RESEARCH HIGHLIGHTS

The voltage loss in organic solar cells

Zheng Tang1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Zheng Tang, ztang@dhu.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Meng L, Zhang Y, Wan, X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094 doi: 10.1126/science.aat2612
[2]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[3]
Zheng Z, Wang J, Bi P, et al. Tandem organic solar cell with 20.2% efficiency. Joule, 2022, 6, 171 doi: 10.1016/j.joule.2021.12.017
[4]
Lin Y, Wang J, Zhang Z G, et al. An Electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[5]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[6]
Liu Y, Liu B, Ma C Q, et al. Recent progress in organic solar cells (Part I material science). Sci China Chem, 2022, 65, 224 doi: 10.1007/s11426-021-1180-6
[7]
Liu Y, Liu B, Ma C Q, et al. Recent progress in organic solar cells (Part II device engineering). Sci China Chem, 2022, 65, 1457 doi: 10.1007/s11426-022-1256-8
[8]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[9]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[10]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[11]
Meng X, Li M, Jin K, et al. A 4-arm small molecule acceptor with high photovoltaic performance. Angew Chem Int Ed, 2022, 61, e202207762 doi: 10.1002/ange.202207762
[12]
Li P, Meng X, Jin K, et al. Banana-shaped electron acceptors with an electron-rich core fragment and 3D packing capability. Carbon Energy, 2022, in press doi: 10.1002/cey2.250
[13]
Jin K, Ou Z, Zhang L, et al. A chlorinated lactone polymer donor featuring high performance and low cost. J Semicond, 2022, 43, 050501 doi: 10.1088/1674-4926/43/5/050501
[14]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[15]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32, 510 doi: 10.1063/1.1736034
[16]
Koster L J A, Mihailetchi V D, Ramaker R et al. Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl Phys Lett, 2005, 86, 123509 doi: 10.1063/1.1889240
[17]
Vandewal K, Tvingstedt K, Gadisa A, et al. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat Mater, 2009, 8, 904 doi: 10.1038/nmat2548
[18]
Vandewal K, Tvingstedt K, Gadisa A, et al. Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells. Phys Rev B, 2010, 81, 125204 doi: 10.1103/PhysRevB.81.125204
[19]
Tang Z, Liu B, Melianas A, et al. A new fullerene-free bulk-heterojunction system for efficient high-voltage and high-fill factor solution-processed organic photovoltaics. Adv Mater, 2015, 27, 1900 doi: 10.1002/adma.201405485
[20]
Veldman D, Meskers S C J, Janssen R A J. The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells. Adv Funct Mater, 2009, 19, 1939 doi: 10.1002/adfm.200900090
[21]
Vandewal K, Widmer J, Heumueller T, et al. Increased open-circuit voltage of organic solar cells by reduced donor-acceptor interface area. Adv Mater, 2014, 26, 3839 doi: 10.1002/adma.201400114
[22]
Faist M A, Kirchartz T, Gong W, et al. Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer: fullerene solar cells. J Am Chem Soc, 2012, 134, 685 doi: 10.1021/ja210029w
[23]
Song J, Zhu L, Li C, et al. High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 2021, 4, 2542 doi: 10.1016/j.matt.2021.06.010
[24]
Qian D, Zheng Z, Yao H, et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat Mater, 2018, 17, 703 doi: 10.1038/s41563-018-0128-z
[25]
Vandewal K. Interfacial charge transfer states in condensed phase systems. Annu Rev Phys Chem, 2017, 67, 113 doi: 10.1146/annurev-physchem-040215-112144
[26]
Ma Z, Sun W, Himmelberger S, et al. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells. Energy Environ Sci, 2014, 7, 361 doi: 10.1039/C3EE42989J
[27]
Benduhn J, Tvingstedt K, Piersimoni F, et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat Energy, 2017, 2, 1 doi: 10.1038/nenergy.2017.53
[28]
Ullbrich S, Benduhn J, Jia X, et al. Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses. Nat Mater, 2019, 18, 459 doi: 10.1038/s41563-019-0324-5
[29]
Wang J, Jiang X, Wu H, et al. Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nat Commun, 2021, 12, 6679 doi: 10.1038/s41467-021-26995-1
[30]
Azzouzi M, Yan J, Kirchartz T, et al. Nonradiative energy losses in bulk-heterojunction organic photovoltaics. Phys Rev X, 2018, 8, 031055 doi: 10.1103/PhysRevX.8.031055
[31]
Chen X K, Qian D, Wang Y, et al. A unified description of non-radiative voltage losses in organic solar cells. Nat Energy, 2021, 6, 799 doi: 10.1038/s41560-021-00843-4
[32]
Eisner F D, Azzouzi M, Fei Z, et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J Am Chem Soc, 2019, 141, 6362 doi: 10.1021/jacs.9b01465
[33]
Duan X, Song W, Qiao J, et al. Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy Environ Sci, 2022, 15, 1563 doi: 10.1039/D1EE03989J
[34]
Lin B, Zhou X, Zhao H, et al. Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses. Energy Environ Sci, 2020, 13, 2467 doi: 10.1039/D0EE00774A
[35]
Zheng Z, Li M, Qin Z, et al. Achieving small non-radiative energy loss through synergical non-fullerene electron acceptor selection and side chain engineering in benzo[1,2-b:4,5-b′]difuran polymer-based organic solar cells. J Mater Chem A, 2021, 9, 15798 doi: 10.1039/D1TA04214A
[36]
Liang S, Wang J, Ouyang Y, et al. Double-cable conjugated polymers with rigid phenyl linkers for single-component organic solar cells. Macromolecules, 2022, 55, 2517 doi: 10.1021/acs.macromol.1c02593
[37]
Liu H, Li M, Wu H, et al. Improving quantum efficiency in organic solar cells with a small energetic driving force. J Mater Chem A, 2021, 9, 19770 doi: 10.1039/D1TA00576F
[38]
Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301
[39]
Li M, Wang J, Ding L, et al. Large-area organic solar cells. J Semicond, 2022, 43, 060201 doi: 10.1088/1674-4926/43/6/060201
[1]
Meng L, Zhang Y, Wan, X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094 doi: 10.1126/science.aat2612
[2]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[3]
Zheng Z, Wang J, Bi P, et al. Tandem organic solar cell with 20.2% efficiency. Joule, 2022, 6, 171 doi: 10.1016/j.joule.2021.12.017
[4]
Lin Y, Wang J, Zhang Z G, et al. An Electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[5]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[6]
Liu Y, Liu B, Ma C Q, et al. Recent progress in organic solar cells (Part I material science). Sci China Chem, 2022, 65, 224 doi: 10.1007/s11426-021-1180-6
[7]
Liu Y, Liu B, Ma C Q, et al. Recent progress in organic solar cells (Part II device engineering). Sci China Chem, 2022, 65, 1457 doi: 10.1007/s11426-022-1256-8
[8]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[9]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[10]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[11]
Meng X, Li M, Jin K, et al. A 4-arm small molecule acceptor with high photovoltaic performance. Angew Chem Int Ed, 2022, 61, e202207762 doi: 10.1002/ange.202207762
[12]
Li P, Meng X, Jin K, et al. Banana-shaped electron acceptors with an electron-rich core fragment and 3D packing capability. Carbon Energy, 2022, in press doi: 10.1002/cey2.250
[13]
Jin K, Ou Z, Zhang L, et al. A chlorinated lactone polymer donor featuring high performance and low cost. J Semicond, 2022, 43, 050501 doi: 10.1088/1674-4926/43/5/050501
[14]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[15]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32, 510 doi: 10.1063/1.1736034
[16]
Koster L J A, Mihailetchi V D, Ramaker R et al. Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl Phys Lett, 2005, 86, 123509 doi: 10.1063/1.1889240
[17]
Vandewal K, Tvingstedt K, Gadisa A, et al. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat Mater, 2009, 8, 904 doi: 10.1038/nmat2548
[18]
Vandewal K, Tvingstedt K, Gadisa A, et al. Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells. Phys Rev B, 2010, 81, 125204 doi: 10.1103/PhysRevB.81.125204
[19]
Tang Z, Liu B, Melianas A, et al. A new fullerene-free bulk-heterojunction system for efficient high-voltage and high-fill factor solution-processed organic photovoltaics. Adv Mater, 2015, 27, 1900 doi: 10.1002/adma.201405485
[20]
Veldman D, Meskers S C J, Janssen R A J. The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells. Adv Funct Mater, 2009, 19, 1939 doi: 10.1002/adfm.200900090
[21]
Vandewal K, Widmer J, Heumueller T, et al. Increased open-circuit voltage of organic solar cells by reduced donor-acceptor interface area. Adv Mater, 2014, 26, 3839 doi: 10.1002/adma.201400114
[22]
Faist M A, Kirchartz T, Gong W, et al. Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer: fullerene solar cells. J Am Chem Soc, 2012, 134, 685 doi: 10.1021/ja210029w
[23]
Song J, Zhu L, Li C, et al. High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 2021, 4, 2542 doi: 10.1016/j.matt.2021.06.010
[24]
Qian D, Zheng Z, Yao H, et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat Mater, 2018, 17, 703 doi: 10.1038/s41563-018-0128-z
[25]
Vandewal K. Interfacial charge transfer states in condensed phase systems. Annu Rev Phys Chem, 2017, 67, 113 doi: 10.1146/annurev-physchem-040215-112144
[26]
Ma Z, Sun W, Himmelberger S, et al. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells. Energy Environ Sci, 2014, 7, 361 doi: 10.1039/C3EE42989J
[27]
Benduhn J, Tvingstedt K, Piersimoni F, et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat Energy, 2017, 2, 1 doi: 10.1038/nenergy.2017.53
[28]
Ullbrich S, Benduhn J, Jia X, et al. Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses. Nat Mater, 2019, 18, 459 doi: 10.1038/s41563-019-0324-5
[29]
Wang J, Jiang X, Wu H, et al. Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nat Commun, 2021, 12, 6679 doi: 10.1038/s41467-021-26995-1
[30]
Azzouzi M, Yan J, Kirchartz T, et al. Nonradiative energy losses in bulk-heterojunction organic photovoltaics. Phys Rev X, 2018, 8, 031055 doi: 10.1103/PhysRevX.8.031055
[31]
Chen X K, Qian D, Wang Y, et al. A unified description of non-radiative voltage losses in organic solar cells. Nat Energy, 2021, 6, 799 doi: 10.1038/s41560-021-00843-4
[32]
Eisner F D, Azzouzi M, Fei Z, et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J Am Chem Soc, 2019, 141, 6362 doi: 10.1021/jacs.9b01465
[33]
Duan X, Song W, Qiao J, et al. Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy Environ Sci, 2022, 15, 1563 doi: 10.1039/D1EE03989J
[34]
Lin B, Zhou X, Zhao H, et al. Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses. Energy Environ Sci, 2020, 13, 2467 doi: 10.1039/D0EE00774A
[35]
Zheng Z, Li M, Qin Z, et al. Achieving small non-radiative energy loss through synergical non-fullerene electron acceptor selection and side chain engineering in benzo[1,2-b:4,5-b′]difuran polymer-based organic solar cells. J Mater Chem A, 2021, 9, 15798 doi: 10.1039/D1TA04214A
[36]
Liang S, Wang J, Ouyang Y, et al. Double-cable conjugated polymers with rigid phenyl linkers for single-component organic solar cells. Macromolecules, 2022, 55, 2517 doi: 10.1021/acs.macromol.1c02593
[37]
Liu H, Li M, Wu H, et al. Improving quantum efficiency in organic solar cells with a small energetic driving force. J Mater Chem A, 2021, 9, 19770 doi: 10.1039/D1TA00576F
[38]
Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301
[39]
Li M, Wang J, Ding L, et al. Large-area organic solar cells. J Semicond, 2022, 43, 060201 doi: 10.1088/1674-4926/43/6/060201
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 855 Times PDF downloads: 112 Times Cited by: 0 Times

    History

    Received: 22 October 2022 Revised: Online: Accepted Manuscript: 22 October 2022Uncorrected proof: 24 October 2022Published: 14 January 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zheng Tang, Liming Ding. The voltage loss in organic solar cells[J]. Journal of Semiconductors, 2023, 44(1): 010202. doi: 10.1088/1674-4926/44/1/010202 Z Tang, L M Ding. The voltage loss in organic solar cells[J]. J. Semicond, 2023, 44(1): 010202. doi: 10.1088/1674-4926/44/1/010202Export: BibTex EndNote
      Citation:
      Zheng Tang, Liming Ding. The voltage loss in organic solar cells[J]. Journal of Semiconductors, 2023, 44(1): 010202. doi: 10.1088/1674-4926/44/1/010202

      Z Tang, L M Ding. The voltage loss in organic solar cells[J]. J. Semicond, 2023, 44(1): 010202. doi: 10.1088/1674-4926/44/1/010202
      Export: BibTex EndNote

      The voltage loss in organic solar cells

      doi: 10.1088/1674-4926/44/1/010202
      More Information
      • Author Bio:

        Zheng Tang is now working at State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University. He received his PhD in Applied Physics from Linköping University in 2014. Then, he worked as a postdoc at Linköping University (2014–2015) and Dresden University of Technology (2016–2017). In 2018, he moved to Donghua University and was appointed to be a professor. His research focuses on the physics in organic optoelectronic devices

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, and the Associate Editor for Journal of Semiconductors

      • Corresponding author: ztang@dhu.edu.cnding@nanoctr.cn
      • Received Date: 2022-10-22
        Available Online: 2022-10-22

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return