ARTICLES

Improving the incorporation of indium component for InGaN-based green LED through inserting photonic crystalline in the GaN layer

Yunqi Li1, Xinwei Wang2, Ning Zhang2, , Xuecheng Wei2 and Junxi Wang2

+ Author Affiliations

 Corresponding author: Ning Zhang, zhangn@semi.ac.cn

PDF

Turn off MathJax

Abstract: We report on the effect of inserted photonic crystalline (Ph-C) in the GaN epitaxial layer on the incorporation of the indium component for the InGaN-based green LED. The adoption of Ph-C in the GaN layer shifted the Raman peak value of E2 mode of GaN to lower frequency and resulted in a tensive stress relief. The stress relief can be attributed to strained lattices restoring in the matrix of Ph-C and the GaN pseudo-epitaxy over the air-void of the Ph-C. Moreover, the HRXRD rocking curves and AFM results show that the insertion of Ph-C also improves the crystal quality. With the inserted Ph-C, the indium component in the multiple quantum wells of the green LED (Ph-C LED) was enhanced. This resulted in a 6-nm red-shift of the peak wavelength. Furthermore, the LOP of the Ph-C LED was enhanced by 10.65% under an injection current of 20 mA.

Key words: epitaxial growthnanocrystalline materialssemiconductorsRamanstress reliefX-ray techniques



[1]
Strite S. GaN, AlN, and InN: A review. J Vac Sci Technol B, 1992, 10, 1237 doi: 10.1116/1.585897
[2]
Kisielowski C, Krüger J, Ruvimov S, et al. Strain-related phenomena in GaN thin films. Phys Rev B, 1996, 54, 17745 doi: 10.1103/PhysRevB.54.17745
[3]
Kozawa T, Kachi T, Kano H, et al. Thermal stress in GaN epitaxial layers grown on sapphire substrates. J Appl Phys, 1995, 77, 4389 doi: 10.1063/1.359465
[4]
Chen C H, Liao M H, Chang L C, et al. Relaxation of residual stress in bent GaN film on sapphire substrate by laser treatment with an optimized surface structure design. IEEE Trans Electron Devices, 2013, 60, 767 doi: 10.1109/TED.2012.2230330
[5]
Napierala J, Martin D, Grandjean N, et al. Stress control in GaN/sapphire templates for the fabrication of crack-free thick layers. J Cryst Growth, 2006, 289, 445 doi: 10.1016/j.jcrysgro.2005.11.103
[6]
Ishikawa H, Zhao G Y, Nakada N, et al. GaN on Si substrate with AlGaN/AlN intermediate layer. Jpn J Appl Phys, 1999, 38, L492 doi: 10.1143/JJAP.38.L492
[7]
Dadgar A, Bläsing J, Diez A, et al. Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness. Jpn J Appl Phys, 2000, 39, L1183 doi: 10.1143/JJAP.39.L1183
[8]
Feltin E, Beaumont B, Laügt M, et al. Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl Phys Lett, 2001, 79, 3230 doi: 10.1063/1.1415043
[9]
Kandaswamy P K, Bougerol C, Jalabert D, et al. Strain relaxation in short-period polar GaN/AlN superlattices. J Appl Phys, 2009, 106, 013526 doi: 10.1063/1.3168431
[10]
Wang M T, Liao K Y, Li Y L. Growth mechanism and strain variation of GaN material grown on patterned sapphire substrates with various pattern designs. IEEE Photonics Technol Lett, 2011, 23, 962 doi: 10.1109/LPT.2011.2147778
[11]
Lee J H, Oh J T, Kim Y C, et al. Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire. IEEE Photonics Technol Lett, 2008, 20, 1563 doi: 10.1109/LPT.2008.928844
[12]
Tseng W J, Gonzalez M, Dillemans L, et al. Strain relaxation in GaN nanopillars. Appl Phys Lett, 2012, 101, 253102 doi: 10.1063/1.4772481
[13]
Park A H, Seo T H, Chandramohan S, et al. Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes. Nanoscale, 2015, 7, 15099 doi: 10.1039/C5NR04239A
[14]
Cheng K, Leys M, Degroote S, et al. Formation of V-grooves on the (Al, Ga)N surface as means of tensile stress relaxation. J Cryst Growth, 2012, 353, 88 doi: 10.1016/j.jcrysgro.2012.05.002
[15]
Hossain M A, Islam M R. A theoretical calculation of misfit dislocation and strain relaxation in step-graded In xGa1– xN/GaN layers. Adv Mater Res, 2011, 403–408, 456 doi: 10.4028/www.scientific.net/AMR.403-408.456
[16]
Fu X T, Ma T D, Wang S M, et al. Strain relaxation of GaN heterostructure induced by high-energy electron irradiation. Chin J Rare Met, 2012, 36, 450 doi: 10.3969/j.issn.0258-7076.2012.03.022
[17]
Young E C, Speck J S. Heteroepitaxial lattice mismatch stress relaxation in nonpolar and semipolar GaN by dislocation glide. ECS Trans, 2013, 50, 797 doi: 10.1149/05009.0797ecst
[18]
Liu L, Wang L, Li D, et al. Influence of indium composition in the prestrained InGaN interlayer on the strain relaxation of InGaN/ GaN multiple quantum wells in laser diode structures. J Appl Phys, 2011, 109, 073106 doi: 10.1063/1.3569848
[19]
Won D, Weng X J, Redwing J M. Effect of indium surfactant on stress relaxation by V-defect formation in GaN epilayers grown by metalorganic chemical vapor deposition. J Appl Phys, 2010, 108, 093511 doi: 10.1063/1.3487955
[20]
Zhang N, Liu Z, Wei T B, et al. Effect of the graded electron blocking layer on the emission properties of GaN-based green light-emitting diodes. Appl Phys Lett, 2012, 100, 053504 doi: 10.1063/1.3681797
[21]
Du C X, Wei T B, Zheng H Y, et al. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes. Opt Express, 2013, 21, 25373 doi: 10.1364/OE.21.025373
[22]
Zhang N, Liu Z, Si Z, et al. Reduction of efficiency droop and modification of polarization fields of InGaN-based green light-emitting diodes via Mg-doping in the barriers. Chin Phys Lett, 2013, 30, 087101 doi: 10.1088/0256-307X/30/8/087101
[23]
Minj A, Cavalcoli D, Cavallini A, et al. Strain distribution and defect analysis in III-nitrides by dynamical AFM analysis. Nanotechnology, 2013, 24, 145701 doi: 10.1088/0957-4484/24/14/145701
[24]
Davydov V Y, Kitaev Y E, Goncharuk I N, et al. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys Rev B, 1998, 58, 12899 doi: 10.1103/PhysRevB.58.12899
[25]
Wagner J M, Bechstedt F. Phonon deformation potentials of α-GaN and-AlN: An ab initio calculation. Appl Phys Lett, 2000, 77, 346 doi: 10.1063/1.127009
[26]
Jain S C, Willander M, Maes H. Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors. Semicond Sci Technol, 1996, 11, 641 doi: 10.1088/0268-1242/11/5/004
[27]
Morales F M, González D, Lozano J G, et al. Determination of the composition of In xGa1− xN from strain measurements. Acta Mater, 2009, 57, 5681 doi: 10.1016/j.actamat.2009.07.063
[28]
Moram M A, Vickers M E. X-ray diffraction of III-nitrides. Rep Prog Phys, 2009, 72, 036502 doi: 10.1088/0034-4885/72/3/036502
Fig. 1.  (Color online) Schematic of the fabrication process flow to realize Ph-C sample.

Fig. 2.  The cross-sectional scanning electron microscope of the Ph-C sample.

Fig. 3.  (Color online) Atomic force microscopes surface topography of (a) control sample, (b) Ph-C sample, (c) control sample after KOH etching, (d) Ph-C sample after KOH etching.

Fig. 4.  (Color online) Raman spectra of control sample and Ph-C sample measured at room temperature.

Fig. 5.  (Color online) (a) HRXRD 2θω patterns of the two LED samples. (b) HRXRD (002) rocking curves of the Ph-C sample and the control samples. (c) HRXRD (102) rocking curves of the Ph-C sample and the control samples.

Fig. 6.  (Color online) (a) PL spectra of compared LED and Ph-C LED measured at room temperature. (b) EQE of compared LED and Ph-C LED measured under different injection currents. (c) LOP of compared LED and Ph-C LED measured under different injection currents.

[1]
Strite S. GaN, AlN, and InN: A review. J Vac Sci Technol B, 1992, 10, 1237 doi: 10.1116/1.585897
[2]
Kisielowski C, Krüger J, Ruvimov S, et al. Strain-related phenomena in GaN thin films. Phys Rev B, 1996, 54, 17745 doi: 10.1103/PhysRevB.54.17745
[3]
Kozawa T, Kachi T, Kano H, et al. Thermal stress in GaN epitaxial layers grown on sapphire substrates. J Appl Phys, 1995, 77, 4389 doi: 10.1063/1.359465
[4]
Chen C H, Liao M H, Chang L C, et al. Relaxation of residual stress in bent GaN film on sapphire substrate by laser treatment with an optimized surface structure design. IEEE Trans Electron Devices, 2013, 60, 767 doi: 10.1109/TED.2012.2230330
[5]
Napierala J, Martin D, Grandjean N, et al. Stress control in GaN/sapphire templates for the fabrication of crack-free thick layers. J Cryst Growth, 2006, 289, 445 doi: 10.1016/j.jcrysgro.2005.11.103
[6]
Ishikawa H, Zhao G Y, Nakada N, et al. GaN on Si substrate with AlGaN/AlN intermediate layer. Jpn J Appl Phys, 1999, 38, L492 doi: 10.1143/JJAP.38.L492
[7]
Dadgar A, Bläsing J, Diez A, et al. Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness. Jpn J Appl Phys, 2000, 39, L1183 doi: 10.1143/JJAP.39.L1183
[8]
Feltin E, Beaumont B, Laügt M, et al. Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl Phys Lett, 2001, 79, 3230 doi: 10.1063/1.1415043
[9]
Kandaswamy P K, Bougerol C, Jalabert D, et al. Strain relaxation in short-period polar GaN/AlN superlattices. J Appl Phys, 2009, 106, 013526 doi: 10.1063/1.3168431
[10]
Wang M T, Liao K Y, Li Y L. Growth mechanism and strain variation of GaN material grown on patterned sapphire substrates with various pattern designs. IEEE Photonics Technol Lett, 2011, 23, 962 doi: 10.1109/LPT.2011.2147778
[11]
Lee J H, Oh J T, Kim Y C, et al. Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire. IEEE Photonics Technol Lett, 2008, 20, 1563 doi: 10.1109/LPT.2008.928844
[12]
Tseng W J, Gonzalez M, Dillemans L, et al. Strain relaxation in GaN nanopillars. Appl Phys Lett, 2012, 101, 253102 doi: 10.1063/1.4772481
[13]
Park A H, Seo T H, Chandramohan S, et al. Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes. Nanoscale, 2015, 7, 15099 doi: 10.1039/C5NR04239A
[14]
Cheng K, Leys M, Degroote S, et al. Formation of V-grooves on the (Al, Ga)N surface as means of tensile stress relaxation. J Cryst Growth, 2012, 353, 88 doi: 10.1016/j.jcrysgro.2012.05.002
[15]
Hossain M A, Islam M R. A theoretical calculation of misfit dislocation and strain relaxation in step-graded In xGa1– xN/GaN layers. Adv Mater Res, 2011, 403–408, 456 doi: 10.4028/www.scientific.net/AMR.403-408.456
[16]
Fu X T, Ma T D, Wang S M, et al. Strain relaxation of GaN heterostructure induced by high-energy electron irradiation. Chin J Rare Met, 2012, 36, 450 doi: 10.3969/j.issn.0258-7076.2012.03.022
[17]
Young E C, Speck J S. Heteroepitaxial lattice mismatch stress relaxation in nonpolar and semipolar GaN by dislocation glide. ECS Trans, 2013, 50, 797 doi: 10.1149/05009.0797ecst
[18]
Liu L, Wang L, Li D, et al. Influence of indium composition in the prestrained InGaN interlayer on the strain relaxation of InGaN/ GaN multiple quantum wells in laser diode structures. J Appl Phys, 2011, 109, 073106 doi: 10.1063/1.3569848
[19]
Won D, Weng X J, Redwing J M. Effect of indium surfactant on stress relaxation by V-defect formation in GaN epilayers grown by metalorganic chemical vapor deposition. J Appl Phys, 2010, 108, 093511 doi: 10.1063/1.3487955
[20]
Zhang N, Liu Z, Wei T B, et al. Effect of the graded electron blocking layer on the emission properties of GaN-based green light-emitting diodes. Appl Phys Lett, 2012, 100, 053504 doi: 10.1063/1.3681797
[21]
Du C X, Wei T B, Zheng H Y, et al. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes. Opt Express, 2013, 21, 25373 doi: 10.1364/OE.21.025373
[22]
Zhang N, Liu Z, Si Z, et al. Reduction of efficiency droop and modification of polarization fields of InGaN-based green light-emitting diodes via Mg-doping in the barriers. Chin Phys Lett, 2013, 30, 087101 doi: 10.1088/0256-307X/30/8/087101
[23]
Minj A, Cavalcoli D, Cavallini A, et al. Strain distribution and defect analysis in III-nitrides by dynamical AFM analysis. Nanotechnology, 2013, 24, 145701 doi: 10.1088/0957-4484/24/14/145701
[24]
Davydov V Y, Kitaev Y E, Goncharuk I N, et al. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys Rev B, 1998, 58, 12899 doi: 10.1103/PhysRevB.58.12899
[25]
Wagner J M, Bechstedt F. Phonon deformation potentials of α-GaN and-AlN: An ab initio calculation. Appl Phys Lett, 2000, 77, 346 doi: 10.1063/1.127009
[26]
Jain S C, Willander M, Maes H. Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors. Semicond Sci Technol, 1996, 11, 641 doi: 10.1088/0268-1242/11/5/004
[27]
Morales F M, González D, Lozano J G, et al. Determination of the composition of In xGa1− xN from strain measurements. Acta Mater, 2009, 57, 5681 doi: 10.1016/j.actamat.2009.07.063
[28]
Moram M A, Vickers M E. X-ray diffraction of III-nitrides. Rep Prog Phys, 2009, 72, 036502 doi: 10.1088/0034-4885/72/3/036502
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1052 Times PDF downloads: 79 Times Cited by: 0 Times

    History

    Received: 24 January 2022 Revised: 04 March 2022 Online: Accepted Manuscript: 17 March 2022Uncorrected proof: 17 March 2022Published: 01 July 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yunqi Li, Xinwei Wang, Ning Zhang, Xuecheng Wei, Junxi Wang. Improving the incorporation of indium component for InGaN-based green LED through inserting photonic crystalline in the GaN layer[J]. Journal of Semiconductors, 2022, 43(7): 072801. doi: 10.1088/1674-4926/43/7/072801 Y Q Li, X W Wang, N Zhang, X C Wei, J X Wang. Improving the incorporation of indium component for InGaN-based green LED through inserting photonic crystalline in the GaN layer[J]. J. Semicond, 2022, 43(7): 072801. doi: 10.1088/1674-4926/43/7/072801Export: BibTex EndNote
      Citation:
      Yunqi Li, Xinwei Wang, Ning Zhang, Xuecheng Wei, Junxi Wang. Improving the incorporation of indium component for InGaN-based green LED through inserting photonic crystalline in the GaN layer[J]. Journal of Semiconductors, 2022, 43(7): 072801. doi: 10.1088/1674-4926/43/7/072801

      Y Q Li, X W Wang, N Zhang, X C Wei, J X Wang. Improving the incorporation of indium component for InGaN-based green LED through inserting photonic crystalline in the GaN layer[J]. J. Semicond, 2022, 43(7): 072801. doi: 10.1088/1674-4926/43/7/072801
      Export: BibTex EndNote

      Improving the incorporation of indium component for InGaN-based green LED through inserting photonic crystalline in the GaN layer

      doi: 10.1088/1674-4926/43/7/072801
      More Information
      • Author Bio:

        Yunqi Li got his PhD degree from Chinese PLA Medical School under the supervision of Academician Gu Ying of the division of information technical sciences, the Chinese Academy of Sciences. Then he joined Chinese PLA General Hospital. His research interests include light-emitting diode and photomedicine

        Ning Zhang is an associate professor at the Institute of Semiconductors, Chinese Academy of Sciences. He is mainly engaged in the research of nitride semiconductor optoelectronic materials and devices

      • Corresponding author: zhangn@semi.ac.cn
      • Received Date: 2022-01-24
      • Accepted Date: 2022-03-17
      • Revised Date: 2022-03-04
      • Available Online: 2022-06-08

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return