ARTICLES

RF characterization of InP double heterojunction bipolar transistors on a flexible substrate under bending conditions

Lishu Wu1, 2, Jiayun Dai2, Yuechan Kong2, Tangsheng Chen2 and Tong Zhang1, 3,

+ Author Affiliations

 Corresponding author: Tong Zhang, tzhang@seu.edu.cn

PDF

Turn off MathJax

Abstract: This letter presents the fabrication of InP double heterojunction bipolar transistors (DHBTs) on a 3-inch flexible substrate with various thickness values of the benzocyclobutene (BCB) adhesive bonding layer, the corresponding thermal resistance of the InP DHBT on flexible substrate is also measured and calculated. InP DHBT on a flexible substrate with 100 nm BCB obtains cut-off frequency fT = 358 GHz and maximum oscillation frequency fMAX = 530 GHz. Moreover, the frequency performance of the InP DHBT on flexible substrates at different bending radii are compared. It is shown that the bending strain has little effect on the frequency characteristics (less than 8.5%), and these bending tests prove that InP DHBT has feasible flexibility.

Key words: InP DHBTthermal resistanceradio frequencybending



[1]
Cherenack K H, Kattamis A Z, Hekmatshoar B, et al. Amorphous-silicon thin-film transistors fabricated at 300 °C on a free-standing foil substrate of clear plastic. IEEE Electron Device Lett, 2007, 28, 1004 doi: 10.1109/LED.2007.907411
[2]
Saxena S, Kim D C, Park J H, et al. Polycrystalline silicon thin-film transistor using Xe flash-lamp annealing. IEEE Electron Device Lett, 2010, 31, 1242 doi: 10.1109/LED.2010.2064282
[3]
Crone B, Dodabalapur A, Lin Y Y, et al. Large-scale complementary integrated circuits based on organic transistors. Nature, 2000, 403, 521 doi: 10.1038/35000530
[4]
Haas U, Gold H, Haase A, et al. Submicron pentacene-based organic thin film transistors on flexible substrates. Appl Phys Lett, 2007, 91, 043511 doi: 10.1063/1.2763973
[5]
Takahashi T, Takei K, Adabi E, et al. Parallel array InAs nanowire transistors for mechanically bendable, ultrahigh frequency electronics. ACS Nano, 2010, 4, 5855 doi: 10.1021/nn1018329
[6]
Menard E, Nuzzo R G, Rogers J A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl Phys Lett, 2005, 86, 093507 doi: 10.1063/1.1866637
[7]
Ahn J H, Kim H S, Lee K J, et al. High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Device Lett, 2006, 27, 460 doi: 10.1109/LED.2006.874764
[8]
Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327, 662 doi: 10.1126/science.1184289
[9]
Cao Y, Brady G J, Gui H, et al. Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano, 2016, 10, 6782 doi: 10.1021/acsnano.6b02395
[10]
Sun Y G, Menard E, Rogers J A, et al. Gigahertz operation in flexible transistors on plastic substrates. Appl Phys Lett, 2006, 88, 183509 doi: 10.1063/1.2198832
[11]
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun, 2014, 5, 5678 doi: 10.1038/ncomms6678
[12]
Lee K J, Meitl M A, Ahn J H, et al. Bendable GaN high electron mobility transistors on plastic substrates. J Appl Phys, 2006, 100, 124507 doi: 10.1063/1.2349837
[13]
Petrone N, Meric I, Chari T R, et al. Graphene field-effect transistors for radio-frequency flexible electronics. IEEE J Electron Devices Soc, 2015, 3, 44 doi: 10.1109/JEDS.2014.2363789
[14]
Lee J, Ha T J, Li H F, et al. 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano, 2013, 7, 7744 doi: 10.1021/nn403487y
[15]
Wang C, Chien J C, Fang H, et al. Self-aligned, extremely high frequency III-V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates. Nano Lett, 2012, 12, 4140 doi: 10.1021/nl301699k
[16]
Shi J, Wichmann N, Roelens Y, et al. Microwave performance of 100 nm-gate In0.53Ga0.47As/In0.52Al0.48As high electron mobility transistors on plastic flexible substrate. Appl Phys Lett, 2011, 99, 203505 doi: 10.1063/1.3663533
[17]
Shi J, Wichmann N, Roelens Y, et al. Electrical characterization of In0.53Ga0.47As/In0.52Al0.48As high electron mobility transistors on plastic flexible substrate under mechanical bending conditions. Appl Phys Lett, 2013, 102, 243503 doi: 10.1063/1.4811787
[18]
Wu L S, Dai J Y, Wang Y, et al. High performance wafer scale flexible InP double heterogeneous bipolar transistors. Semicond Sci Technol, 2021, 36, 03LT02 doi: 10.1088/1361-6641/abe05b
[19]
Liu W. Thermal-electrical properties. In: Handbook III-V Heterojunction Bipolar Transistors. New York: Wiley, 1998
[20]
Ruiz-Palmero J M, Hammer U, Jäckel H, et al. Comparative technology assessment of future InP HBT ultrahigh-speed digital circuits. Solid State Electron, 2007, 51, 842 doi: 10.1016/j.sse.2007.04.005
[21]
Niu B, Wang Y, Cheng W, et al. Common base four-finger InGaAs/InP double heterojunction bipolar transistor with maximum oscillation frequency 535 GHz. Chin Phys Lett, 2015, 32, 172 doi: 10.1088/0256-307X/32/7/077304
[22]
Cheng W, Wang Y, Zhao Y, et al. A THz InGaAs/InP double heterojunction bipolar transistor with fmax = 325 GHz and BVCBO = 10.6 V. J Semicond, 2013, 34, 054006 doi: 10.1088/1674-4926/34/5/054006
[23]
Jung Y H, Chang T H, Zhang H L, et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun, 2015, 6, 7170 doi: 10.1038/ncomms8170
[24]
Zeng Y P, Ostinelli O, Lövblom R, et al. 400-GHz InP/GaAsSb DHBTs with low-noise microwave performance. IEEE Electron Device Lett, 2010, 31, 1122 doi: 10.1109/LED.2010.2061213
[25]
Chang T H, Xiong K L, Park S H, et al. High power fast flexible electronics: Transparent RF AlGaN/GaN HEMTs on plastic substrates. 2015 IEEE MTT-S International Microwave Symposium, 2015, 1 doi: 10.1109/MWSYM.2015.7167085
[26]
Lecavelier des Etangs-Levallois A, Dubois E, Lesecq M, et al. 150-GHz RF SOI-CMOS technology in ultrathin regime on organic substrate. IEEE Electron Device Lett, 2011, 32, 1510 doi: 10.1109/LED.2011.2166241
[27]
Seo J H, Ling T, Gong S Q, et al. Fast flexible transistors with a nanotrench structure. Sci Rep, 2016, 6, 24771 doi: 10.1038/srep24771
[28]
Qin G X, Cai T H, Yuan H C, et al. Flexible radio-frequency single-crystal germanium switch on plastic substrates. Appl Phys Lett, 2014, 104, 163501 doi: 10.1063/1.4872256
[29]
Cho S J, Jung Y H, Ma Z Q. X-band compatible flexible microwave inductors and capacitors on plastic substrate. IEEE J Electron Devices Soc, 2015, 3, 435 doi: 10.1109/JEDS.2015.2446957
[30]
Sun L, Qin G X, Huang H, et al. Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate. Appl Phys Lett, 2010, 96, 013509 doi: 10.1063/1.3280040
Fig. 1.  (Color online) The schematic diagram of InP DHBT device on flexible substrate.

Fig. 2.  (a) FIB cross-sectional image of InP DHBT device on flexible substrate with 1 μm BCB. (b) FIB cross-sectional image of InP DHBT device on flexible substrate with 100 nm BCB.

Fig. 3.  (Color online) Experimental and calculated Rth for InP DHBT and flexible substrate InP DHBT.

Fig. 4.  (Color online) The corresponding ICVCE of InP DHBT and flexible substrate InP DHBT.

Fig. 5.  (Color online) Mason’s unilateral gain U and |h21|2 as a function of frequency measured the InP DHBT and flexible substrate InP DHBT.

Fig. 6.  (Color online) (a) Photographs of InP DHBT on flexible substrate under bending conditions on test bench. The InP DHBT frequency performance under different bending radii: (b) fT/fT(flat), (c) fMAX/fMAX(flat).

Table 1.   Comparison of the fT and fMAX with other previous reported flexible transistors.

DevicefT
(GHz)
fMAX
(GHz)
Ref.
Graphene transistor19828.2[13]
InAs MOSFET10522.9[15]
InGaAs/InAlAs HEMT160290[17]
GaAs HBT37.56.9[24]
GaN HEMT60115[25]
SOI CMOS150160[26]
Si MOFET538[27]
InP DHBT337485[18]
InP DHBT358530This Work
DownLoad: CSV
[1]
Cherenack K H, Kattamis A Z, Hekmatshoar B, et al. Amorphous-silicon thin-film transistors fabricated at 300 °C on a free-standing foil substrate of clear plastic. IEEE Electron Device Lett, 2007, 28, 1004 doi: 10.1109/LED.2007.907411
[2]
Saxena S, Kim D C, Park J H, et al. Polycrystalline silicon thin-film transistor using Xe flash-lamp annealing. IEEE Electron Device Lett, 2010, 31, 1242 doi: 10.1109/LED.2010.2064282
[3]
Crone B, Dodabalapur A, Lin Y Y, et al. Large-scale complementary integrated circuits based on organic transistors. Nature, 2000, 403, 521 doi: 10.1038/35000530
[4]
Haas U, Gold H, Haase A, et al. Submicron pentacene-based organic thin film transistors on flexible substrates. Appl Phys Lett, 2007, 91, 043511 doi: 10.1063/1.2763973
[5]
Takahashi T, Takei K, Adabi E, et al. Parallel array InAs nanowire transistors for mechanically bendable, ultrahigh frequency electronics. ACS Nano, 2010, 4, 5855 doi: 10.1021/nn1018329
[6]
Menard E, Nuzzo R G, Rogers J A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl Phys Lett, 2005, 86, 093507 doi: 10.1063/1.1866637
[7]
Ahn J H, Kim H S, Lee K J, et al. High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Device Lett, 2006, 27, 460 doi: 10.1109/LED.2006.874764
[8]
Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327, 662 doi: 10.1126/science.1184289
[9]
Cao Y, Brady G J, Gui H, et al. Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano, 2016, 10, 6782 doi: 10.1021/acsnano.6b02395
[10]
Sun Y G, Menard E, Rogers J A, et al. Gigahertz operation in flexible transistors on plastic substrates. Appl Phys Lett, 2006, 88, 183509 doi: 10.1063/1.2198832
[11]
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun, 2014, 5, 5678 doi: 10.1038/ncomms6678
[12]
Lee K J, Meitl M A, Ahn J H, et al. Bendable GaN high electron mobility transistors on plastic substrates. J Appl Phys, 2006, 100, 124507 doi: 10.1063/1.2349837
[13]
Petrone N, Meric I, Chari T R, et al. Graphene field-effect transistors for radio-frequency flexible electronics. IEEE J Electron Devices Soc, 2015, 3, 44 doi: 10.1109/JEDS.2014.2363789
[14]
Lee J, Ha T J, Li H F, et al. 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano, 2013, 7, 7744 doi: 10.1021/nn403487y
[15]
Wang C, Chien J C, Fang H, et al. Self-aligned, extremely high frequency III-V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates. Nano Lett, 2012, 12, 4140 doi: 10.1021/nl301699k
[16]
Shi J, Wichmann N, Roelens Y, et al. Microwave performance of 100 nm-gate In0.53Ga0.47As/In0.52Al0.48As high electron mobility transistors on plastic flexible substrate. Appl Phys Lett, 2011, 99, 203505 doi: 10.1063/1.3663533
[17]
Shi J, Wichmann N, Roelens Y, et al. Electrical characterization of In0.53Ga0.47As/In0.52Al0.48As high electron mobility transistors on plastic flexible substrate under mechanical bending conditions. Appl Phys Lett, 2013, 102, 243503 doi: 10.1063/1.4811787
[18]
Wu L S, Dai J Y, Wang Y, et al. High performance wafer scale flexible InP double heterogeneous bipolar transistors. Semicond Sci Technol, 2021, 36, 03LT02 doi: 10.1088/1361-6641/abe05b
[19]
Liu W. Thermal-electrical properties. In: Handbook III-V Heterojunction Bipolar Transistors. New York: Wiley, 1998
[20]
Ruiz-Palmero J M, Hammer U, Jäckel H, et al. Comparative technology assessment of future InP HBT ultrahigh-speed digital circuits. Solid State Electron, 2007, 51, 842 doi: 10.1016/j.sse.2007.04.005
[21]
Niu B, Wang Y, Cheng W, et al. Common base four-finger InGaAs/InP double heterojunction bipolar transistor with maximum oscillation frequency 535 GHz. Chin Phys Lett, 2015, 32, 172 doi: 10.1088/0256-307X/32/7/077304
[22]
Cheng W, Wang Y, Zhao Y, et al. A THz InGaAs/InP double heterojunction bipolar transistor with fmax = 325 GHz and BVCBO = 10.6 V. J Semicond, 2013, 34, 054006 doi: 10.1088/1674-4926/34/5/054006
[23]
Jung Y H, Chang T H, Zhang H L, et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun, 2015, 6, 7170 doi: 10.1038/ncomms8170
[24]
Zeng Y P, Ostinelli O, Lövblom R, et al. 400-GHz InP/GaAsSb DHBTs with low-noise microwave performance. IEEE Electron Device Lett, 2010, 31, 1122 doi: 10.1109/LED.2010.2061213
[25]
Chang T H, Xiong K L, Park S H, et al. High power fast flexible electronics: Transparent RF AlGaN/GaN HEMTs on plastic substrates. 2015 IEEE MTT-S International Microwave Symposium, 2015, 1 doi: 10.1109/MWSYM.2015.7167085
[26]
Lecavelier des Etangs-Levallois A, Dubois E, Lesecq M, et al. 150-GHz RF SOI-CMOS technology in ultrathin regime on organic substrate. IEEE Electron Device Lett, 2011, 32, 1510 doi: 10.1109/LED.2011.2166241
[27]
Seo J H, Ling T, Gong S Q, et al. Fast flexible transistors with a nanotrench structure. Sci Rep, 2016, 6, 24771 doi: 10.1038/srep24771
[28]
Qin G X, Cai T H, Yuan H C, et al. Flexible radio-frequency single-crystal germanium switch on plastic substrates. Appl Phys Lett, 2014, 104, 163501 doi: 10.1063/1.4872256
[29]
Cho S J, Jung Y H, Ma Z Q. X-band compatible flexible microwave inductors and capacitors on plastic substrate. IEEE J Electron Devices Soc, 2015, 3, 435 doi: 10.1109/JEDS.2015.2446957
[30]
Sun L, Qin G X, Huang H, et al. Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate. Appl Phys Lett, 2010, 96, 013509 doi: 10.1063/1.3280040
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 814 Times PDF downloads: 37 Times Cited by: 0 Times

    History

    Received: 20 March 2022 Revised: 19 April 2022 Online: Accepted Manuscript: 21 June 2022Uncorrected proof: 22 June 2022Published: 02 September 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lishu Wu, Jiayun Dai, Yuechan Kong, Tangsheng Chen, Tong Zhang. RF characterization of InP double heterojunction bipolar transistors on a flexible substrate under bending conditions[J]. Journal of Semiconductors, 2022, 43(9): 092601. doi: 10.1088/1674-4926/43/9/092601 L S Wu, J Y Dai, Y C Kong, T S Chen, T Zhang. RF characterization of InP double heterojunction bipolar transistors on a flexible substrate under bending conditions[J]. J. Semicond, 2022, 43(9): 092601. doi: 10.1088/1674-4926/43/9/092601Export: BibTex EndNote
      Citation:
      Lishu Wu, Jiayun Dai, Yuechan Kong, Tangsheng Chen, Tong Zhang. RF characterization of InP double heterojunction bipolar transistors on a flexible substrate under bending conditions[J]. Journal of Semiconductors, 2022, 43(9): 092601. doi: 10.1088/1674-4926/43/9/092601

      L S Wu, J Y Dai, Y C Kong, T S Chen, T Zhang. RF characterization of InP double heterojunction bipolar transistors on a flexible substrate under bending conditions[J]. J. Semicond, 2022, 43(9): 092601. doi: 10.1088/1674-4926/43/9/092601
      Export: BibTex EndNote

      RF characterization of InP double heterojunction bipolar transistors on a flexible substrate under bending conditions

      doi: 10.1088/1674-4926/43/9/092601
      More Information
      • Author Bio:

        Lishu Wu received the M.S. degree from Southeast University in 2010. He is currently pursuing the Ph.D. degree in electronic science and engineering from Southeast University. His research interest includes the technology of heterogeneous integration of compound semiconductor with Si CMOS and flexible substrate. He is the author of more than 10 articles, and more than 15 inventions

        Tong Zhang is a professor at Southeast University. He is engaged in micro-nano integrated devices, surface plasmons, microwave photonics and other fields. He has undertaken more than 40 major research projects of the Ministry of Science and Technology and the National Natural Science Foundation of China. He has been granted 6 American invention patents and more than 50 Chinese invention patents. He has published more than 140 papers and 5 monographs and translated books

      • Corresponding author: tzhang@seu.edu.cn
      • Received Date: 2022-03-20
      • Revised Date: 2022-04-19
      • Available Online: 2022-06-21

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return