RESEARCH HIGHLIGHTS

Perovskite nanocrystals for light-emitting diodes

Xinyi Mei1, Lixiu Zhang2, Xiaoliang Zhang1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Xiaoliang Zhang, xiaoliang.zhang@buaa.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15, 3692 doi: 10.1021/nl5048779
[2]
Xiang H, Zuo C, Zeng H, et al. White light-emitting diodes from perovskites. J Semicond, 2021, 42, 030202 doi: 10.1088/1674-4926/42/3/030202
[3]
Mei X, Jia D, Chen J, et al. Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today, 2022, 43, 101449 doi: 10.1016/j.nantod.2022.101449
[4]
Zhang L, Pan X, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[5]
Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27, 7162 doi: 10.1002/adma.201502567
[6]
Liu Y, Li Z, Xu J, et al. Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes. J Am Chem Soc, 2022, 144, 4009 doi: 10.1021/jacs.1c12556
[7]
Wang Y K, Singh K, Li J Y, et al. In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids. Adv Mater, 2022, e2200854 doi: 10.1002/adma.202200854
[8]
Zhang M, Zuo C, Tian J, et al. Blue perovskite LEDs. J Semicond, 2021, 42, 070201 doi: 10.1088/1674-4926/42/7/070201
[9]
Kim Y H, Kim S, Kakekhani A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat Photonics, 2021, 15, 148 doi: 10.1038/s41566-020-00732-4
[10]
Shen H, Gao Q, Zhang Y, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics, 2019, 13, 192 doi: 10.1038/s41566-019-0364-z
[11]
Yang Z, Ding L. Ligand passivation yields long-life perovskite light-emitting diodes. Sci Bull, 2020, 65, 1691 doi: 10.1016/j.scib.2020.06.030
[12]
Li Y, Ding L. Single-crystal perovskite devices. Sci Bull, 2021, 66, 214 doi: 10.1016/j.scib.2020.09.026
[13]
Li X, Wu Y, Zhang S, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater, 2016, 26, 2435 doi: 10.1002/adfm.201600109
[14]
Tong Y, Bladt E, Ayguler M F, et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew Chem Int Ed, 2016, 55, 13887 doi: 10.1002/anie.201605909
[15]
Dutta A, Behera R K, Pal P, et al. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach. Angew Chem Int Ed, 2019, 58, 5552 doi: 10.1002/anie.201900374
[16]
Hassan Y, Ashton O J, Park J H, et al. Facile synthesis of stable and highly luminescent methylammonium lead halide nanocrystals for efficient light emitting devices. J Am Chem Soc, 2019, 141, 1269 doi: 10.1021/jacs.8b09706
[17]
Zhang X, Han D, Chen X, et al. Effects of solvent coordination on perovskite crystallization. Acta Phys Chim Sin, 2020, 37, 2008055 doi: 10.3866/PKU.WHXB202008055
[18]
De Roo J, Ibanez M, Geiregat P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 2016, 10, 2071 doi: 10.1021/acsnano.5b06295
[19]
Jia D, Chen J, Qiu J, et al. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule, 2022, in press doi: 10.1016/j.joule.2022.05.007
[20]
Jia D, Chen J, Mei X, et al. Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ Sci, 2021, 14, 4599 doi: 10.1039/D1EE01463C
[21]
Zhou Q, Qiu J, Wang Y, et al. Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. ACS Energy Lett, 2021, 6, 1596 doi: 10.1021/acsenergylett.1c00291
[22]
Chen J, Jia D, Johansson E M J, et al. Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ Sci, 2021, 14, 224 doi: 10.1039/D0EE02900A
[23]
Zheng C, Liu A, Bi C, et al. SCN-doped CsPbI3 for improving stability and photodetection performance of colloidal quantum dots. Acta Phys Chim Sin, 2021, 37, 2007084 doi: 10.3866/PKU.WHXB202007084
[24]
Yang Z, Qin C, Ning Z, et al. Low-dimensionality perovskites yield high electroluminescence. Sci Bull, 2020, 65, 1057 doi: 10.1016/j.scib.2020.03.015
[25]
Zhang D, Qin C, Ding L. Domain controlling and defect passivation for efficient quasi-2D perovskite LEDs. J Semicond, 2022, 43, 050201 doi: 10.1088/1674-4926/43/5/050201
[26]
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12, 681 doi: 10.1038/s41566-018-0260-y
[27]
Liu M, Wan Q, Wang H, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat Photonics, 2021, 15, 379 doi: 10.1038/s41566-021-00766-2
[28]
Dong Y, Wang Y K, Yuan F, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat Nanotechnol, 2020, 15, 668 doi: 10.1038/s41565-020-0714-5
[29]
Zheng X, Yuan S, Liu J, et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient Rec. 2020 blue light-emitting diodes. ACS Energy Lett, 2020, 5, 793 doi: 10.1021/acsenergylett.0c00057
[30]
Chen J, Jia D, Qiu J, et al. Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells. Nano Energy, 2022, 96, 107140 doi: 10.1016/j.nanoen.2022.107140
[31]
Xu L, Li J, Cai B, et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat Commun, 2020, 11, 3902 doi: 10.1038/s41467-020-17633-3
[32]
Zhao H, Chen H, Bai S, et al. High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett, 2021, 6, 2395 doi: 10.1021/acsenergylett.1c00812
[33]
Jia D, Chen J, Yu M, et al. Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small, 2020, 16, 2001772 doi: 10.1002/smll.202001772
[34]
Hassan Y, Park J H, Crawford M L, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591, 72 doi: 10.1038/s41586-021-03217-8
[35]
Bi C, Yao Z, Sun X, et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv Mater, 2021, 33, 2006722 doi: 10.1002/adma.202006722
[36]
Hou S, Gangishetty M K, Quan Q, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2, 2421 doi: 10.1016/j.joule.2018.08.005
[37]
Zhang J, Zhang L, Cai P, et al. Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy, 2019, 62, 434 doi: 10.1016/j.nanoen.2019.05.027
[38]
Wang H C, Wang W, Tang A C, et al. High-performance CsPb1– xSn xBr3 perovskite quantum dots for light-emitting diodes. Angew Chem Int Ed, 2017, 56, 13650 doi: 10.1002/anie.201706860
[39]
Yao J S, Ge J, Wang K H, et al. Few-nanometer-sized alpha-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J Am Chem Soc, 2019, 141, 2069 doi: 10.1021/jacs.8b11447
[40]
Shen X, Zhang Y, Kershaw S V, et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett, 2019, 19, 1552 doi: 10.1021/acs.nanolett.8b04339
[41]
Chen C, Xuan T, Bai W, et al. Highly stable CsPbI3: Sr2+ nanocrystals with near-unity quantum yield enabling perovskite light-emitting diodes with an external quantum efficiency of 17.1%. Nano Energy, 2021, 85, 106033 doi: 10.1016/j.nanoen.2021.106033
[42]
Liu Y, Dong Y, Zhu T, et al. Bright and Stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J Am Chem Soc, 2021, 143, 15606 doi: 10.1021/jacs.1c02148
[43]
Tsai H, Shrestha S, Vilá R A, et al. Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks. Nat Photonics, 2021, 15, 843 doi: 10.1038/s41566-021-00857-0
[44]
Wang C, Zhang C, Li R, et al. Charge accumulation behavior in quantum dot light-emitting diodes. Acta Phys Chim Sin, 2022, 38, 2104030 doi: 10.3866/PKU.WHXB202104030
[45]
Fan Q, Biesold-McGee G V, Ma J, et al. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew Chem Int Ed, 2020, 59, 1030 doi: 10.1002/anie.201904862
Fig. 1.  (Color online) (a) Surface-treating and anion-exchange process of CsPbBr3 PNCs by using OAm-I or An-HI. Reproduced with permission[26], Copyright 2018, Nature Publishing Group. (b) Schematic for PNC-LED with bilateral passivation and the corresponding sectional TEM image. Reproduced with permission[31], Copyright 2020, Nature Publishing Group. (c) Treating PNCs with glutathione and EDTA to remove excess surface Pb2+. Reproduced with permission[34], Copyright 2021, Nature Publishing Group.

Fig. 2.  (Color online) (a) Schematic for GA+-doped FAPbBr3 PNCs. (b) EQE–V curves for LEDs based on GA+-doped FAPbBr3 PNCs with different GA+ doping content. (a, b) Reproduced with permission[9], Copyright 2021, Nature Publishing Group. (c) Energy level diagram showing the change in the energy band of Zn2+-doped CsPbI3 PNCs. (d) J–V–L curves for LEDs based on CsPbI3 and Zn2+-doped CsPbI3 PNCs. Insets show the working LEDs. (c, d) Reproduced with permission[40], Copyright 2019, American Chemical Society. (e) Energy transfer in Mn2+-doped nanocrystal. Reproduced with permission[36], Copyright 2018, Elsevier.

[1]
Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15, 3692 doi: 10.1021/nl5048779
[2]
Xiang H, Zuo C, Zeng H, et al. White light-emitting diodes from perovskites. J Semicond, 2021, 42, 030202 doi: 10.1088/1674-4926/42/3/030202
[3]
Mei X, Jia D, Chen J, et al. Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today, 2022, 43, 101449 doi: 10.1016/j.nantod.2022.101449
[4]
Zhang L, Pan X, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[5]
Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27, 7162 doi: 10.1002/adma.201502567
[6]
Liu Y, Li Z, Xu J, et al. Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes. J Am Chem Soc, 2022, 144, 4009 doi: 10.1021/jacs.1c12556
[7]
Wang Y K, Singh K, Li J Y, et al. In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids. Adv Mater, 2022, e2200854 doi: 10.1002/adma.202200854
[8]
Zhang M, Zuo C, Tian J, et al. Blue perovskite LEDs. J Semicond, 2021, 42, 070201 doi: 10.1088/1674-4926/42/7/070201
[9]
Kim Y H, Kim S, Kakekhani A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat Photonics, 2021, 15, 148 doi: 10.1038/s41566-020-00732-4
[10]
Shen H, Gao Q, Zhang Y, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics, 2019, 13, 192 doi: 10.1038/s41566-019-0364-z
[11]
Yang Z, Ding L. Ligand passivation yields long-life perovskite light-emitting diodes. Sci Bull, 2020, 65, 1691 doi: 10.1016/j.scib.2020.06.030
[12]
Li Y, Ding L. Single-crystal perovskite devices. Sci Bull, 2021, 66, 214 doi: 10.1016/j.scib.2020.09.026
[13]
Li X, Wu Y, Zhang S, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater, 2016, 26, 2435 doi: 10.1002/adfm.201600109
[14]
Tong Y, Bladt E, Ayguler M F, et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew Chem Int Ed, 2016, 55, 13887 doi: 10.1002/anie.201605909
[15]
Dutta A, Behera R K, Pal P, et al. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach. Angew Chem Int Ed, 2019, 58, 5552 doi: 10.1002/anie.201900374
[16]
Hassan Y, Ashton O J, Park J H, et al. Facile synthesis of stable and highly luminescent methylammonium lead halide nanocrystals for efficient light emitting devices. J Am Chem Soc, 2019, 141, 1269 doi: 10.1021/jacs.8b09706
[17]
Zhang X, Han D, Chen X, et al. Effects of solvent coordination on perovskite crystallization. Acta Phys Chim Sin, 2020, 37, 2008055 doi: 10.3866/PKU.WHXB202008055
[18]
De Roo J, Ibanez M, Geiregat P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 2016, 10, 2071 doi: 10.1021/acsnano.5b06295
[19]
Jia D, Chen J, Qiu J, et al. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule, 2022, in press doi: 10.1016/j.joule.2022.05.007
[20]
Jia D, Chen J, Mei X, et al. Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ Sci, 2021, 14, 4599 doi: 10.1039/D1EE01463C
[21]
Zhou Q, Qiu J, Wang Y, et al. Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. ACS Energy Lett, 2021, 6, 1596 doi: 10.1021/acsenergylett.1c00291
[22]
Chen J, Jia D, Johansson E M J, et al. Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ Sci, 2021, 14, 224 doi: 10.1039/D0EE02900A
[23]
Zheng C, Liu A, Bi C, et al. SCN-doped CsPbI3 for improving stability and photodetection performance of colloidal quantum dots. Acta Phys Chim Sin, 2021, 37, 2007084 doi: 10.3866/PKU.WHXB202007084
[24]
Yang Z, Qin C, Ning Z, et al. Low-dimensionality perovskites yield high electroluminescence. Sci Bull, 2020, 65, 1057 doi: 10.1016/j.scib.2020.03.015
[25]
Zhang D, Qin C, Ding L. Domain controlling and defect passivation for efficient quasi-2D perovskite LEDs. J Semicond, 2022, 43, 050201 doi: 10.1088/1674-4926/43/5/050201
[26]
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12, 681 doi: 10.1038/s41566-018-0260-y
[27]
Liu M, Wan Q, Wang H, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat Photonics, 2021, 15, 379 doi: 10.1038/s41566-021-00766-2
[28]
Dong Y, Wang Y K, Yuan F, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat Nanotechnol, 2020, 15, 668 doi: 10.1038/s41565-020-0714-5
[29]
Zheng X, Yuan S, Liu J, et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient Rec. 2020 blue light-emitting diodes. ACS Energy Lett, 2020, 5, 793 doi: 10.1021/acsenergylett.0c00057
[30]
Chen J, Jia D, Qiu J, et al. Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells. Nano Energy, 2022, 96, 107140 doi: 10.1016/j.nanoen.2022.107140
[31]
Xu L, Li J, Cai B, et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat Commun, 2020, 11, 3902 doi: 10.1038/s41467-020-17633-3
[32]
Zhao H, Chen H, Bai S, et al. High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett, 2021, 6, 2395 doi: 10.1021/acsenergylett.1c00812
[33]
Jia D, Chen J, Yu M, et al. Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small, 2020, 16, 2001772 doi: 10.1002/smll.202001772
[34]
Hassan Y, Park J H, Crawford M L, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591, 72 doi: 10.1038/s41586-021-03217-8
[35]
Bi C, Yao Z, Sun X, et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv Mater, 2021, 33, 2006722 doi: 10.1002/adma.202006722
[36]
Hou S, Gangishetty M K, Quan Q, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2, 2421 doi: 10.1016/j.joule.2018.08.005
[37]
Zhang J, Zhang L, Cai P, et al. Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy, 2019, 62, 434 doi: 10.1016/j.nanoen.2019.05.027
[38]
Wang H C, Wang W, Tang A C, et al. High-performance CsPb1– xSn xBr3 perovskite quantum dots for light-emitting diodes. Angew Chem Int Ed, 2017, 56, 13650 doi: 10.1002/anie.201706860
[39]
Yao J S, Ge J, Wang K H, et al. Few-nanometer-sized alpha-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J Am Chem Soc, 2019, 141, 2069 doi: 10.1021/jacs.8b11447
[40]
Shen X, Zhang Y, Kershaw S V, et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett, 2019, 19, 1552 doi: 10.1021/acs.nanolett.8b04339
[41]
Chen C, Xuan T, Bai W, et al. Highly stable CsPbI3: Sr2+ nanocrystals with near-unity quantum yield enabling perovskite light-emitting diodes with an external quantum efficiency of 17.1%. Nano Energy, 2021, 85, 106033 doi: 10.1016/j.nanoen.2021.106033
[42]
Liu Y, Dong Y, Zhu T, et al. Bright and Stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J Am Chem Soc, 2021, 143, 15606 doi: 10.1021/jacs.1c02148
[43]
Tsai H, Shrestha S, Vilá R A, et al. Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks. Nat Photonics, 2021, 15, 843 doi: 10.1038/s41566-021-00857-0
[44]
Wang C, Zhang C, Li R, et al. Charge accumulation behavior in quantum dot light-emitting diodes. Acta Phys Chim Sin, 2022, 38, 2104030 doi: 10.3866/PKU.WHXB202104030
[45]
Fan Q, Biesold-McGee G V, Ma J, et al. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew Chem Int Ed, 2020, 59, 1030 doi: 10.1002/anie.201904862
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1164 Times PDF downloads: 83 Times Cited by: 0 Times

    History

    Received: 12 June 2022 Revised: Online: Accepted Manuscript: 15 June 2022Uncorrected proof: 15 June 2022Published: 02 September 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xinyi Mei, Lixiu Zhang, Xiaoliang Zhang, Liming Ding. Perovskite nanocrystals for light-emitting diodes[J]. Journal of Semiconductors, 2022, 43(9): 090201. doi: 10.1088/1674-4926/43/9/090201 X Y Mei, L X Zhang, X L Zhang, L M Ding. Perovskite nanocrystals for light-emitting diodes[J]. J. Semicond, 2022, 43(9): 090201. doi: 10.1088/1674-4926/43/9/090201Export: BibTex EndNote
      Citation:
      Xinyi Mei, Lixiu Zhang, Xiaoliang Zhang, Liming Ding. Perovskite nanocrystals for light-emitting diodes[J]. Journal of Semiconductors, 2022, 43(9): 090201. doi: 10.1088/1674-4926/43/9/090201

      X Y Mei, L X Zhang, X L Zhang, L M Ding. Perovskite nanocrystals for light-emitting diodes[J]. J. Semicond, 2022, 43(9): 090201. doi: 10.1088/1674-4926/43/9/090201
      Export: BibTex EndNote

      Perovskite nanocrystals for light-emitting diodes

      doi: 10.1088/1674-4926/43/9/090201
      More Information
      • Author Bio:

        Xinyi Mei got her BS from Central South University in 2019. She is now pursuing her PhD degree in Materials Physics and Chemistry at Beihang University under the supervision of Prof. Xiaoliang Zhang. Her research focuses on low-dimensional optoelectronic materials, such as quantum dots, and their application in light-emitting devices

        Lixiu Zhang got her BS from Soochow University in 2019. Now she is a PhD student at University of Chinese Academy of Sciences under the supervision of Prof. Liming Ding. Her research focuses on perovskite solar cells

        Xiaoliang Zhang is a professor at Beihang University. He received his PhD in Materials Physics and Chemistry from Beihang University in 2013. Then, he joined Uppsala University as a postdoc and subsequently was promoted as a Senior Researcher there. He joined Beihang University as a full professor in 2018. His research focuses on semiconducting quantum dots and their application in optoelectronic devices

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and ArgonneNational Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors

      • Corresponding author: xiaoliang.zhang@buaa.edu.cnding@nanoctr.cn
      • Received Date: 2022-06-12
        Available Online: 2022-06-15

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return