ARTICLES

Organic bulk heterojunction enabled with nanocapsules of hydrate vanadium pentaoxide layer for high responsivity self-powered photodetector

Hemraj Dahiya1, Anupam Agrawal2, Ganesh D. Sharma1 and Abhishek Kumar Singh3,

+ Author Affiliations

 Corresponding author: Abhishek Kumar Singh, aks@rgipt.ac.in

PDF

Turn off MathJax

Abstract: This article demonstrates the fabrication of organic-based devices using a low-cost solution-processable technique. A blended heterojunction of chlorine substituted 2D-conjugated polymer PBDB-T-2Cl, and PC71BM supported nanocapsules hydrate vanadium penta oxides (HVO) as hole transport layer (HTL) based photodetector fabricated on an ITO coated glass substrate under ambient condition. The device forms an excellent organic junction diode with a good rectification ratio of ~200. The device has also shown excellent photodetection properties under photoconductive mode (at reverse bias) and zero bias for green light wavelength. A very high responsivity of ~6500 mA/W and high external quantum efficiency (EQE) of 1400% have been reported in the article. The proposed organic photodetector exhibits an excellent response and recovery time of ~30 and ~40 ms, respectively.

Key words: self-powered detectorgreen light sensorHVOPBDB-T-2Cl detectorprocessable solution sensor



[1]
Gao Z, Jahed N M S, Sivoththaman S. Large area self-powered Al-ZnO/(n)Si hetero-junction photodetectors with high responsivity. IEEE Photonics Technol Lett, 2017, 29, 1171 doi: 10.1109/LPT.2017.2711485
[2]
Zhang X, Yang S, Zhou H, et al. Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv Mater, 2017, 29, 1604431 doi: 10.1002/adma.201604431
[3]
Upadhyay R K, Singh A P, Upadhyay D, et al. BiFeO3/CH3NH3PbI3 perovskite heterojunction based near-infrared photodetector. IEEE Electron Device Lett, 2019, 40, 1961 doi: 10.1109/LED.2019.2948206
[4]
Tittl A, Michel A K U, Schäferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater, 2015, 27, 4597 doi: 10.1002/adma.201502023
[5]
Büchele P, Richter M, Tedde S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat Photonics, 2015, 9, 843 doi: 10.1038/nphoton.2015.216
[6]
Kelley S O, Mirkin C A, Walt D R, et al. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nat Nanotechnol, 2014, 9, 969 doi: 10.1038/nnano.2014.261
[7]
Qian L, Sun Y L, Wu M M, et al. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10, 6837 doi: 10.1039/C8NR00914G
[8]
Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol, 2014, 9, 780 doi: 10.1038/nnano.2014.215
[9]
Qu Y R, Li Q, Du K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev, 2017, 11, 1770052 doi: 10.1002/lpor.201770052
[10]
Zhao Q Y, Zhu D, Calandri N, et al. Single-photon imager based on a superconducting nanowire delay line. Nat Photonics, 2017, 11, 247 doi: 10.1038/nphoton.2017.35
[11]
Geum D M, Kim S K, Lee S B, et al. Monolithic 3D integration of InGaAs photodetectors on Si MOSFETs using sequential fabrication process. IEEE Electron Device Lett, 2020, 41, 433 doi: 10.1109/LED.2020.2966986
[12]
Cao G Q, Wang F, Peng M, et al. Multicolor broadband and fast photodetector based on InGaAs-insulator-graphene hybrid heterostructure. Adv Electron Mater, 2020, 6, 1901007 doi: 10.1002/aelm.201901007
[13]
Zhai T Y, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem Soc Rev, 2011, 40, 2986 doi: 10.1039/c0cs00126k
[14]
Hsu S H. Reflectively coupled waveguide photodetector for high speed optical interconnection. Sensors, 2010, 10, 10863 doi: 10.3390/s101210863
[15]
Casalino M, Coppola G, de la Rue R M, et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev, 2016, 10, 895 doi: 10.1002/lpor.201600065
[16]
Yu Y Q, Li Z, Lu Z J, et al. Graphene/MoS2/Si nanowires Schottky-NP bipolar van der Waals heterojunction for ultrafast photodetectors. IEEE Electron Device Lett, 2018, 39, 1688 doi: 10.1109/LED.2018.2872107
[17]
Pyo S, Kim W, Jung H I, et al. Photodetectors: Heterogeneous integration of carbon-nanotube-graphene for high-performance, flexible, and transparent photodetectors. Small, 2017, 13, 1700918 doi: 10.1002/smll.201700918
[18]
Dyson M J, Verhage M, Ma X, et al. Color determination from a single broadband organic photodiode. Adv Optical Mater, 2020, 8, 1901722 doi: 10.1002/adom.201901722
[19]
Zhao Z J, Li C L, Shen L, et al. Photomultiplication type organic photodetectors based on electron tunneling injection. Nanoscale, 2020, 12, 1091 doi: 10.1039/C9NR09926C
[20]
Zhao Z J, Wang J, Xu C Y, et al. Photomultiplication type broad response organic photodetectors with one absorber layer and one multiplication layer. J Phys Chem Lett, 2020, 11, 366 doi: 10.1021/acs.jpclett.9b03323
[21]
Chow P C Y, Someya T. Organic photodetectors for next-generation wearable electronics. Adv Mater, 2020, 32, e1902045 doi: 10.1002/adma.201902045
[22]
Rezaei-Mazinani S, Ivanov A I, Proctor C M, et al. Monitoring intrinsic optical signals in brain tissue with organic photodetectors. Adv Mater Technol, 2018, 3, 1700333 doi: 10.1002/admt.201700333
[23]
Li L, Chen H Y, Fang Z M, et al. An electrically modulated single-color/dual-color imaging photodetector. Adv Mater, 2020, 32, 1907257 doi: 10.1002/adma.201907257
[24]
Shen L, Lin Y Z, Bao C X, et al. Integration of perovskite and polymer photoactive layers to produce ultrafast response, ultravioletto-near-infrared, sensitive photodetectors. Mater Horizons, 2017, 4, 242 doi: 10.1039/C6MH00508J
[25]
Pan J, Deng W, Xu X Z, et al. Photodetectors based on small-molecule organic semiconductor crystals. Chin Phys B, 2019, 28, 038102 doi: 10.1088/1674-1056/28/3/038102
[26]
Li C L, Lu J R, Zhao Y, et al. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system. Small, 2019, 15, e1903599 doi: 10.1002/smll.201903599
[27]
Ren Y X, Dai T J, He B, et al. Fabrication of high-gain photodetector with graphene –PbSe heterostructure. IEEE Electron Device Lett, 2019, 40, 48 doi: 10.1109/LED.2018.2883447
[28]
Arredondo B, de Dios C, Vergaz R, et al. Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture. Org Electron, 2013, 14, 2484 doi: 10.1016/j.orgel.2013.06.018
[29]
Wang W B, Zhang F J, Du M D, et al. Highly narrowband photomultiplication type organic photodetectors. Nano Lett, 2017, 17, 1995 doi: 10.1021/acs.nanolett.6b05418
[30]
Kudo K, Moriizumi T. Spectrum-controllable color sensors using organic dyes. Appl Phys Lett, 1981, 39, 609 doi: 10.1063/1.92820
[31]
Sariciftci N S, Braun D, Zhang C, et al. Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Appl Phys Lett, 1993, 62, 585 doi: 10.1063/1.108863
[32]
Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270, 1789 doi: 10.1126/science.270.5243.1789
[33]
Halls J J M, Walsh C A, Greenham N C, et al. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376, 498 doi: 10.1038/376498a0
[34]
Rauch T, Böberl M, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat Photonics, 2009, 3, 332 doi: 10.1038/nphoton.2009.72
[35]
Han D, Khan Y, Ting J, et al. Pulse oximetry using organic optoelectronics under ambient light. Adv Mater Technol, 2020, 5, 1901122 doi: 10.1002/admt.201901122
[36]
Huang J F, Lee J, Vollbrecht J, et al. A high-performance solution-processed organic photodetector for near-infrared sensing. Adv Mater, 2020, 32, 1906027 doi: 10.1002/adma.201906027
[37]
Strobel N, Droseros N, Köntges W, et al. Color-selective printed organic photodiodes for filterless multichannel visible light communication. Adv Mater, 2020, 32, e1908258 doi: 10.1002/adma.201908258
[38]
Kumar C, Jit S. Blended PQT-12 and PC61BM thin films based self-powered and fast response photodetector. IEEE Electron Device Lett, 2020, 41, 1556 doi: 10.1109/LED.2020.3018035
[39]
Ravi R, Deb B. Studies on one-step-synthesized hydrated vanadium pentoxide for efficient hole transport in organic photovoltaics. Energy Technol, 2020, 8, 1901323 doi: 10.1002/ente.201901323
[40]
Karthik K, Nikolova M P, Phuruangrat A, et al. Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater Res Innov, 2020, 24, 229 doi: 10.1080/14328917.2019.1634404
[41]
Torraca E, Costantino U, Massucci M A. Crystalline insoluble salts of polybasic metals: V. Ion-exchange properties of crystalline and amorphous zirconium arsenate. J Chromatograph A, 1967, 30, 584 doi: 10.1016/S0021-9673(00)84194-1
[42]
Kim B G, Ma X, Chen C, et al. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv Funct Mater, 2013, 23, 439 doi: 10.1002/adfm.201201385
[43]
Elgrishi N, Rountree K J, McCarthy B D, et al. A practical beginner's Guide to cyclic voltammetry. J Chem Educ, 2018, 95, 197 doi: 10.1021/acs.jchemed.7b00361
[44]
Ji C H, Kim K T, Oh S Y. High-detectivity perovskite-based photodetector using a Zr-doped TiOx cathode interlayer. RSC Adv, 2018, 8, 8302 doi: 10.1039/C8RA00730F
[45]
Tong S C, Yuan J, Zhang, C J et al. Large-scale roll-to-roll printed, flexible and stable organic bulk heterojunction photodetector. npj Flex Electron, 2018(1), 42 doi: 10.1038/s41528-017-0020-y
[46]
Zeng Z, Zhong Z M, Zhong W K, et al. High-detectivity organic photodetectors based on a thick-film photoactive layer using a conjugated polymer containing a naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole unit. J Mater Chem C, 2019, 7, 6070 doi: 10.1039/C9TC01154D
[47]
Sulaman M, Song Y, Yang S Y, et al. Interlayer of PMMA doped with Au nanoparticles for high-performance tandem photodetectors: A solution to suppress dark current and maintain high photocurrent. ACS Appl Mater Interfaces, 2020, 12, 26153 doi: 10.1021/acsami.0c04093
[48]
Mahmood A. Photovoltaic and charge transport behavior of diketopyrrolopyrrole based compounds with A-D-A-D-a skeleton. J Clust Sci, 2019, 30, 1123 doi: 10.1007/s10876-019-01573-0
[49]
Sulaman M, Song Y, Yang S Y, et al. Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor. Nanotechnology, 2020, 31, 105203 doi: 10.1088/1361-6528/ab5a26
[50]
Imran A, Sulaman M, Yang S Y, et al. Molecular beam epitaxy growth of high mobility InN film for high-performance broadband heterointerface photodetectors. Surf Interfaces, 2022, 29, 101772 doi: 10.1016/j.surfin.2022.101772
[51]
Sulaman M, Song Y, Yang S Y, et al. High-performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer. Nanotechnology, 2019, 30, 465203 doi: 10.1088/1361-6528/ab3b7a
[52]
Mahmood A, Tang A L, Wang X C, et al. First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: Manipulation of noncovalent interactions. Phys Chem Chem Phys, 2019, 21, 2128 doi: 10.1039/C8CP05763J
[53]
Mahmood A, Khan S U D, Rana U A. Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells. J Comput Electron, 2014, 13, 1033 doi: 10.1007/s10825-014-0628-2
Fig. 1.  (Color online) Schematic architecture of organic photodetector and the image of fabricated device.

Fig. 2.  Chemical structure of (a) PBDB-T-2Cl and (b) PC71BM.

Fig. 3.  (Color online) One-step method of synthesis of HVO nanocapsules.

Fig. 4.  (Color online) (a) XRD spectra and (b) TGA curve of HVO.

Fig. 5.  (a) SEM image of HVO thin film on the scale of 1µm and (b) 25 nm respectively on ITO coated substrate.

Fig. 6.  (a, b) HR-TEM image (scale 20nm). (c) SAED pattern of HVO nano capsule.

Fig. 7.  (Color online) (a) Absorption spectra of PBDB-T-2Cl and PC71BM. (b) Transmittance and absorption spectra of HVO and PBDB-T-2Cl: PC71BM blend.

Fig. 8.  (Color online) Cyclic voltammetry of (a) HVO, (b) PC71BM, and (c) PBDB-T-2Cl. (d) HOMO-LUMO energy level of polymers and charge transfer in the active layer.

Fig. 9.  (Color online) I–V characteristics of OPD under dark and illumination

Fig. 10.  (Color online) Current time response of the photodetector.

Fig. 11.  (Color online) The charge transport mechanism of photodetector.

Table 1.   Optical and electrochemical characteristics of polymers.

Polymerλmax (s)
(nm)
λmax (f)
(nm)
EHOMO
(eV)
ELUMO
(eV)
Egech
(eV)
Egopt
(eV)
PBDB-T-2CL606621−5.32−3.571.751.85
PC71BM373, 460325−5.90−3.9022.13
DownLoad: CSV

Table 2.   Comparison table of various self-powered organic based photodetectors.

EntityRef. [44]
Ref. [45]
Ref. [30]
Ref. [46]
Ref. [38]
This article
JunctionPBDTT-ffQ: PC71BMP3HT:PC71BMPNTT-H: PC71BMPQT-12: PC61BMPBDB-T-2Cl and PC71BM
Transportation
layer
ETL:Zr–TiOxHTL:PEDOT:PSSHTL:PEDOT:PSSETL:ZnO QDsHTL:HVO nano capsules
Device structureITO/PEDOT:PSS/
CH3NH3PbIxCl3−x/
PC60BM/Zr–TiOx/Al
PET/PBDTT-ffQ:PC71BM/AuITO/PEDOT:PSS/
P3HT:PC71BM /Al
ITO/PEDOT:PSS/
PNTT-H:PC71BM/
Ca/Al
ZnO QDs/
PQT-12:PC61BM
/
MoOx
Glass/ITO/HVO/
PBDB-T-2Cl and PC71BM/Al
Self-poweredYesYesYesYesYes
Maximum temp used in fabrication (ºC)130–150~30100100–150200100
Operating bias (V)–0.1–10
–0.100
Rise time (µs)0.290.0889320.070.03
Delay time (µs)0.270.0667290.10.04
Wavelength (nm)525365650760515550
Responsivity (A/W)0.3800.1150.2550.3600.16756.25
Power density ($ \mathrm{m}\mathrm{W}/{\mathrm{c}\mathrm{m}}^{2} $)1 mW/cm2 = 1 Sun20.0571 mW/cm2 = 1 Sun
EQE (%)49 (at 520 nm, –10 V)
& 53500 (at 620 nm, –60 V)
59.4541.61400 (at 550 nm,
0 V)
NEP (W/($ {\mathrm{c}\mathrm{m}}^{2}\cdot{\mathrm{H}\mathrm{z}}^{1/2} $))2 × 10–11
Detectivity (1011 Jones)1376.191.3139440 (0 V, 550 nm)
DownLoad: CSV
[1]
Gao Z, Jahed N M S, Sivoththaman S. Large area self-powered Al-ZnO/(n)Si hetero-junction photodetectors with high responsivity. IEEE Photonics Technol Lett, 2017, 29, 1171 doi: 10.1109/LPT.2017.2711485
[2]
Zhang X, Yang S, Zhou H, et al. Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv Mater, 2017, 29, 1604431 doi: 10.1002/adma.201604431
[3]
Upadhyay R K, Singh A P, Upadhyay D, et al. BiFeO3/CH3NH3PbI3 perovskite heterojunction based near-infrared photodetector. IEEE Electron Device Lett, 2019, 40, 1961 doi: 10.1109/LED.2019.2948206
[4]
Tittl A, Michel A K U, Schäferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater, 2015, 27, 4597 doi: 10.1002/adma.201502023
[5]
Büchele P, Richter M, Tedde S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat Photonics, 2015, 9, 843 doi: 10.1038/nphoton.2015.216
[6]
Kelley S O, Mirkin C A, Walt D R, et al. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nat Nanotechnol, 2014, 9, 969 doi: 10.1038/nnano.2014.261
[7]
Qian L, Sun Y L, Wu M M, et al. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10, 6837 doi: 10.1039/C8NR00914G
[8]
Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol, 2014, 9, 780 doi: 10.1038/nnano.2014.215
[9]
Qu Y R, Li Q, Du K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev, 2017, 11, 1770052 doi: 10.1002/lpor.201770052
[10]
Zhao Q Y, Zhu D, Calandri N, et al. Single-photon imager based on a superconducting nanowire delay line. Nat Photonics, 2017, 11, 247 doi: 10.1038/nphoton.2017.35
[11]
Geum D M, Kim S K, Lee S B, et al. Monolithic 3D integration of InGaAs photodetectors on Si MOSFETs using sequential fabrication process. IEEE Electron Device Lett, 2020, 41, 433 doi: 10.1109/LED.2020.2966986
[12]
Cao G Q, Wang F, Peng M, et al. Multicolor broadband and fast photodetector based on InGaAs-insulator-graphene hybrid heterostructure. Adv Electron Mater, 2020, 6, 1901007 doi: 10.1002/aelm.201901007
[13]
Zhai T Y, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem Soc Rev, 2011, 40, 2986 doi: 10.1039/c0cs00126k
[14]
Hsu S H. Reflectively coupled waveguide photodetector for high speed optical interconnection. Sensors, 2010, 10, 10863 doi: 10.3390/s101210863
[15]
Casalino M, Coppola G, de la Rue R M, et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev, 2016, 10, 895 doi: 10.1002/lpor.201600065
[16]
Yu Y Q, Li Z, Lu Z J, et al. Graphene/MoS2/Si nanowires Schottky-NP bipolar van der Waals heterojunction for ultrafast photodetectors. IEEE Electron Device Lett, 2018, 39, 1688 doi: 10.1109/LED.2018.2872107
[17]
Pyo S, Kim W, Jung H I, et al. Photodetectors: Heterogeneous integration of carbon-nanotube-graphene for high-performance, flexible, and transparent photodetectors. Small, 2017, 13, 1700918 doi: 10.1002/smll.201700918
[18]
Dyson M J, Verhage M, Ma X, et al. Color determination from a single broadband organic photodiode. Adv Optical Mater, 2020, 8, 1901722 doi: 10.1002/adom.201901722
[19]
Zhao Z J, Li C L, Shen L, et al. Photomultiplication type organic photodetectors based on electron tunneling injection. Nanoscale, 2020, 12, 1091 doi: 10.1039/C9NR09926C
[20]
Zhao Z J, Wang J, Xu C Y, et al. Photomultiplication type broad response organic photodetectors with one absorber layer and one multiplication layer. J Phys Chem Lett, 2020, 11, 366 doi: 10.1021/acs.jpclett.9b03323
[21]
Chow P C Y, Someya T. Organic photodetectors for next-generation wearable electronics. Adv Mater, 2020, 32, e1902045 doi: 10.1002/adma.201902045
[22]
Rezaei-Mazinani S, Ivanov A I, Proctor C M, et al. Monitoring intrinsic optical signals in brain tissue with organic photodetectors. Adv Mater Technol, 2018, 3, 1700333 doi: 10.1002/admt.201700333
[23]
Li L, Chen H Y, Fang Z M, et al. An electrically modulated single-color/dual-color imaging photodetector. Adv Mater, 2020, 32, 1907257 doi: 10.1002/adma.201907257
[24]
Shen L, Lin Y Z, Bao C X, et al. Integration of perovskite and polymer photoactive layers to produce ultrafast response, ultravioletto-near-infrared, sensitive photodetectors. Mater Horizons, 2017, 4, 242 doi: 10.1039/C6MH00508J
[25]
Pan J, Deng W, Xu X Z, et al. Photodetectors based on small-molecule organic semiconductor crystals. Chin Phys B, 2019, 28, 038102 doi: 10.1088/1674-1056/28/3/038102
[26]
Li C L, Lu J R, Zhao Y, et al. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system. Small, 2019, 15, e1903599 doi: 10.1002/smll.201903599
[27]
Ren Y X, Dai T J, He B, et al. Fabrication of high-gain photodetector with graphene –PbSe heterostructure. IEEE Electron Device Lett, 2019, 40, 48 doi: 10.1109/LED.2018.2883447
[28]
Arredondo B, de Dios C, Vergaz R, et al. Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture. Org Electron, 2013, 14, 2484 doi: 10.1016/j.orgel.2013.06.018
[29]
Wang W B, Zhang F J, Du M D, et al. Highly narrowband photomultiplication type organic photodetectors. Nano Lett, 2017, 17, 1995 doi: 10.1021/acs.nanolett.6b05418
[30]
Kudo K, Moriizumi T. Spectrum-controllable color sensors using organic dyes. Appl Phys Lett, 1981, 39, 609 doi: 10.1063/1.92820
[31]
Sariciftci N S, Braun D, Zhang C, et al. Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Appl Phys Lett, 1993, 62, 585 doi: 10.1063/1.108863
[32]
Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270, 1789 doi: 10.1126/science.270.5243.1789
[33]
Halls J J M, Walsh C A, Greenham N C, et al. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376, 498 doi: 10.1038/376498a0
[34]
Rauch T, Böberl M, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat Photonics, 2009, 3, 332 doi: 10.1038/nphoton.2009.72
[35]
Han D, Khan Y, Ting J, et al. Pulse oximetry using organic optoelectronics under ambient light. Adv Mater Technol, 2020, 5, 1901122 doi: 10.1002/admt.201901122
[36]
Huang J F, Lee J, Vollbrecht J, et al. A high-performance solution-processed organic photodetector for near-infrared sensing. Adv Mater, 2020, 32, 1906027 doi: 10.1002/adma.201906027
[37]
Strobel N, Droseros N, Köntges W, et al. Color-selective printed organic photodiodes for filterless multichannel visible light communication. Adv Mater, 2020, 32, e1908258 doi: 10.1002/adma.201908258
[38]
Kumar C, Jit S. Blended PQT-12 and PC61BM thin films based self-powered and fast response photodetector. IEEE Electron Device Lett, 2020, 41, 1556 doi: 10.1109/LED.2020.3018035
[39]
Ravi R, Deb B. Studies on one-step-synthesized hydrated vanadium pentoxide for efficient hole transport in organic photovoltaics. Energy Technol, 2020, 8, 1901323 doi: 10.1002/ente.201901323
[40]
Karthik K, Nikolova M P, Phuruangrat A, et al. Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater Res Innov, 2020, 24, 229 doi: 10.1080/14328917.2019.1634404
[41]
Torraca E, Costantino U, Massucci M A. Crystalline insoluble salts of polybasic metals: V. Ion-exchange properties of crystalline and amorphous zirconium arsenate. J Chromatograph A, 1967, 30, 584 doi: 10.1016/S0021-9673(00)84194-1
[42]
Kim B G, Ma X, Chen C, et al. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv Funct Mater, 2013, 23, 439 doi: 10.1002/adfm.201201385
[43]
Elgrishi N, Rountree K J, McCarthy B D, et al. A practical beginner's Guide to cyclic voltammetry. J Chem Educ, 2018, 95, 197 doi: 10.1021/acs.jchemed.7b00361
[44]
Ji C H, Kim K T, Oh S Y. High-detectivity perovskite-based photodetector using a Zr-doped TiOx cathode interlayer. RSC Adv, 2018, 8, 8302 doi: 10.1039/C8RA00730F
[45]
Tong S C, Yuan J, Zhang, C J et al. Large-scale roll-to-roll printed, flexible and stable organic bulk heterojunction photodetector. npj Flex Electron, 2018(1), 42 doi: 10.1038/s41528-017-0020-y
[46]
Zeng Z, Zhong Z M, Zhong W K, et al. High-detectivity organic photodetectors based on a thick-film photoactive layer using a conjugated polymer containing a naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole unit. J Mater Chem C, 2019, 7, 6070 doi: 10.1039/C9TC01154D
[47]
Sulaman M, Song Y, Yang S Y, et al. Interlayer of PMMA doped with Au nanoparticles for high-performance tandem photodetectors: A solution to suppress dark current and maintain high photocurrent. ACS Appl Mater Interfaces, 2020, 12, 26153 doi: 10.1021/acsami.0c04093
[48]
Mahmood A. Photovoltaic and charge transport behavior of diketopyrrolopyrrole based compounds with A-D-A-D-a skeleton. J Clust Sci, 2019, 30, 1123 doi: 10.1007/s10876-019-01573-0
[49]
Sulaman M, Song Y, Yang S Y, et al. Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor. Nanotechnology, 2020, 31, 105203 doi: 10.1088/1361-6528/ab5a26
[50]
Imran A, Sulaman M, Yang S Y, et al. Molecular beam epitaxy growth of high mobility InN film for high-performance broadband heterointerface photodetectors. Surf Interfaces, 2022, 29, 101772 doi: 10.1016/j.surfin.2022.101772
[51]
Sulaman M, Song Y, Yang S Y, et al. High-performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer. Nanotechnology, 2019, 30, 465203 doi: 10.1088/1361-6528/ab3b7a
[52]
Mahmood A, Tang A L, Wang X C, et al. First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: Manipulation of noncovalent interactions. Phys Chem Chem Phys, 2019, 21, 2128 doi: 10.1039/C8CP05763J
[53]
Mahmood A, Khan S U D, Rana U A. Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells. J Comput Electron, 2014, 13, 1033 doi: 10.1007/s10825-014-0628-2
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1066 Times PDF downloads: 54 Times Cited by: 0 Times

    History

    Received: 26 February 2022 Revised: 18 April 2022 Online: Accepted Manuscript: 17 June 2022Uncorrected proof: 17 June 2022Published: 02 September 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hemraj Dahiya, Anupam Agrawal, Ganesh D. Sharma, Abhishek Kumar Singh. Organic bulk heterojunction enabled with nanocapsules of hydrate vanadium pentaoxide layer for high responsivity self-powered photodetector[J]. Journal of Semiconductors, 2022, 43(9): 092302. doi: 10.1088/1674-4926/43/9/092302 H Dahiya, A Agrawal, G D Sharma, A K Singh. Organic bulk heterojunction enabled with nanocapsules of hydrate vanadium pentaoxide layer for high responsivity self-powered photodetector[J]. J. Semicond, 2022, 43(9): 092302. doi: 10.1088/1674-4926/43/9/092302Export: BibTex EndNote
      Citation:
      Hemraj Dahiya, Anupam Agrawal, Ganesh D. Sharma, Abhishek Kumar Singh. Organic bulk heterojunction enabled with nanocapsules of hydrate vanadium pentaoxide layer for high responsivity self-powered photodetector[J]. Journal of Semiconductors, 2022, 43(9): 092302. doi: 10.1088/1674-4926/43/9/092302

      H Dahiya, A Agrawal, G D Sharma, A K Singh. Organic bulk heterojunction enabled with nanocapsules of hydrate vanadium pentaoxide layer for high responsivity self-powered photodetector[J]. J. Semicond, 2022, 43(9): 092302. doi: 10.1088/1674-4926/43/9/092302
      Export: BibTex EndNote

      Organic bulk heterojunction enabled with nanocapsules of hydrate vanadium pentaoxide layer for high responsivity self-powered photodetector

      doi: 10.1088/1674-4926/43/9/092302
      More Information
      • Author Bio:

        Hemraj Dahiya is a Ph.D. Scholar in the Department of Physics at The LNM Institute of Information Technology, Jaipur, India, His main research interest is in the optoelectronic properties of organic materials forapplications in photovoltaic devices. He is currently working on the non-fullerene-based third-generation organic solar cells

        Abhishek Kumar Singh is currently working as an Assistant Professor in the Department of Electronics Engineering at Rajiv Gandhi Institute of Petroleum Technology, in Jais, Amethi, Uttar Pradesh, India. He received the B.Tech. degree in electronics and communication engineering from the Faculty of Agriculture Engineering & Technology, CSA Kanpur, India, M.Tech. degree in optoelectronics and opticalcommunication from the Indian Institute of Technology (IIT) Delhi, India, and a Ph.D. degree in the area ofMicroelectronics from the Indian Institute of Technology (BHU) Varanasi. He is currently working on experimental and theoretical research in the areas of microelectronics and photonics. His area of interest is fabrication, modeling, and simulation of electronic and optoelectronic devices, high-speed semiconductor devices (MESFETs), phototransistors, VLSI design for low power applications

      • Corresponding author: aks@rgipt.ac.in
      • Received Date: 2022-02-26
      • Revised Date: 2022-04-18
      • Available Online: 2022-06-17

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return