COMMENTS AND OPINIONS

Moiré heterostructures: highly tunable platforms for quantum simulation and future computing

Moyu Chen1, , Fanqiang Chen1, , Bin Cheng2, , Shi Jun Liang1, and Feng Miao1,

+ Author Affiliations

 Corresponding author: Bin Cheng, bincheng@njust.edu.cn; Shi Jun Liang, sjliang@nju.edu.cn; Feng Miao, miao@nju.edu.cn

PDF

Turn off MathJax



[1]
Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699), 80 doi: 10.1038/nature26154
[2]
Lu X, Stepanov P, Yang W, et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 2019, 574(7780), 653 doi: 10.1038/s41586-019-1695-0
[3]
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699), 43 doi: 10.1038/nature26160
[4]
Oh M, Nuckolls K P, Wong D, et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature, 2021, 600(7888), 240 doi: 10.1038/s41586-021-04121-x
[5]
Cao Y, Rodan-Legrain D, Rubies-Bigorda O, et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 2020, 583(7815), 215 doi: 10.1038/s41586-020-2260-6
[6]
Chen G, Sharpe A L, Fox E J, et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 2020, 579(7797), 56 doi: 10.1038/s41586-020-2049-7
[7]
Liu X, Hao Z, Khalaf E, et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583(7815), 221 doi: 10.1038/s41586-020-2458-7
[8]
Polshyn H, Zhu J, Kumar M A, et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature, 2020, 588(7836), 66 doi: 10.1038/s41586-020-2963-8
[9]
Chen G, Jiang L, Wu S, et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nature Phys, 2019, 15(3), 237 doi: 10.1038/s41567-018-0387-2
[10]
Chen S, He M, Zhang Y H, et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nature Phys, 2021, 17(3), 374 doi: 10.1038/s41567-020-01062-6
[11]
Shen C, Chu Y, Wu Q, et al. Correlated states in twisted double bilayer graphene. Nature Phys, 2020, 16(5), 520 doi: 10.1038/s41567-020-0825-9
[12]
Xu S, Al Ezzi M M, Balakrishnan N, et al. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nature Phys, 2021, 17(5), 619 doi: 10.1038/s41567-021-01172-9
[13]
Regan E C, Wang D, Jin C, et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799), 359 doi: 10.1038/s41586-020-2092-4
[14]
Shimazaki Y, Schwartz I, Watanabe K, et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 2020, 580(7804), 472 doi: 10.1038/s41586-020-2191-2
[15]
Tang Y, Li L, Li T, et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799), 353 doi: 10.1038/s41586-020-2085-3
[16]
Wang L, Shih E M, Ghiotto A, et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Mater, 2020, 19(8), 861 doi: 10.1038/s41563-020-0708-6
[17]
Xu Y, Liu S, Rhodes D A, et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature, 2020, 587(7833), 214 doi: 10.1038/s41586-020-2868-6
[18]
Ghiotto A, Shih E M, Pereira G S S G, et al. Quantum criticality in twisted transition metal dichalcogenides. Nature, 2021, 597(7876), 345 doi: 10.1038/s41586-021-03815-6
[19]
Li H, Li S, Regan E C, et al. Imaging two-dimensional generalized Wigner crystals. Nature, 2021, 597(7878), 650 doi: 10.1038/s41586-021-03874-9
[20]
Li T, Jiang S, Li L, et al. Continuous Mott transition in semiconductor moiré superlattices. Nature, 2021, 597(7876), 350 doi: 10.1038/s41586-021-03853-0
[21]
Li T, Jiang S, Shen B, et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature, 2021, 600(7890), 641 doi: 10.1038/s41586-021-04171-1
[22]
Gu J, Ma L, Liu S, et al. Dipolar excitonic insulator in a moiré lattice. Nature Phys, 2022, 18(4), 395 doi: 10.1038/s41567-022-01532-z
[23]
Zhang Z, Regan E C, Wang D, et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nature Phys, 2022, 18(10), 1214 doi: 10.1038/s41567-022-01702-z
[24]
Li Q, Cheng B, Chen M, et al. Tunable quantum criticalities in an isospin extended Hubbard model simulator. Nature, 2022, 609(7927), 479 doi: 10.1038/s41586-022-05106-0
[25]
Wu S, Zhang Z, Watanabe K, et al. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nature Mater, 2021, 20(4), 488 doi: 10.1038/s41563-020-00911-2
[26]
Saito Y, Ge J, Rademaker L, et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nature Phys, 2021, 17(4), 478 doi: 10.1038/s41567-020-01129-4
[27]
Serlin M, Tschirhart CL, Polshyn H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 2020, 367(6480), 900 doi: 10.1126/science.aay5533
[28]
Sharpe A L, Fox E J, Barnard AW, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 2019, 365(6453), 605 doi: 10.1126/science.aaw3780
[29]
Vizner Stern M, Waschitz Y, Cao W, et al. Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372(6549), 1462 doi: 10.1126/science.abe8177
[30]
Yasuda K, Wang X, Watanabe K, et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372(6549), 1458 doi: 10.1126/science.abd3230
[31]
Wang X, Yasuda K, Zhang Y, et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nature Nanotechnol, 2022, 17(4), 367 doi: 10.1038/s41565-021-01059-z
[32]
Weston A, Castanon E G, Enaldiev V, et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnol, 2022, 17(4), 390 doi: 10.1038/s41565-022-01072-w
[33]
Klein D R, Xia L Q, MacNeill D, et al. Electrical switching of a moiré ferroelectric superconductor. arXiv: 2205.04458, 2022 doi: 10.48550/arXiv.2205.04458
[34]
Niu R, Li Z, Han X, et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nature Commun, 2022, 13(1), 6241 doi: 10.1038/s41467-022-34104-z
[35]
Zheng Z, Ma Q, Bi Z, et al. Unconventional ferroelectricity in moiré heterostructures. Nature, 2020, 588(7836), 71 doi: 10.1038/s41586-020-2970-9
[36]
Park J M, Cao Y, Watanabe K, et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 2021, 590(7845), 249 doi: 10.1038/s41586-021-03192-0
[37]
Hao Z, Zimmerman A M, Ledwith P, et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371(6534), 1133 doi: 10.1126/science.abg0399
[38]
Berdyugin A I, Xin N, Gao H, et al. Out-of-equilibrium criticalities in graphene superlattices. Science, 2022, 375(6579), 430 doi: 10.1126/science.abi8627
[39]
Tian H, Che S, Xu T, et al. Evidence for flat band dirac superconductor originating from quantum geometry. arXiv: 2112.13401, 2021 doi: 10.48550/arXiv.2112.13401
[40]
Cao Y, Rodan-Legrain D, Park J M, et al. Nematicity and competing orders in superconducting magic-angle graphene. Science, 2021, 372(6539), 264 doi: 10.1126/science.abc2836
[41]
Kennes D M, Claassen M, Xian L, et al. Moiré heterostructures as a condensed-matter quantum simulator. Nature Phys, 2021, 17(2), 155 doi: 10.1038/s41567-020-01154-3
[42]
Xu Y, Kang K, Watanabe K, et al. A tunable bilayer Hubbard model in twisted WSe2. Nature Nanotechnol, 2022, 17(9), 934 doi: 10.1038/s41565-022-01180-7
[43]
Zhao W, Shen B, Tao Z, et al. Gate-tunable heavy fermions in a moiré Kondo lattice. arXiv: 2211.00263, 2022 doi: 10.48550/arXiv.2211.00263
[44]
Wang C, Gao Y, Lv H, et al. Stacking domain wall magnons in twisted van der Waals magnets. Phys Rev Lett, 2020, 125(24), 247201 doi: 10.1103/PhysRevLett.125.247201
[45]
Hejazi K, Luo Z X, Balents L. Noncollinear phases in moiré magnets. Proceedings of the National Academy of Sciences, 2020, 117(20), 10721 doi: 10.1073/pnas.2000347117
[46]
Li Y, Zhang S, Chen F, et al. Observation of coexisting dirac bands and moiré flat bands in magic‐angle twisted trilayer graphene. Adv Mater, 2022, 34(42), 2205996 doi: 10.1002/adma.202205996
[47]
Bravyi S B, Kitaev A Y. Fermionic quantum computation. Annals of Physics, 2002, 298(1), 210 doi: 10.1006/aphy.2002.6254
[48]
Ma C, Yuan S, Cheung P, et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature, 2022, 604(7905), 266 doi: 10.1038/s41586-022-04548-w
[49]
Mak K F, Xiao D, Shan J. Light–valley interactions in 2D semiconductors. Nature Photonics, 2018, 12(8), 451 doi: 10.1038/s41566-018-0204-6
Fig. 1.  Quantum states, tuning knobs and possible device applications of moiré heterostructures.

[1]
Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699), 80 doi: 10.1038/nature26154
[2]
Lu X, Stepanov P, Yang W, et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 2019, 574(7780), 653 doi: 10.1038/s41586-019-1695-0
[3]
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699), 43 doi: 10.1038/nature26160
[4]
Oh M, Nuckolls K P, Wong D, et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature, 2021, 600(7888), 240 doi: 10.1038/s41586-021-04121-x
[5]
Cao Y, Rodan-Legrain D, Rubies-Bigorda O, et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 2020, 583(7815), 215 doi: 10.1038/s41586-020-2260-6
[6]
Chen G, Sharpe A L, Fox E J, et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 2020, 579(7797), 56 doi: 10.1038/s41586-020-2049-7
[7]
Liu X, Hao Z, Khalaf E, et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583(7815), 221 doi: 10.1038/s41586-020-2458-7
[8]
Polshyn H, Zhu J, Kumar M A, et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature, 2020, 588(7836), 66 doi: 10.1038/s41586-020-2963-8
[9]
Chen G, Jiang L, Wu S, et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nature Phys, 2019, 15(3), 237 doi: 10.1038/s41567-018-0387-2
[10]
Chen S, He M, Zhang Y H, et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nature Phys, 2021, 17(3), 374 doi: 10.1038/s41567-020-01062-6
[11]
Shen C, Chu Y, Wu Q, et al. Correlated states in twisted double bilayer graphene. Nature Phys, 2020, 16(5), 520 doi: 10.1038/s41567-020-0825-9
[12]
Xu S, Al Ezzi M M, Balakrishnan N, et al. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nature Phys, 2021, 17(5), 619 doi: 10.1038/s41567-021-01172-9
[13]
Regan E C, Wang D, Jin C, et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799), 359 doi: 10.1038/s41586-020-2092-4
[14]
Shimazaki Y, Schwartz I, Watanabe K, et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 2020, 580(7804), 472 doi: 10.1038/s41586-020-2191-2
[15]
Tang Y, Li L, Li T, et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799), 353 doi: 10.1038/s41586-020-2085-3
[16]
Wang L, Shih E M, Ghiotto A, et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Mater, 2020, 19(8), 861 doi: 10.1038/s41563-020-0708-6
[17]
Xu Y, Liu S, Rhodes D A, et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature, 2020, 587(7833), 214 doi: 10.1038/s41586-020-2868-6
[18]
Ghiotto A, Shih E M, Pereira G S S G, et al. Quantum criticality in twisted transition metal dichalcogenides. Nature, 2021, 597(7876), 345 doi: 10.1038/s41586-021-03815-6
[19]
Li H, Li S, Regan E C, et al. Imaging two-dimensional generalized Wigner crystals. Nature, 2021, 597(7878), 650 doi: 10.1038/s41586-021-03874-9
[20]
Li T, Jiang S, Li L, et al. Continuous Mott transition in semiconductor moiré superlattices. Nature, 2021, 597(7876), 350 doi: 10.1038/s41586-021-03853-0
[21]
Li T, Jiang S, Shen B, et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature, 2021, 600(7890), 641 doi: 10.1038/s41586-021-04171-1
[22]
Gu J, Ma L, Liu S, et al. Dipolar excitonic insulator in a moiré lattice. Nature Phys, 2022, 18(4), 395 doi: 10.1038/s41567-022-01532-z
[23]
Zhang Z, Regan E C, Wang D, et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nature Phys, 2022, 18(10), 1214 doi: 10.1038/s41567-022-01702-z
[24]
Li Q, Cheng B, Chen M, et al. Tunable quantum criticalities in an isospin extended Hubbard model simulator. Nature, 2022, 609(7927), 479 doi: 10.1038/s41586-022-05106-0
[25]
Wu S, Zhang Z, Watanabe K, et al. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nature Mater, 2021, 20(4), 488 doi: 10.1038/s41563-020-00911-2
[26]
Saito Y, Ge J, Rademaker L, et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nature Phys, 2021, 17(4), 478 doi: 10.1038/s41567-020-01129-4
[27]
Serlin M, Tschirhart CL, Polshyn H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 2020, 367(6480), 900 doi: 10.1126/science.aay5533
[28]
Sharpe A L, Fox E J, Barnard AW, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 2019, 365(6453), 605 doi: 10.1126/science.aaw3780
[29]
Vizner Stern M, Waschitz Y, Cao W, et al. Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372(6549), 1462 doi: 10.1126/science.abe8177
[30]
Yasuda K, Wang X, Watanabe K, et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372(6549), 1458 doi: 10.1126/science.abd3230
[31]
Wang X, Yasuda K, Zhang Y, et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nature Nanotechnol, 2022, 17(4), 367 doi: 10.1038/s41565-021-01059-z
[32]
Weston A, Castanon E G, Enaldiev V, et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnol, 2022, 17(4), 390 doi: 10.1038/s41565-022-01072-w
[33]
Klein D R, Xia L Q, MacNeill D, et al. Electrical switching of a moiré ferroelectric superconductor. arXiv: 2205.04458, 2022 doi: 10.48550/arXiv.2205.04458
[34]
Niu R, Li Z, Han X, et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nature Commun, 2022, 13(1), 6241 doi: 10.1038/s41467-022-34104-z
[35]
Zheng Z, Ma Q, Bi Z, et al. Unconventional ferroelectricity in moiré heterostructures. Nature, 2020, 588(7836), 71 doi: 10.1038/s41586-020-2970-9
[36]
Park J M, Cao Y, Watanabe K, et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 2021, 590(7845), 249 doi: 10.1038/s41586-021-03192-0
[37]
Hao Z, Zimmerman A M, Ledwith P, et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371(6534), 1133 doi: 10.1126/science.abg0399
[38]
Berdyugin A I, Xin N, Gao H, et al. Out-of-equilibrium criticalities in graphene superlattices. Science, 2022, 375(6579), 430 doi: 10.1126/science.abi8627
[39]
Tian H, Che S, Xu T, et al. Evidence for flat band dirac superconductor originating from quantum geometry. arXiv: 2112.13401, 2021 doi: 10.48550/arXiv.2112.13401
[40]
Cao Y, Rodan-Legrain D, Park J M, et al. Nematicity and competing orders in superconducting magic-angle graphene. Science, 2021, 372(6539), 264 doi: 10.1126/science.abc2836
[41]
Kennes D M, Claassen M, Xian L, et al. Moiré heterostructures as a condensed-matter quantum simulator. Nature Phys, 2021, 17(2), 155 doi: 10.1038/s41567-020-01154-3
[42]
Xu Y, Kang K, Watanabe K, et al. A tunable bilayer Hubbard model in twisted WSe2. Nature Nanotechnol, 2022, 17(9), 934 doi: 10.1038/s41565-022-01180-7
[43]
Zhao W, Shen B, Tao Z, et al. Gate-tunable heavy fermions in a moiré Kondo lattice. arXiv: 2211.00263, 2022 doi: 10.48550/arXiv.2211.00263
[44]
Wang C, Gao Y, Lv H, et al. Stacking domain wall magnons in twisted van der Waals magnets. Phys Rev Lett, 2020, 125(24), 247201 doi: 10.1103/PhysRevLett.125.247201
[45]
Hejazi K, Luo Z X, Balents L. Noncollinear phases in moiré magnets. Proceedings of the National Academy of Sciences, 2020, 117(20), 10721 doi: 10.1073/pnas.2000347117
[46]
Li Y, Zhang S, Chen F, et al. Observation of coexisting dirac bands and moiré flat bands in magic‐angle twisted trilayer graphene. Adv Mater, 2022, 34(42), 2205996 doi: 10.1002/adma.202205996
[47]
Bravyi S B, Kitaev A Y. Fermionic quantum computation. Annals of Physics, 2002, 298(1), 210 doi: 10.1006/aphy.2002.6254
[48]
Ma C, Yuan S, Cheung P, et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature, 2022, 604(7905), 266 doi: 10.1038/s41586-022-04548-w
[49]
Mak K F, Xiao D, Shan J. Light–valley interactions in 2D semiconductors. Nature Photonics, 2018, 12(8), 451 doi: 10.1038/s41566-018-0204-6
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1742 Times PDF downloads: 327 Times Cited by: 0 Times

    History

    Received: 31 December 2022 Revised: Online: Accepted Manuscript: 10 January 2023Uncorrected proof: 10 January 2023Published: 14 January 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Moyu Chen, Fanqiang Chen, Bin Cheng, Shi Jun Liang, Feng Miao. Moiré heterostructures: highly tunable platforms for quantum simulation and future computing[J]. Journal of Semiconductors, 2023, 44(1): 010301. doi: 10.1088/1674-4926/44/1/010301 M Y Chen, F Q Chen, B Cheng, S J Liang, F Miao. Moiré heterostructures: highly tunable platforms for quantum simulation and future computing[J]. J. Semicond, 2023, 44(1): 010301. doi: 10.1088/1674-4926/44/1/010301Export: BibTex EndNote
      Citation:
      Moyu Chen, Fanqiang Chen, Bin Cheng, Shi Jun Liang, Feng Miao. Moiré heterostructures: highly tunable platforms for quantum simulation and future computing[J]. Journal of Semiconductors, 2023, 44(1): 010301. doi: 10.1088/1674-4926/44/1/010301

      M Y Chen, F Q Chen, B Cheng, S J Liang, F Miao. Moiré heterostructures: highly tunable platforms for quantum simulation and future computing[J]. J. Semicond, 2023, 44(1): 010301. doi: 10.1088/1674-4926/44/1/010301
      Export: BibTex EndNote

      Moiré heterostructures: highly tunable platforms for quantum simulation and future computing

      doi: 10.1088/1674-4926/44/1/010301
      More Information
      • Author Bio:

        Moyu Chen received his B.S. from Nanjing University. He is now a Ph.D. candidate in Department of Physics at Nanjing University. His research interests include twistronics, van der Waals topological materials, and in-memory computing

        Fanqiang Chen received his B.S. from Nanjing Normal University in 2021. Now he is a master’s student in the Department of Physics at Nanjing University. He is currently working on the twistronics and van der Waals ferroelectric materials

        Bin Cheng received his Ph.D. degree from the Department of Physics of the University of California, Riverside, in 2015. Currently, he is working as professor in the School of Science at Nanjing University of Science and Technology. His recent research interests focus on the electronic transport and device applications based on 2D materials

        Shi Jun Liang received his Ph.D. from the pillar of Engineering Product Development of Singapore University of Technology and Design at 2017. Currently, he is an Associate Professor at the School of Physics, Nanjing University. His recent research interests focus on the quantum materials and intelligent devices

        Feng Miao is currently a Professor of Physics in Nanjing University. He received his Ph.D. degree from the University of California, Riverside, in 2009. Then he worked with HP Labs, Palo Alto, California, as a research associate for three years. He is currently a NSFC (National Science Fund of China) Distinguished Young Scholar, and the Chief Scientist of a National Key Basic Research Program. He has published over 100 technical papers (with over 20000 citations) and is the inventor of 9 granted US patents and 10 granted Chinese patents. His research is currently focused on 2D materials and nanoelectronics

      • Corresponding author: bincheng@njust.edu.cnsjliang@nju.edu.cnmiao@nju.edu.cn
      • Received Date: 2022-12-31
        Available Online: 2023-01-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return