RESEARCH HIGHLIGHTS

Singlet fission and its application in organic solar cells

Yamin Zhang1, Zuo Xiao3, Liming Ding3, and Hao-Li Zhang1, 2,

+ Author Affiliations

 Corresponding author: Liming Ding, ding@nanoctr.cn; Hao-Li Zhang, haoli.zhang@lzu.edu.cn

PDF

Turn off MathJax



[1]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[2]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[3]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[4]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[5]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[6]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32, 510 doi: 10.1063/1.1736034
[7]
Singh S, Jones W J, Siebrand W, et al. Laser generation of excitons and fluorescence in anthracene crystals. J Chem Phys, 1965, 42, 330 doi: 10.1063/1.1695695
[8]
Paci I, Johnson J C, Chen X, et al. Singlet fission for dye-sensitized solar cells:   Can a suitable sensitizer be found? J Am Chem Soc, 2006, 128, 16546 doi: 10.1021/ja063980h
[9]
Hanna M C, Nozik A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys, 2006, 100, 074510 doi: 10.1063/1.2356795
[10]
Rao A, Friend R H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat Rev Mater, 2017, 2, 17063 doi: 10.1038/natrevmats.2017.63
[11]
Smith M B, Michl J. Singlet fission. Chem Rev, 2010, 110, 6891 doi: 10.1021/cr1002613
[12]
Wang L, Lin L, Yang J, et al. Singlet fission in a pyrrole-fused cross-conjugated skeleton with adaptive aromaticity. J Am Chem Soc, 2020, 142, 10235 doi: 10.1021/jacs.0c00089
[13]
Smith M B, Michl J. Recent advances in singlet fission. Annu Rev Phys Chem, 2013, 64, 361 doi: 10.1146/annurev-physchem-040412-110130
[14]
Wilson M W B, Rao A, Clark J, et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J Am Chem Soc, 2011, 133, 11830 doi: 10.1021/ja201688h
[15]
Jundt C, Klein G, Sipp B, et al. Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem Phys Lett, 1995, 241, 84 doi: 10.1016/0009-2614(95)00603-2
[16]
Groff R P, Merrifield R E, Avakian P. Singlet and triplet channels for triplet-exciton fusion in anthracene crystals. Chem Phys Lett, 1970, 5, 168 doi: 10.1016/0009-2614(70)80033-1
[17]
Geacintov N E, Binder M, Swenberg C E, et al. Exciton dynamics in α-particle tracks in organic crystals: Magnetic field study of the scintillation in tetracene crystals. Phys Rev B, 1975, 12, 4113 doi: 10.1103/PhysRevB.12.4113
[18]
Chan W L, Ligges M, Zhu X Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat Chem, 2012, 4, 840 doi: 10.1038/nchem.1436
[19]
Chan W L, Ligges M, Jailaubekov A, et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science, 2011, 334, 1541 doi: 10.1126/science.1213986
[20]
Liang Z, Zhao W, Wang S, et al. Unexpected photooxidation of H-bonded tetracene. Org Lett, 2008, 10, 2007 doi: 10.1021/ol800620s
[21]
Li Y, Wu Y, Liu P, et al. Stable Solution-processed high-mobility substituted pentacene semiconductors. Chem Mater, 2007, 19, 418 doi: 10.1021/cm062378n
[22]
Okamoto T, Senatore M L, Ling M M, et al. Synthesis, characterization, and field-effect transistor performance of pentacene derivatives. Adv Mater, 2007, 19, 3381 doi: 10.1002/adma.200700298
[23]
Katsuta S, Miyagi D, Yamada H, et al. Synthesis, properties, and ambipolar organic field-effect transistor performances of symmetrically cyanated pentacene and naphthacene as air-stable acene derivatives. Org Lett, 2011, 13, 1454 doi: 10.1021/ol200145r
[24]
Roberts S T, Mcanally R E, Mastron J N, et al. Efficient singlet fission discovered in a disordered acene film. J Am Chem Soc, 2012, 134, 6388 doi: 10.1021/ja300504t
[25]
Johnson J C, Nozik A J, Michl J. High triplet yield from singlet fission in a thin film of 1, 3-diphenylisobenzofuran. J Am Chem Soc, 2010, 132, 16302 doi: 10.1021/ja104123r
[26]
Eaton S W, Shoer L E, Karlen S D, et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J Am Chem Soc, 2013, 135, 14701 doi: 10.1021/ja4053174
[27]
Katoh R, Kotani M, Hirata Y, et al. Triplet exciton formation in a benzophenone single crystal studied by picosecond time-resolved absorption spectroscopy. Chem Phys Lett, 1997, 264, 631 doi: 10.1016/S0009-2614(96)01389-9
[28]
Najafov H, Lee B, Zhou Q, et al. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat Mater, 2010, 9, 938 doi: 10.1038/nmat2872
[29]
Greyson E C, Vura-Weis J, Michl J, et al. Maximizing singlet fission in organic dimers: theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J Phys Chem B, 2010, 114, 14168 doi: 10.1021/jp907392q
[30]
Monahan N, Zhu X Y. Charge Transfer–mediated singlet fission. Annu Rev Phys Chem, 2015, 66, 601 doi: 10.1146/annurev-physchem-040214-121235
[31]
Margulies E A, Miller C E, Wu Y, et al. Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers. Nat Chem, 2016, 8, 1120 doi: 10.1038/nchem.2589
[32]
Sanders S N, Kumarasamy E, Pun A B, et al. Intramolecular singlet fission in oligoacene heterodimers. Angew Chem Int Ed, 2016, 55, 3373 doi: 10.1002/anie.201510632
[33]
Wang Z, Liu H, Xie X, et al. Free-triplet generation with improved efficiency in tetracene oligomers through spatially separated triplet pair states. Nat Chem, 2021, 13, 559 doi: 10.1038/s41557-021-00665-7
[34]
Busby E, Xia J, Wu Q, et al. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials. Nat Mater, 2015, 14, 426 doi: 10.1038/nmat4175
[35]
Hu J, Xu K, Shen L, et al. New insights into the design of conjugated polymers for intramolecular singlet fission. Nat Commun, 2018, 9, 2999 doi: 10.1038/s41467-018-05389-w
[36]
Zimmerman P M, Zhang Z, Musgrave C B. Singlet fission in pentacene through multi-exciton quantum states. Nat Chem, 2010, 2, 648 doi: 10.1038/nchem.694
[37]
Congreve D N, Lee J, Thompson N J, et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science, 2013, 340, 334 doi: 10.1126/science.1232994
[38]
Lee J, Jadhav P, Reusswig P D, et al. Singlet exciton fission photovoltaics. Accounts Chem Res, 2013, 46, 1300 doi: 10.1021/ar300288e
[39]
Ehrler B, Wilson M W B, Rao A, et al. Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett, 2012, 12, 1053 doi: 10.1021/nl204297u
[40]
Rao A, Wilson M W B, Hodgkiss J M, et al. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J Am Chem Soc, 2010, 132, 12698 doi: 10.1021/ja1042462
[41]
Jadhav P J, Mohanty A, Sussman J, et al. Singlet exciton fission in nanostructured organic solar cells. Nano Lett, 2011, 11, 1495 doi: 10.1021/nl104202j
[42]
Wu T C, Thompson N J, Congreve D N, et al. Singlet fission efficiency in tetracene-based organic solar cells. Appl Phys Lett, 2014, 104, 193901 doi: 10.1063/1.4876600
[43]
Minami T, Nakano M. Diradical character view of singlet fission. J Phys Chem Lett, 2012, 3, 145 doi: 10.1021/jz2015346
[44]
Kawata S, Pu Y J, Saito A, et al. Singlet fission of non-polycyclic aromatic molecules in organic photovoltaics. Adv Mater, 2016, 28, 1585 doi: 10.1002/adma.201504281
[45]
Minaki H, Kawata S, Furudate J, et al. Donor- or acceptor-type 9, 9’-bifluorenylidene derivatives for attaining singlet fission character in organic photovoltaics. Chem Lett, 2017, 46, 1126 doi: 10.1246/cl.170437
Fig. 1.  (a) Jablonski diagram with SF process. Reproduced with permission[10], Copyright 2017, Springer Nature. (b) Chemical structures for intermolecular SF materials. (c) Chemical structures for intramolecular SF materials.

Fig. 2.  (a) The first OSC with SF and the energy diagram. Reproduced with permission[41], Copyright 2011, American Chemical Society. (b) Chemical structures and the energy diagram for the solar cell with pentacene (Pc) and a P3HT exciton-confinement layer. Reproduced with permission[37], Copyright 2013, AAAS. (c) Chemical structures and the energy diagram for the solar cell with tetracene (Tc). Reproduced with permission[42], Copyright 2014, AIP. (d) Chemical structures for thienoquinoidal compounds (ThQs). (e) Chemical structures of MOBF and CNBF.

[1]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[2]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[3]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[4]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[5]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[6]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32, 510 doi: 10.1063/1.1736034
[7]
Singh S, Jones W J, Siebrand W, et al. Laser generation of excitons and fluorescence in anthracene crystals. J Chem Phys, 1965, 42, 330 doi: 10.1063/1.1695695
[8]
Paci I, Johnson J C, Chen X, et al. Singlet fission for dye-sensitized solar cells:   Can a suitable sensitizer be found? J Am Chem Soc, 2006, 128, 16546 doi: 10.1021/ja063980h
[9]
Hanna M C, Nozik A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys, 2006, 100, 074510 doi: 10.1063/1.2356795
[10]
Rao A, Friend R H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat Rev Mater, 2017, 2, 17063 doi: 10.1038/natrevmats.2017.63
[11]
Smith M B, Michl J. Singlet fission. Chem Rev, 2010, 110, 6891 doi: 10.1021/cr1002613
[12]
Wang L, Lin L, Yang J, et al. Singlet fission in a pyrrole-fused cross-conjugated skeleton with adaptive aromaticity. J Am Chem Soc, 2020, 142, 10235 doi: 10.1021/jacs.0c00089
[13]
Smith M B, Michl J. Recent advances in singlet fission. Annu Rev Phys Chem, 2013, 64, 361 doi: 10.1146/annurev-physchem-040412-110130
[14]
Wilson M W B, Rao A, Clark J, et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J Am Chem Soc, 2011, 133, 11830 doi: 10.1021/ja201688h
[15]
Jundt C, Klein G, Sipp B, et al. Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem Phys Lett, 1995, 241, 84 doi: 10.1016/0009-2614(95)00603-2
[16]
Groff R P, Merrifield R E, Avakian P. Singlet and triplet channels for triplet-exciton fusion in anthracene crystals. Chem Phys Lett, 1970, 5, 168 doi: 10.1016/0009-2614(70)80033-1
[17]
Geacintov N E, Binder M, Swenberg C E, et al. Exciton dynamics in α-particle tracks in organic crystals: Magnetic field study of the scintillation in tetracene crystals. Phys Rev B, 1975, 12, 4113 doi: 10.1103/PhysRevB.12.4113
[18]
Chan W L, Ligges M, Zhu X Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat Chem, 2012, 4, 840 doi: 10.1038/nchem.1436
[19]
Chan W L, Ligges M, Jailaubekov A, et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science, 2011, 334, 1541 doi: 10.1126/science.1213986
[20]
Liang Z, Zhao W, Wang S, et al. Unexpected photooxidation of H-bonded tetracene. Org Lett, 2008, 10, 2007 doi: 10.1021/ol800620s
[21]
Li Y, Wu Y, Liu P, et al. Stable Solution-processed high-mobility substituted pentacene semiconductors. Chem Mater, 2007, 19, 418 doi: 10.1021/cm062378n
[22]
Okamoto T, Senatore M L, Ling M M, et al. Synthesis, characterization, and field-effect transistor performance of pentacene derivatives. Adv Mater, 2007, 19, 3381 doi: 10.1002/adma.200700298
[23]
Katsuta S, Miyagi D, Yamada H, et al. Synthesis, properties, and ambipolar organic field-effect transistor performances of symmetrically cyanated pentacene and naphthacene as air-stable acene derivatives. Org Lett, 2011, 13, 1454 doi: 10.1021/ol200145r
[24]
Roberts S T, Mcanally R E, Mastron J N, et al. Efficient singlet fission discovered in a disordered acene film. J Am Chem Soc, 2012, 134, 6388 doi: 10.1021/ja300504t
[25]
Johnson J C, Nozik A J, Michl J. High triplet yield from singlet fission in a thin film of 1, 3-diphenylisobenzofuran. J Am Chem Soc, 2010, 132, 16302 doi: 10.1021/ja104123r
[26]
Eaton S W, Shoer L E, Karlen S D, et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J Am Chem Soc, 2013, 135, 14701 doi: 10.1021/ja4053174
[27]
Katoh R, Kotani M, Hirata Y, et al. Triplet exciton formation in a benzophenone single crystal studied by picosecond time-resolved absorption spectroscopy. Chem Phys Lett, 1997, 264, 631 doi: 10.1016/S0009-2614(96)01389-9
[28]
Najafov H, Lee B, Zhou Q, et al. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat Mater, 2010, 9, 938 doi: 10.1038/nmat2872
[29]
Greyson E C, Vura-Weis J, Michl J, et al. Maximizing singlet fission in organic dimers: theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J Phys Chem B, 2010, 114, 14168 doi: 10.1021/jp907392q
[30]
Monahan N, Zhu X Y. Charge Transfer–mediated singlet fission. Annu Rev Phys Chem, 2015, 66, 601 doi: 10.1146/annurev-physchem-040214-121235
[31]
Margulies E A, Miller C E, Wu Y, et al. Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers. Nat Chem, 2016, 8, 1120 doi: 10.1038/nchem.2589
[32]
Sanders S N, Kumarasamy E, Pun A B, et al. Intramolecular singlet fission in oligoacene heterodimers. Angew Chem Int Ed, 2016, 55, 3373 doi: 10.1002/anie.201510632
[33]
Wang Z, Liu H, Xie X, et al. Free-triplet generation with improved efficiency in tetracene oligomers through spatially separated triplet pair states. Nat Chem, 2021, 13, 559 doi: 10.1038/s41557-021-00665-7
[34]
Busby E, Xia J, Wu Q, et al. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials. Nat Mater, 2015, 14, 426 doi: 10.1038/nmat4175
[35]
Hu J, Xu K, Shen L, et al. New insights into the design of conjugated polymers for intramolecular singlet fission. Nat Commun, 2018, 9, 2999 doi: 10.1038/s41467-018-05389-w
[36]
Zimmerman P M, Zhang Z, Musgrave C B. Singlet fission in pentacene through multi-exciton quantum states. Nat Chem, 2010, 2, 648 doi: 10.1038/nchem.694
[37]
Congreve D N, Lee J, Thompson N J, et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science, 2013, 340, 334 doi: 10.1126/science.1232994
[38]
Lee J, Jadhav P, Reusswig P D, et al. Singlet exciton fission photovoltaics. Accounts Chem Res, 2013, 46, 1300 doi: 10.1021/ar300288e
[39]
Ehrler B, Wilson M W B, Rao A, et al. Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett, 2012, 12, 1053 doi: 10.1021/nl204297u
[40]
Rao A, Wilson M W B, Hodgkiss J M, et al. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J Am Chem Soc, 2010, 132, 12698 doi: 10.1021/ja1042462
[41]
Jadhav P J, Mohanty A, Sussman J, et al. Singlet exciton fission in nanostructured organic solar cells. Nano Lett, 2011, 11, 1495 doi: 10.1021/nl104202j
[42]
Wu T C, Thompson N J, Congreve D N, et al. Singlet fission efficiency in tetracene-based organic solar cells. Appl Phys Lett, 2014, 104, 193901 doi: 10.1063/1.4876600
[43]
Minami T, Nakano M. Diradical character view of singlet fission. J Phys Chem Lett, 2012, 3, 145 doi: 10.1021/jz2015346
[44]
Kawata S, Pu Y J, Saito A, et al. Singlet fission of non-polycyclic aromatic molecules in organic photovoltaics. Adv Mater, 2016, 28, 1585 doi: 10.1002/adma.201504281
[45]
Minaki H, Kawata S, Furudate J, et al. Donor- or acceptor-type 9, 9’-bifluorenylidene derivatives for attaining singlet fission character in organic photovoltaics. Chem Lett, 2017, 46, 1126 doi: 10.1246/cl.170437
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 967 Times PDF downloads: 153 Times Cited by: 0 Times

    History

    Received: 28 May 2022 Revised: Online: Accepted Manuscript: 31 May 2022Uncorrected proof: 01 June 2022Published: 01 August 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yamin Zhang, Zuo Xiao, Liming Ding, Hao-Li Zhang. Singlet fission and its application in organic solar cells[J]. Journal of Semiconductors, 2022, 43(8): 080201. doi: 10.1088/1674-4926/43/8/080201 Y M Zhang, Z Xiao, L M Ding, H L Zhang. Singlet fission and its application in organic solar cells[J]. J. Semicond, 2022, 43(8): 080201. doi: 10.1088/1674-4926/43/8/080201Export: BibTex EndNote
      Citation:
      Yamin Zhang, Zuo Xiao, Liming Ding, Hao-Li Zhang. Singlet fission and its application in organic solar cells[J]. Journal of Semiconductors, 2022, 43(8): 080201. doi: 10.1088/1674-4926/43/8/080201

      Y M Zhang, Z Xiao, L M Ding, H L Zhang. Singlet fission and its application in organic solar cells[J]. J. Semicond, 2022, 43(8): 080201. doi: 10.1088/1674-4926/43/8/080201
      Export: BibTex EndNote

      Singlet fission and its application in organic solar cells

      doi: 10.1088/1674-4926/43/8/080201
      More Information
      • Author Bio:

        Yamin Zhang received her BS from Lanzhou University in 2014 and PhD from Nankai University in 2019 under the supervision of Prof. Yongsheng Chen and Prof. Xiangjian Wan. In 2019, she joined the State Key Laboratory of Applied Organic Chemistry of Lanzhou University as an assistant professor. Her research focuses on organic small molecule semiconductors and devices

        Zuo Xiao got his BS and PhD from Peking University under the supervision of Prof. Liangbing Gan. He did postdoctoral research in Eiichi Nakamura Lab at the University of Tokyo. In March 2011, he joined Liming Ding Group at National Center for Nanoscience and Technology as an associate professor. In April 2020, he was promoted to be a full professor. His research focuses on organic solar cells

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors

        Hao-Li Zhang received his BS and PhD degrees from Lanzhou University, then he worked in the University of Leeds and Oxford University as a postdoc. In 2004, he joined the State Key Laboratory of Applied Organic Chemistry of Lanzhou University, and became a full professor. His works focus on organic semiconductors and nano-devices. He is currently a Fellow of Royal Society of Chemistry (FRSC). He is the board member for several academic journals

      • Corresponding author: ding@nanoctr.cnhaoli.zhang@lzu.edu.cn
      • Received Date: 2022-05-28
        Available Online: 2022-05-31

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return