REVIEWS

Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review

Shanshan Chen1, Yongyue Zhang1, Xiaorong Hong2 and Jiafang Li2, 3,

+ Author Affiliations

 Corresponding author: Jiafang Li, jiafangli@bit.edu.cn

PDF

Turn off MathJax

Abstract: Micro-optical electromechanical systems (MOEMS) combine the merits of micro-electromechanical systems (MEMS) and micro-optics to enable unique optical functions for a wide range of advanced applications. Using simple external electromechanical control methods, such as electrostatic, magnetic or thermal effects, Si-based MOEMS can achieve precise dynamic optical modulation. In this paper, we will briefly review the technologies and applications of Si-based MOEMS. Their basic working principles, advantages, general materials and micromachining fabrication technologies are introduced concisely, followed by research progress of advanced Si-based MOEMS devices, including micromirrors/micromirror arrays, micro-spectrometers, and optical/photonic switches. Owing to the unique advantages of Si-based MOEMS in spatial light modulation and high-speed signal processing, they have several promising applications in optical communications, digital light processing, and optical sensing. Finally, future research and development prospects of Si-based MOEMS are discussed.

Key words: MOEMSSi-based micromachining technologymicromirrormicro-spectrometeroptical switches



[1]
Yang Y, Wang J. The status and application of MEMS technology. Micronanoelectron Technol, 2003, 40, 29
[2]
Zang X N, Zhou Q, Chang J, et al. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng, 2015, 132, 192 doi: 10.1016/j.mee.2014.10.023
[3]
Kan T, Isozaki A, Kanda N, et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat Commun, 2015, 6, 8422 doi: 10.1038/ncomms9422
[4]
Arbabi E, Arbabi A, Kamali S M, et al. MEMS-tunable dielectric metasurface lens. Nat Commun, 2018, 9, 812 doi: 10.1038/s41467-018-03155-6
[5]
Pitchappa P, Manjappa M, Ho C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv Opt Mater, 2016, 4, 541 doi: 10.1002/adom.201500676
[6]
Ciuti G, Nardi M, Valdastri P, et al. HuMOVE: A low-invasive wearable monitoring platform in sexual medicine. Urology, 2014, 84, 976 doi: 10.1016/j.urology.2014.06.040
[7]
Ciuti G, Pateromichelakis N, Sfakiotakis M, et al. A wireless module for vibratory motor control and inertial sensing in capsule endoscopy. Sens Actuat A, 2012, 186, 270 doi: 10.1016/j.sna.2011.12.024
[8]
Sgandurra G, Bartalena L, Cioni G, et al. Home-based, early intervention with mechatronic toys for preterm infants at risk of neurodevelopmental disorders (caretoy): A RCT protocol. BMC Pediatr, 2014, 14, 268 doi: 10.1186/1471-2431-14-268
[9]
Li W, Ma J, Yang S. Applications of MOEMS in optical communication. Shenzhen Univ J, 2002, 19, 43
[10]
Nguyen C T C. Microelectromechanical devices for wireless communications. IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems, 1998, 1 doi: 10.1109/MEMSYS.1998.659719
[11]
You Z, Gong K, Lu J. Development of smallsat technology and its thinking. Sci Technoly Rev, 2001, 3, 43 (in Chinese)
[12]
Picard F, Ilias S, Asselin D, et al. MEMS-based flexible reflective analog modulators (FRAM) for projection displays: A technology review and scale-down study. J Phys: Conf Ser, 2011, 276, 012182 doi: 10.1088/1742-6596/276/1/012182
[13]
Li Y, Endo T, Hane K. Projection type micro-optical encoder based on MEMS technology. Acta Optica Sinica, 2003, 8, 1005 (in Chinese)
[14]
Finot M, McDonald M, Bettman B, et al. Thermally tuned external cavity laser with micromachined silicon etalons: Design, process and reliability. 54th Electronic Components and Technology Conference, 2004, 818
[15]
Marxer C, Griss P, de Rooij N F. A variable optical attenuator based on silicon micromechanics. IEEE Photonics Technol Lett, 1999, 11, 233 doi: 10.1109/68.740714
[16]
Kozhevnikov M, Basavanhally N R, Weld J D, et al. Compact 64 x 64 micromechanical optical cross connect. IEEE Photonics Technol Lett, 2003, 15, 993 doi: 10.1109/LPT.2003.813408
[17]
Ma X H, Kuo G S. Optical switching technology comparison: Optical MEMS vs. other technologies. IEEE Commun Mag, 2003, 41, S16 doi: 10.1109/MCOM.2003.1222716
[18]
Green W M, Rooks M J, Sekaric L, et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt Express, 2007, 15, 17106 doi: 10.1364/OE.15.017106
[19]
Hornbeck L J. The DMDTM projection display chip: A MEMS-based technology. MRS Bull, 2001, 26, 325 doi: 10.1557/mrs2001.72
[20]
Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications. Conference on MOEMS Display and Imaging Systems, 2003, 14 doi: 10.1117/12.480761
[21]
Zhang X M, Zhao Q W, Liu A Q, et al. Asymmetric tuning schemes of MEMS dual-shutter VOA. J Light Technol, 2008, 26, 569 doi: 10.1109/JLT.2007.912524
[22]
Velicu S, Buurma C, Bergeson J D, et al. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays. Conference on Image Sensing Technologies - Materials, Devices, Systems, and Applications, 2014, 9100, 91000F doi: 10.1117/12.2053902
[23]
Zhou Z Y, Wang Z L, Lin L W. Microsystems and nanotechnology. Tsinghua University Press, 2012
[24]
Man Q. Process integration and optimization of silicon substrate MEMS. University of Electronic Science and Technology of China, 2021 (in Chinese)
[25]
Faruque M O, Al Mahmud R, Sagor R H. Heavily doped silicon: A potential replacement of conventional plasmonic metals. J Semicond, 2021, 42, 062302 doi: 10.1088/1674-4926/42/6/062302
[26]
Yin Y L, Li J, Xu Y, et al. Silicon-graphene photonic devices. J Semicond, 2018, 39, 061009 doi: 10.1088/1674-4926/39/6/061009
[27]
Zhu W M, Zhang X M, Liu A Q, et al. A micromachined optical double well for thermo-optic switching via resonant tunneling effect. Appl Phys Lett, 2008, 92, 251101 doi: 10.1063/1.2951621
[28]
Cai H, Liu A Q, Zhang X M, et al. Tunable dual-wavelength laser constructed by silicon micromachining. Appl Phys Lett, 2008, 92, 051113 doi: 10.1063/1.2840152
[29]
Marxer C, Grétillat M A, Jaecklin V P, et al. Megahertz opto-mechanical modulator. Sens Actuat A, 1996, 52, 46 doi: 10.1016/0924-4247(96)80124-5
[30]
Manzardo O, Herzig H P, Marxer C R, et al. Miniaturized time-scanning Fourier transform spectrometer based on silicon technology. Opt Lett, 1999, 24(23), 1705 doi: 10.1364/OL.24.001705
[31]
Wu M C, Solgaard O, Ford J E. Optical MEMS for lightwave communication. J Lightwave Technol, 2006, 24, 4433 doi: 10.1109/JLT.2006.886405
[32]
Sarid D, Iams D, Weissenberger V, et al. Compact scanning-force microscope using a laser diode. Opt Lett, 1988, 13, 1057 doi: 10.1364/OL.13.001057
[33]
Pliska P, Lukosz W. Integrated-optical acoustical sensors. Sens Actuat A, 1994, 41, 93 doi: 10.1016/0924-4247(94)80094-4
[34]
Oh M C, Kim J W, Kim K J, et al. Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides. IEEE Photonics Technol Lett, 2009, 21, 501 doi: 10.1109/LPT.2009.2013966
[35]
Zhou X L, Yu Q X. Wide-range displacement sensor based on fiber-optic fabry–perot interferometer for subnanometer measurement. IEEE Sens J, 2011, 11, 1602 doi: 10.1109/JSEN.2010.2103307
[36]
Waters R, Tally C, Dick B, et al. Design and analysis of a novel electro-optical MEMS gyroscope for navigation applications. 2010 IEEE Sensors Conference, 2010, 1690 doi: 10.1109/ICSENS.2010.5689922
[37]
Yu H J, Zhou P, Shen W J. Fast-scan MOEMS mirror for HD laser projection applications. 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems, 2021, 265 doi: 10.1109/NEMS51815.2021.9451357
[38]
Brown P T, Kruithoff R, Seedorf G J, et al. Multicolor structured illumination microscopy and quantitative control of polychromatic light with a digital micromirror device. Biomed Opt Express, 2021, 12, 3700 doi: 10.1364/BOE.422703
[39]
Li F Y, Zhou P, Wang T T, et al. A large-size MEMS scanning mirror for speckle reduction application. Micromachines, 2017, 8, 140 doi: 10.3390/mi8050140
[40]
Chen Q, Ding J L, Wang W, et al. A high fill factor 1 × 20 MEMS mirror array based on ISC bimorph structure. 2016 International Conference on Optical MEMS and Nanophotonics (OMN), 2016, 1 doi: 10.1109/OMN.2016.7565912
[41]
Ahn M S, Jeon J, Jang K W, et al. Large-area and ultrathin MEMS mirror using silicon micro rim. Micromachines, 2021, 12, 754 doi: 10.3390/mi12070754
[42]
Sabry Y, Khalil D, Saadany B, et al. In-plane optical beam collimation using a three-dimensional curved MEMS mirror. Micromachines, 2017, 8, 134 doi: 10.3390/mi8050134
[43]
Kallmann U, Lootze M, Mescheder U. Simulative and experimental characterization of an adaptive astigmatic membrane mirror. Micromachines, 2021, 12, 156 doi: 10.3390/mi12020156
[44]
Zamkotsian F. Moems, micro-optics for astronomical instrumentation. Conference of the NATO-Advanced-Study-Institute on Optics in Astrophysics, 2005, 107
[45]
Zamkotsian F, Noell W. MOEMS devices designed and tested for astronomical instrumentation in space. SPIE MOEMS-MEMS. Conference on Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices XI, 2012 doi: 10.1117/12.912348
[46]
Wang B, Liang Z Z, Kong Y M, et al. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Phys Sin, 2010, 59, 907 doi: 10.7498/aps.59.907
[47]
Omran H, Sabry Y M, Sadek M, et al. Wideband subwavelength deeply etched multilayer silicon mirrors for tunable optical filters and SS-OCT applications. IEEE J Sel Top Quantum Electron, 2015, 21, 157 doi: 10.1109/JSTQE.2014.2369519
[48]
Briere J, Beaulieu P O, Saidani M, et al. Rotational MEMS mirror with latching arm for silicon photonics. Conference on MOEMS and Miniaturized Systems XIV, 2015, 9375, 20 doi: 10.1117/12.2077033
[49]
Takeshita T, Yamashita T, Makimoto N, et al. Development of ultra-thin MEMS micro mirror device. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems, 2017, 2143 doi: 10.1109/TRANSDUCERS.2017.7994499
[50]
Fawzy A, El-Ghandour O M, Hamed H F A. Notice of violation of IEEE publication principles: Optical coupling of 3D silicon micromirrors. 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems, 2018, 465
[51]
El Ahdab R, Sharma S, Nabki F, et al. Wide-band silicon photonic MOEMS spectrometer requiring a single photodetector. Opt Express, 2020, 28, 31345 doi: 10.1364/OE.401623
[52]
Al-Demerdash B M, Medhat M, Sabry Y M, et al. MMI-based MOEMS FT spectrometer for visible and IR spectral ranges. Conference on MOEMS and Miniaturized Systems XIII, 2014, 8977, 195 doi: 10.1117/12.2038641
[53]
El-Sayed I S, Sabry Y M, ElZeiny W E, et al. Transformation algorithm and analysis of the Fourier transform spectrometer based on cascaded Fabry–Perot interferometers. Appl Opt, 2018, 57, 7225 doi: 10.1364/AO.57.007225
[54]
Eltagoury Y M, Sabry Y M, Khalil D A. All-silicon double-cavity Fourier-transform infrared spectrometer on-chip. Adv Mater Technol, 2019, 4, 1900441 doi: 10.1002/admt.201900441
[55]
Mortada B, Erfan M Z, Medhat M, et al. Wideband optical MEMS interferometer enabled by multimode interference waveguides. J Lightwave Technol, 2016, 34, 2145 doi: 10.1109/JLT.2016.2531642
[56]
Chai J Y, Zhang K, Xue Y, et al. Review of MEMS based Fourier transform spectrometers. Micromachines, 2020, 11, 214 doi: 10.3390/mi11020214
[57]
Sabry Y M, Eltagoury Y M, Shebl A, et al. In-plane deeply-etched optical MEMS Notch filter with high-speed tunability. J Opt, 2015, 17, 125703 doi: 10.1088/2040-8978/17/12/125703
[58]
Pügner T, Knobbe J, Grüger H. Near-infrared grating spectrometer for mobile phone applications. Appl Spectrosc, 2016, 70, 734 doi: 10.1177/0003702816638277
[59]
Yu K, Lee D, Krishnamoorthy U, et al. Micromachined Fourier transform spectrometer on silicon optical bench platform. Sens Actuat A, 2006, 130/131, 523 doi: 10.1016/j.sna.2005.12.022
[60]
Samir I, Sabry Y M, Erfan M Z, et al. MEMS FTIR spectrometer with enhanced resolution for low cost gas sensing in the NIR. Conference on MOEMS and Miniaturized Systems XVII, 2018, 10545, 89 doi: 10.1117/12.2288996
[61]
Ghoname A O, Sabry Y M, Anwar M, et al. Attenuated total reflection (ATR) MEMS FTIR spectrometer. Conference on MOEMS and Miniaturized Systems XIX, 2020, 11293, 170
[62]
Salem A M, Sabry Y M, Fathy A, et al. Single MEMS chip enabling dual spectral-range infrared micro-spectrometer with optimal detectors. Adv Mater Technol, 2021, 6, 2001013 doi: 10.1002/admt.202001013
[63]
Farrugia R, Portelli B, Grech I, et al. A concave moems scanning diffraction grating for infrared micro-spectrometer applications. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems, 2021, 783 doi: 10.1109/MEMS51782.2021.9375394
[64]
Wang W, Chen J P, Zivkovic A S, et al. A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror. J Microelectromechan Syst, 2016, 25, 347 doi: 10.1109/JMEMS.2016.2522767
[65]
Jung D G, Son S H, Kwon S Y, et al. Silicon prism-based NIR spectrometer utilizing MEMS technology. J Sens Sci Technol, 2017, 26, 91 doi: 10.5369/JSST.2017.26.2.91
[66]
Tu X, Song C L, Huang T Y, et al. State of the art and perspectives on silicon photonic switches. Micromachines, 2019, 10, 51 doi: 10.3390/mi10010051
[67]
Wu M C, Seok T J, Han S, et al. Large-scale, MEMS-actauated silicon photonic switches. 2015 International Conference on Photonics in Switching, 2015, 124 doi: 10.1109/PS.2015.7328974
[68]
Han S, Seok T J, Quack N, et al. Monolithic 50×50 MEMS silicon photonic switches with microsecond response time. Optical Fiber Communication Conference, 2014
[69]
Seok T J, Quack N, Han S, et al. 50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers. Optical Fiber Communication Conference, 2015
[70]
Han S, Seok T J, Yu K, et al. Large-scale polarization-insensitive silicon photonic MEMS switches. J Lightwave Technol, 2018, 36, 1824 doi: 10.1109/JLT.2018.2791502
[71]
Sattari H, Takabayashi A Y, Edinger P, et al. Low-voltage silicon photonic MEMS switch with vertical actuation. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems, 2021, 298
[72]
Edinger P, Errando-Herranz C, Takabayashi A Y, et al. Compact low loss MEMS phase shifters for scalable field-programmable silicon photonics. 2020 Conference on Lasers and Electro-Optics, 2020, 1 doi: 10.1364/CLEO_SI.2020.SM3J.2
[73]
Takabayashi A Y, Sattari H, Edinger P, et al. Broadband compact single-pole double-throw silicon photonic MEMS switch. J Microelectromechan Syst, 2021, 30, 322 doi: 10.1109/JMEMS.2021.3060182
[74]
Cook E H, Spector S J, Moebius M G, et al. Polysilicon grating switches for LiDAR. J Microelectromechan Syst, 2020, 29, 1008 doi: 10.1109/JMEMS.2020.3004069
[75]
Seok T J, Quack N, Han S, et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3, 64 doi: 10.1364/OPTICA.3.000064
[76]
Zhang X S, Kwon K, Henriksson J, et al. A 20 × 20 focal plane switch array for optical beam steering. 2020 Conference on Lasers and Electro-Optics, 2020, 1 doi: 10.1364/CLEO_SI.2020.SM1O.3
[77]
Sandner T, Grasshoff T, Gaumont E, et al. Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers. J Micro-Nanolithogr MEMS MOEMS, 2014, 13, 011115 doi: 10.1117/1.JMM.13.1.011115
[78]
Lu Q B, Bai J, Wang K W, et al. Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer. J Microelectromechan Syst, 2017, 26, 859 doi: 10.1109/JMEMS.2017.2693341
[79]
Graziosi T, Sattari H, Seok T J, et al. Silicon photonic MEMS variable optical attenuator. Conference on MOEMS and Miniaturized Systems XVII, 2018, 10545, 114 doi: 10.1117/12.2317507
[80]
Yokino T, Kato K, Ui A, et al. Grating-based ultra-compact SWNIR spectral sensor head developed through MOEMS technology. Conference on MOEMS and Miniaturized Systems XVIII, 2019, 10931, 55 doi: 10.1117/12.2510472
[81]
Nie Q Y, Xie Y Y, Chang F. MEMS blazed gratings fabricated using anisotropic etching and oxidation sharpening. AIP Adv, 2020, 10, 065216 doi: 10.1063/5.0004903
[82]
Szyszka P, Grzebyk T, Białas M, et al. Towars portable MEMS mass spectrometer. 2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, 2019, 1 doi: 10.1109/PowerMEMS49317.2019.92321112609
[83]
Zheng D, Wang D K, Yoon Y K, et al. A silicon optical bench-based forward-view two-axis scanner for microendoscopy applications. Micromachines, 2020, 11, 1051 doi: 10.3390/mi11121051
[84]
Wang D K, Koppal S J, Xie H K. A monolithic forward-view MEMS laser scanner with decoupled raster scanning and enlarged scanning angle for micro LiDAR applications. J Microelectromechan Syst, 2020, 29, 996 doi: 10.1109/JMEMS.2020.3001921
Fig. 1.  (a) Schematic diagram of the dual-shutter VOA[21]. (b, c) Fabricated dual-shutter VOA device and a close-up image of the shutter part[21].

Fig. 2.  (Color online) (a) Schematic of two pixels of a DMD chip[19]. (b) An electromagnetically actuated micromirror[39]. (c) An electromagnetically driven 2D MOEMS mirror[37]. (d) A wire bonded 1 × 20 MEMS mirror array[40]. (e) An electrothermal bimorph-actuated MOEMS mirror[41]. (f) A 3D curved micromirror for collimating the output beam of single-mode fibers[42]. (g) Cross section and top view of an electromechanically driven adaptive astigmatic membrane mirror[43]. (h) A micro-deformable mirror architecture[44].

Fig. 3.  (Color online) (a) SEM image of the fabricated MMI-based spectrometer[52]. (b) Multirange spectrometer system[62]. (c) Scanning grating MEMS device (dimensions: 9.6 × 5.3 × 0.5 mm3)[58]. (d) Schematic of the MOEMS spectrometer[51]. (e) SEM image of the scanning diffraction grating[63]. (f) Schematic of the FT spectrometer system on a Si optical bench[64].

Fig. 4.  (Color online) (a) Schematic of the MEMS-actuated matrix switch[67]. (b) Schematic of polarization-insensitive Si photonic MEMS switches[70]. (c) Schematic representation of a vertically movable silicon photonic MEMS switch[71]. Dimensions are not to scale. (d) SEM image showing the grating switch with a stiffener[74].

[1]
Yang Y, Wang J. The status and application of MEMS technology. Micronanoelectron Technol, 2003, 40, 29
[2]
Zang X N, Zhou Q, Chang J, et al. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng, 2015, 132, 192 doi: 10.1016/j.mee.2014.10.023
[3]
Kan T, Isozaki A, Kanda N, et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat Commun, 2015, 6, 8422 doi: 10.1038/ncomms9422
[4]
Arbabi E, Arbabi A, Kamali S M, et al. MEMS-tunable dielectric metasurface lens. Nat Commun, 2018, 9, 812 doi: 10.1038/s41467-018-03155-6
[5]
Pitchappa P, Manjappa M, Ho C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv Opt Mater, 2016, 4, 541 doi: 10.1002/adom.201500676
[6]
Ciuti G, Nardi M, Valdastri P, et al. HuMOVE: A low-invasive wearable monitoring platform in sexual medicine. Urology, 2014, 84, 976 doi: 10.1016/j.urology.2014.06.040
[7]
Ciuti G, Pateromichelakis N, Sfakiotakis M, et al. A wireless module for vibratory motor control and inertial sensing in capsule endoscopy. Sens Actuat A, 2012, 186, 270 doi: 10.1016/j.sna.2011.12.024
[8]
Sgandurra G, Bartalena L, Cioni G, et al. Home-based, early intervention with mechatronic toys for preterm infants at risk of neurodevelopmental disorders (caretoy): A RCT protocol. BMC Pediatr, 2014, 14, 268 doi: 10.1186/1471-2431-14-268
[9]
Li W, Ma J, Yang S. Applications of MOEMS in optical communication. Shenzhen Univ J, 2002, 19, 43
[10]
Nguyen C T C. Microelectromechanical devices for wireless communications. IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems, 1998, 1 doi: 10.1109/MEMSYS.1998.659719
[11]
You Z, Gong K, Lu J. Development of smallsat technology and its thinking. Sci Technoly Rev, 2001, 3, 43 (in Chinese)
[12]
Picard F, Ilias S, Asselin D, et al. MEMS-based flexible reflective analog modulators (FRAM) for projection displays: A technology review and scale-down study. J Phys: Conf Ser, 2011, 276, 012182 doi: 10.1088/1742-6596/276/1/012182
[13]
Li Y, Endo T, Hane K. Projection type micro-optical encoder based on MEMS technology. Acta Optica Sinica, 2003, 8, 1005 (in Chinese)
[14]
Finot M, McDonald M, Bettman B, et al. Thermally tuned external cavity laser with micromachined silicon etalons: Design, process and reliability. 54th Electronic Components and Technology Conference, 2004, 818
[15]
Marxer C, Griss P, de Rooij N F. A variable optical attenuator based on silicon micromechanics. IEEE Photonics Technol Lett, 1999, 11, 233 doi: 10.1109/68.740714
[16]
Kozhevnikov M, Basavanhally N R, Weld J D, et al. Compact 64 x 64 micromechanical optical cross connect. IEEE Photonics Technol Lett, 2003, 15, 993 doi: 10.1109/LPT.2003.813408
[17]
Ma X H, Kuo G S. Optical switching technology comparison: Optical MEMS vs. other technologies. IEEE Commun Mag, 2003, 41, S16 doi: 10.1109/MCOM.2003.1222716
[18]
Green W M, Rooks M J, Sekaric L, et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt Express, 2007, 15, 17106 doi: 10.1364/OE.15.017106
[19]
Hornbeck L J. The DMDTM projection display chip: A MEMS-based technology. MRS Bull, 2001, 26, 325 doi: 10.1557/mrs2001.72
[20]
Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications. Conference on MOEMS Display and Imaging Systems, 2003, 14 doi: 10.1117/12.480761
[21]
Zhang X M, Zhao Q W, Liu A Q, et al. Asymmetric tuning schemes of MEMS dual-shutter VOA. J Light Technol, 2008, 26, 569 doi: 10.1109/JLT.2007.912524
[22]
Velicu S, Buurma C, Bergeson J D, et al. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays. Conference on Image Sensing Technologies - Materials, Devices, Systems, and Applications, 2014, 9100, 91000F doi: 10.1117/12.2053902
[23]
Zhou Z Y, Wang Z L, Lin L W. Microsystems and nanotechnology. Tsinghua University Press, 2012
[24]
Man Q. Process integration and optimization of silicon substrate MEMS. University of Electronic Science and Technology of China, 2021 (in Chinese)
[25]
Faruque M O, Al Mahmud R, Sagor R H. Heavily doped silicon: A potential replacement of conventional plasmonic metals. J Semicond, 2021, 42, 062302 doi: 10.1088/1674-4926/42/6/062302
[26]
Yin Y L, Li J, Xu Y, et al. Silicon-graphene photonic devices. J Semicond, 2018, 39, 061009 doi: 10.1088/1674-4926/39/6/061009
[27]
Zhu W M, Zhang X M, Liu A Q, et al. A micromachined optical double well for thermo-optic switching via resonant tunneling effect. Appl Phys Lett, 2008, 92, 251101 doi: 10.1063/1.2951621
[28]
Cai H, Liu A Q, Zhang X M, et al. Tunable dual-wavelength laser constructed by silicon micromachining. Appl Phys Lett, 2008, 92, 051113 doi: 10.1063/1.2840152
[29]
Marxer C, Grétillat M A, Jaecklin V P, et al. Megahertz opto-mechanical modulator. Sens Actuat A, 1996, 52, 46 doi: 10.1016/0924-4247(96)80124-5
[30]
Manzardo O, Herzig H P, Marxer C R, et al. Miniaturized time-scanning Fourier transform spectrometer based on silicon technology. Opt Lett, 1999, 24(23), 1705 doi: 10.1364/OL.24.001705
[31]
Wu M C, Solgaard O, Ford J E. Optical MEMS for lightwave communication. J Lightwave Technol, 2006, 24, 4433 doi: 10.1109/JLT.2006.886405
[32]
Sarid D, Iams D, Weissenberger V, et al. Compact scanning-force microscope using a laser diode. Opt Lett, 1988, 13, 1057 doi: 10.1364/OL.13.001057
[33]
Pliska P, Lukosz W. Integrated-optical acoustical sensors. Sens Actuat A, 1994, 41, 93 doi: 10.1016/0924-4247(94)80094-4
[34]
Oh M C, Kim J W, Kim K J, et al. Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides. IEEE Photonics Technol Lett, 2009, 21, 501 doi: 10.1109/LPT.2009.2013966
[35]
Zhou X L, Yu Q X. Wide-range displacement sensor based on fiber-optic fabry–perot interferometer for subnanometer measurement. IEEE Sens J, 2011, 11, 1602 doi: 10.1109/JSEN.2010.2103307
[36]
Waters R, Tally C, Dick B, et al. Design and analysis of a novel electro-optical MEMS gyroscope for navigation applications. 2010 IEEE Sensors Conference, 2010, 1690 doi: 10.1109/ICSENS.2010.5689922
[37]
Yu H J, Zhou P, Shen W J. Fast-scan MOEMS mirror for HD laser projection applications. 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems, 2021, 265 doi: 10.1109/NEMS51815.2021.9451357
[38]
Brown P T, Kruithoff R, Seedorf G J, et al. Multicolor structured illumination microscopy and quantitative control of polychromatic light with a digital micromirror device. Biomed Opt Express, 2021, 12, 3700 doi: 10.1364/BOE.422703
[39]
Li F Y, Zhou P, Wang T T, et al. A large-size MEMS scanning mirror for speckle reduction application. Micromachines, 2017, 8, 140 doi: 10.3390/mi8050140
[40]
Chen Q, Ding J L, Wang W, et al. A high fill factor 1 × 20 MEMS mirror array based on ISC bimorph structure. 2016 International Conference on Optical MEMS and Nanophotonics (OMN), 2016, 1 doi: 10.1109/OMN.2016.7565912
[41]
Ahn M S, Jeon J, Jang K W, et al. Large-area and ultrathin MEMS mirror using silicon micro rim. Micromachines, 2021, 12, 754 doi: 10.3390/mi12070754
[42]
Sabry Y, Khalil D, Saadany B, et al. In-plane optical beam collimation using a three-dimensional curved MEMS mirror. Micromachines, 2017, 8, 134 doi: 10.3390/mi8050134
[43]
Kallmann U, Lootze M, Mescheder U. Simulative and experimental characterization of an adaptive astigmatic membrane mirror. Micromachines, 2021, 12, 156 doi: 10.3390/mi12020156
[44]
Zamkotsian F. Moems, micro-optics for astronomical instrumentation. Conference of the NATO-Advanced-Study-Institute on Optics in Astrophysics, 2005, 107
[45]
Zamkotsian F, Noell W. MOEMS devices designed and tested for astronomical instrumentation in space. SPIE MOEMS-MEMS. Conference on Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices XI, 2012 doi: 10.1117/12.912348
[46]
Wang B, Liang Z Z, Kong Y M, et al. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Phys Sin, 2010, 59, 907 doi: 10.7498/aps.59.907
[47]
Omran H, Sabry Y M, Sadek M, et al. Wideband subwavelength deeply etched multilayer silicon mirrors for tunable optical filters and SS-OCT applications. IEEE J Sel Top Quantum Electron, 2015, 21, 157 doi: 10.1109/JSTQE.2014.2369519
[48]
Briere J, Beaulieu P O, Saidani M, et al. Rotational MEMS mirror with latching arm for silicon photonics. Conference on MOEMS and Miniaturized Systems XIV, 2015, 9375, 20 doi: 10.1117/12.2077033
[49]
Takeshita T, Yamashita T, Makimoto N, et al. Development of ultra-thin MEMS micro mirror device. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems, 2017, 2143 doi: 10.1109/TRANSDUCERS.2017.7994499
[50]
Fawzy A, El-Ghandour O M, Hamed H F A. Notice of violation of IEEE publication principles: Optical coupling of 3D silicon micromirrors. 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems, 2018, 465
[51]
El Ahdab R, Sharma S, Nabki F, et al. Wide-band silicon photonic MOEMS spectrometer requiring a single photodetector. Opt Express, 2020, 28, 31345 doi: 10.1364/OE.401623
[52]
Al-Demerdash B M, Medhat M, Sabry Y M, et al. MMI-based MOEMS FT spectrometer for visible and IR spectral ranges. Conference on MOEMS and Miniaturized Systems XIII, 2014, 8977, 195 doi: 10.1117/12.2038641
[53]
El-Sayed I S, Sabry Y M, ElZeiny W E, et al. Transformation algorithm and analysis of the Fourier transform spectrometer based on cascaded Fabry–Perot interferometers. Appl Opt, 2018, 57, 7225 doi: 10.1364/AO.57.007225
[54]
Eltagoury Y M, Sabry Y M, Khalil D A. All-silicon double-cavity Fourier-transform infrared spectrometer on-chip. Adv Mater Technol, 2019, 4, 1900441 doi: 10.1002/admt.201900441
[55]
Mortada B, Erfan M Z, Medhat M, et al. Wideband optical MEMS interferometer enabled by multimode interference waveguides. J Lightwave Technol, 2016, 34, 2145 doi: 10.1109/JLT.2016.2531642
[56]
Chai J Y, Zhang K, Xue Y, et al. Review of MEMS based Fourier transform spectrometers. Micromachines, 2020, 11, 214 doi: 10.3390/mi11020214
[57]
Sabry Y M, Eltagoury Y M, Shebl A, et al. In-plane deeply-etched optical MEMS Notch filter with high-speed tunability. J Opt, 2015, 17, 125703 doi: 10.1088/2040-8978/17/12/125703
[58]
Pügner T, Knobbe J, Grüger H. Near-infrared grating spectrometer for mobile phone applications. Appl Spectrosc, 2016, 70, 734 doi: 10.1177/0003702816638277
[59]
Yu K, Lee D, Krishnamoorthy U, et al. Micromachined Fourier transform spectrometer on silicon optical bench platform. Sens Actuat A, 2006, 130/131, 523 doi: 10.1016/j.sna.2005.12.022
[60]
Samir I, Sabry Y M, Erfan M Z, et al. MEMS FTIR spectrometer with enhanced resolution for low cost gas sensing in the NIR. Conference on MOEMS and Miniaturized Systems XVII, 2018, 10545, 89 doi: 10.1117/12.2288996
[61]
Ghoname A O, Sabry Y M, Anwar M, et al. Attenuated total reflection (ATR) MEMS FTIR spectrometer. Conference on MOEMS and Miniaturized Systems XIX, 2020, 11293, 170
[62]
Salem A M, Sabry Y M, Fathy A, et al. Single MEMS chip enabling dual spectral-range infrared micro-spectrometer with optimal detectors. Adv Mater Technol, 2021, 6, 2001013 doi: 10.1002/admt.202001013
[63]
Farrugia R, Portelli B, Grech I, et al. A concave moems scanning diffraction grating for infrared micro-spectrometer applications. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems, 2021, 783 doi: 10.1109/MEMS51782.2021.9375394
[64]
Wang W, Chen J P, Zivkovic A S, et al. A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror. J Microelectromechan Syst, 2016, 25, 347 doi: 10.1109/JMEMS.2016.2522767
[65]
Jung D G, Son S H, Kwon S Y, et al. Silicon prism-based NIR spectrometer utilizing MEMS technology. J Sens Sci Technol, 2017, 26, 91 doi: 10.5369/JSST.2017.26.2.91
[66]
Tu X, Song C L, Huang T Y, et al. State of the art and perspectives on silicon photonic switches. Micromachines, 2019, 10, 51 doi: 10.3390/mi10010051
[67]
Wu M C, Seok T J, Han S, et al. Large-scale, MEMS-actauated silicon photonic switches. 2015 International Conference on Photonics in Switching, 2015, 124 doi: 10.1109/PS.2015.7328974
[68]
Han S, Seok T J, Quack N, et al. Monolithic 50×50 MEMS silicon photonic switches with microsecond response time. Optical Fiber Communication Conference, 2014
[69]
Seok T J, Quack N, Han S, et al. 50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers. Optical Fiber Communication Conference, 2015
[70]
Han S, Seok T J, Yu K, et al. Large-scale polarization-insensitive silicon photonic MEMS switches. J Lightwave Technol, 2018, 36, 1824 doi: 10.1109/JLT.2018.2791502
[71]
Sattari H, Takabayashi A Y, Edinger P, et al. Low-voltage silicon photonic MEMS switch with vertical actuation. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems, 2021, 298
[72]
Edinger P, Errando-Herranz C, Takabayashi A Y, et al. Compact low loss MEMS phase shifters for scalable field-programmable silicon photonics. 2020 Conference on Lasers and Electro-Optics, 2020, 1 doi: 10.1364/CLEO_SI.2020.SM3J.2
[73]
Takabayashi A Y, Sattari H, Edinger P, et al. Broadband compact single-pole double-throw silicon photonic MEMS switch. J Microelectromechan Syst, 2021, 30, 322 doi: 10.1109/JMEMS.2021.3060182
[74]
Cook E H, Spector S J, Moebius M G, et al. Polysilicon grating switches for LiDAR. J Microelectromechan Syst, 2020, 29, 1008 doi: 10.1109/JMEMS.2020.3004069
[75]
Seok T J, Quack N, Han S, et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3, 64 doi: 10.1364/OPTICA.3.000064
[76]
Zhang X S, Kwon K, Henriksson J, et al. A 20 × 20 focal plane switch array for optical beam steering. 2020 Conference on Lasers and Electro-Optics, 2020, 1 doi: 10.1364/CLEO_SI.2020.SM1O.3
[77]
Sandner T, Grasshoff T, Gaumont E, et al. Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers. J Micro-Nanolithogr MEMS MOEMS, 2014, 13, 011115 doi: 10.1117/1.JMM.13.1.011115
[78]
Lu Q B, Bai J, Wang K W, et al. Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer. J Microelectromechan Syst, 2017, 26, 859 doi: 10.1109/JMEMS.2017.2693341
[79]
Graziosi T, Sattari H, Seok T J, et al. Silicon photonic MEMS variable optical attenuator. Conference on MOEMS and Miniaturized Systems XVII, 2018, 10545, 114 doi: 10.1117/12.2317507
[80]
Yokino T, Kato K, Ui A, et al. Grating-based ultra-compact SWNIR spectral sensor head developed through MOEMS technology. Conference on MOEMS and Miniaturized Systems XVIII, 2019, 10931, 55 doi: 10.1117/12.2510472
[81]
Nie Q Y, Xie Y Y, Chang F. MEMS blazed gratings fabricated using anisotropic etching and oxidation sharpening. AIP Adv, 2020, 10, 065216 doi: 10.1063/5.0004903
[82]
Szyszka P, Grzebyk T, Białas M, et al. Towars portable MEMS mass spectrometer. 2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, 2019, 1 doi: 10.1109/PowerMEMS49317.2019.92321112609
[83]
Zheng D, Wang D K, Yoon Y K, et al. A silicon optical bench-based forward-view two-axis scanner for microendoscopy applications. Micromachines, 2020, 11, 1051 doi: 10.3390/mi11121051
[84]
Wang D K, Koppal S J, Xie H K. A monolithic forward-view MEMS laser scanner with decoupled raster scanning and enlarged scanning angle for micro LiDAR applications. J Microelectromechan Syst, 2020, 29, 996 doi: 10.1109/JMEMS.2020.3001921
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1209 Times PDF downloads: 113 Times Cited by: 0 Times

    History

    Received: 13 January 2022 Revised: 31 March 2022 Online: Accepted Manuscript: 18 May 2022Uncorrected proof: 18 May 2022Published: 01 August 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shanshan Chen, Yongyue Zhang, Xiaorong Hong, Jiafang Li. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. Journal of Semiconductors, 2022, 43(8): 081301. doi: 10.1088/1674-4926/43/8/081301 S S Chen, Y Y Zhang, X R Hong, J F Li. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. J. Semicond, 2022, 43(8): 081301. doi: 10.1088/1674-4926/43/8/081301Export: BibTex EndNote
      Citation:
      Shanshan Chen, Yongyue Zhang, Xiaorong Hong, Jiafang Li. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. Journal of Semiconductors, 2022, 43(8): 081301. doi: 10.1088/1674-4926/43/8/081301

      S S Chen, Y Y Zhang, X R Hong, J F Li. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. J. Semicond, 2022, 43(8): 081301. doi: 10.1088/1674-4926/43/8/081301
      Export: BibTex EndNote

      Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review

      doi: 10.1088/1674-4926/43/8/081301
      More Information
      • Author Bio:

        Shanshan Chen received her PhD from the Beijing Institute of Technology in 2021. Her research focuses on nano-kirigami and its photonics applications. She is currently working at the School of Science, Yanshan University

        Jiafang Li is a professor at School of Physics, Beijing Institute of Technology. He obtained his doctoral degree from the Swinburne University of Technology, Australia in 2009. His research mainly focuses on three-dimensional nanofabrication technology and the interaction of light and matter at the micronano scale. He proposed the nano-kirigami technique in 2018 and realized an advanced NOEMS in 2021

      • Corresponding author: jiafangli@bit.edu.cn
      • Received Date: 2022-01-13
      • Revised Date: 2022-03-31
      • Available Online: 2022-05-18

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return