13]
Zhou F, Li Z, Lan W, et al. Halide perovskite, a potential scintillator for X-ray detection. Small Methods, 2020, 4, 2000506 doi: 10.1002/smtd.202000506
[14]
Li C, Ma Y, Xiao Y, et al. Advances in perovskite photodetectors. InfoMat, 2020, 2, 1247 doi: 10.1002/inf2.12141
[15]
Song Y, Li L, Bi W, et al. Atomistic surface passivation of CH3NH3PbI3 perovskite single crystals for highly sensitive coplanar-structure X-ray detectors. Research, 2020, 2020, 5958243 doi: 10.34133/2020/5958243
[16]
Zheng X, Zhao W, Wang P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J Energy Chem, 2020, 49, 299 doi: 10.1016/j.jechem.2020.02.049
[17]
Pan W, Yang B, Niu G, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv Mater, 2019, 31, 1904405 doi: 10.1002/adma.201904405
[18]
Thirimanne H, Jayawardena K, Parnell A, et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat Commun, 2018, 9, 2926 doi: 10.1038/s41467-018-05301-6
[19]
Demchyshyn S, Verdi M, Basirico L, et al. Designing ultraflexible perovskite X-ray detectors through interface engineering. Adv Sci, 2020, 7, 2002586 doi: 10.1002/advs.202002586
[20]
Liu J, Shabbir B, Wang C, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv Mater, 2019, 31, 1901644 doi: 10.1002/adma.201901644
[21]
Zhao J, Zhao L, Deng Y, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat Photonics, 2020, 14, 612 doi: 10.1038/s41566-020-0678-x
[22]
Kim Y C, Kim K H, Son D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550, 87 doi: 10.1038/nature24032
[23]
He X, Xia M, Wu H, et al. Quasi-2D perovskite thick film for X-ray detection with low detection limit. Adv Funct Mater, 2021, 32, 2109458 doi: 10.1002/adfm.202109458
[24]
Datta A, Zhong Z, Motakef S. A new generation of direct X-ray detectors for medical and synchrotron imaging applications. Sci Rep, 2020, 10, 20097 doi: 10.1038/s41598-020-76647-5
[25]
Brenner D J, Elliston C D, Hall E J, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol, 2001, 176, 289 doi: 10.2214/ajr.176.2.1760289
[26]
Yang B, Pan W, Wu H, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat Commun, 2019, 10, 1989 doi: 10.1038/s41467-018-07882-8
[27]
Zhou Y, Zhao L, Ni Z, et al. Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci Adv, 2021, 7, eabg6716 doi: 10.1126/sciadv.abg6716
[28]
Gill H S, Elshahat B, Kokil A, et al. Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Phys Med, 2018, 5, 20 doi: 10.1016/j.phmed.2018.04.001
[29]
Chen S, Xiao X, Chen B, et al. Crystallization in one-step solution deposition of perovskite films: Upward or downward. Sci Adv, 2021, 7, eabb2412 doi: 10.1126/sciadv.abb2412
[30]
Qian W, Xu X, Wang J, et al. An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter, 2021, 4, 942 doi: 10.1016/j.matt.2021.01.020
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 840 Times PDF downloads: 91 Times Cited by: 0 Times

    History

    Received: 25 April 2022 Revised: Online: Uncorrected proof: 26 April 2022Published: 01 July 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Pei Yuan, Lixiu Zhang, Menghua Zhu, Liming Ding. Perovskite films for X-ray detection[J]. Journal of Semiconductors, 2022, 43(7): 070202. doi: 10.1088/1674-4926/43/7/070202 P Yuan, L X Zhang, M H Zhu, L M Ding. Perovskite films for X-ray detection[J]. J. Semicond, 2022, 43(7): 070202. doi: 10.1088/1674-4926/43/7/070202Export: BibTex EndNote
      Citation:
      Pei Yuan, Lixiu Zhang, Menghua Zhu, Liming Ding. Perovskite films for X-ray detection[J]. Journal of Semiconductors, 2022, 43(7): 070202. doi: 10.1088/1674-4926/43/7/070202

      P Yuan, L X Zhang, M H Zhu, L M Ding. Perovskite films for X-ray detection[J]. J. Semicond, 2022, 43(7): 070202. doi: 10.1088/1674-4926/43/7/070202
      Export: BibTex EndNote

      Perovskite films for X-ray detection

      doi: 10.1088/1674-4926/43/7/070202
      More Information
      • Author Bio:

        Pei Yuan got her BE from Shenyang Jianzhu University in 2021. Now she is a MS student at Northwestern Polytechnical University under the supervision of Prof. Menghua Zhu. Her research focuses on perovskite X-ray detectors

        Lixiu Zhang got her BS degree from Soochow University in 2019. Now she is a PhD student at University of Chinese Academy of Sciences under the supervision of Prof. Liming Ding. Her research focuses on innovative materials and devices

        Menghua Zhu received her PhD from Harbin Institute of Technology in 2017. She did two-year postdoctoral research at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology under the supervision of Prof. Jiang Tang. Then she joined School of Materials Science and Engineering, Northwestern Polytechnical University as an associate professor. Her research focuses on new semiconductors for optoelectronic devices

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Ingans Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors

      • Corresponding author: mhzhu@nwpu.edu.cnding@nanoctr.cn
      • Received Date: 2022-04-25
        Available Online: 2022-04-26

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return