ARTICLES 

75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique

Xiuli Li1, 2, X, Yupeng Zhu1, 2, X, Zhi Liu1, 2, , Linzhi Peng1, 2, Xiangquan Liu1, 2, Chaoqun Niu1, 2, Jun Zheng1, 2, Yuhua Zuo1, 2 and Buwen Cheng1, 2

+ Author Affiliations

 Corresponding author: Zhi Liu, zhiliu@semi.ac.cn

PDF

Turn off MathJax

Abstract:

High-performance germanium (Ge) waveguide photodetectors are designed and fabricated utilizing the inductive-gain-peaking technique. With the appropriate integrated inductors, the 3-dB bandwidth of photodetectors is significantly improved owing to the inductive-gain-peaking effect without any compromises to the dark current and optical responsivity. Measured 3-dB bandwidth up to 75 GHz is realized and clear open eye diagrams at 64 Gbps are observed. In this work, the relationship between the frequency response and large signal transmission characteristics on the integrated inductors of Ge waveguide photodetectors is investigated, which indicates the high-speed performance of photodetectors using the inductive-gain-peaking technique.

Key words: germaniumphotodetectorsinductive-gain-peakingoptical interconnection



[1]
Marpaung D, Yao J P, Capmany J. Integrated microwave photonics. Nat Photonics, 2019, 13, 80 doi: 10.1038/s41566-018-0310-5
[2]
Zhou D, Sun C L, Lai Y X, et al. Integrated silicon multifunctional mode-division multiplexing system. Opt Express, 2019, 27, 10798 doi: 10.1364/OE.27.010798
[3]
Shi Y C, Zhang Y, Wan Y T, et al. Silicon photonics for high-capacity data communications. Photonics Res, 2022, 10, A106 doi: 10.1364/PRJ.456772
[4]
Salamin Y, Ma P, Baeuerle B, et al. 100 GHz plasmonic photodetector. ACS Photonics, 2018, 5, 3291 doi: 10.1021/acsphotonics.8b00525
[5]
Liu Z, Yang F, Wu W Z, et al. 48 GHz high-performance Ge-on-SOI photodetector with zero-bias 40 Gbps grown by selective epitaxial growth. J Lightwave Technol, 2017, 35, 5306 doi: 10.1109/JLT.2017.2766266
[6]
Vivien L, Marris-Morini D, Fédéli J-M, et al. Metal-semiconductor-metal Ge photodetectors integrated in silicon waveguides. Appl Phy Lett, 2008, 92, 151114 doi: 10.1063/1.2909590
[7]
DeRose C T, Trotter D C, Zortman W A, et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 2011, 19, 24897 doi: 10.1364/OE.19.024897
[8]
Zhu Y P, Liu Z, Niu C Q, et al. High-speed and high-power germanium photodetector based on a trapezoidal absorber. Opt Lett, 2022, 47, 3263 doi: 10.1364/OL.461673
[9]
Cea M, Orden D, Fini J, et al. High-speed, zero-biased silicon-germanium photodetector. APL Photonics, 2021, 6, 041302 doi: 10.1063/5.0047037
[10]
Chen H, Verheyen P, De Heyn P, et al. –1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond. Opt Express, 2016, 24, 4622 doi: 10.1364/OE.24.004622
[11]
Lischke S, Knoll D, Mai C, et al. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt Express, 2015, 23, 27213 doi: 10.1364/OE.23.027213
[12]
Going R, Seok T J, Loo J, et al. Germanium wrap-around photodetectors on silicon photonics. Opt Express, 2015, 23, 11975 doi: 10.1364/OE.23.011975
[13]
Lischke S, Peczek A, Morgan J S, et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat Photonics, 2021, 15, 925 doi: 10.1038/s41566-021-00893-w
[14]
Hu X, Wu D Y, Zhang H G, et al. High-speed and high-power germanium photodetector with a lateral silicon nitride waveguide. Photonics Res, 2021, 9, 749 doi: 10.1364/PRJ.417601
[15]
Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15, 13965 doi: 10.1364/OE.15.013965
[16]
Liao S R, Feng N N, Feng D Z, et al. 36 GHz submicron silicon waveguide germanium photodetector. Opt Express, 2011, 19, 10967 doi: 10.1364/OE.19.010967
[17]
Vivien L, Osmond J, Fédéli J M, et al. 42 GHz p. i. n germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Express, 2009, 17, 6252 doi: 10.1364/OE.17.006252
[18]
Gould M, Baehr-Jones T, Ding R, et al. Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking. Opt Express, 2012, 20, 7101 doi: 10.1364/OE.20.007101
[19]
Novack A, Gould M, Yang Y S, et al. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. Opt Express, 2013, 21, 28387 doi: 10.1364/OE.21.028387
[20]
Wu D Y, Hu X, Li W Z, et al. 62 GHz germanium photodetector with inductive gain peaking electrode for photonic receiving beyond 100 Gbaud. J Semicond, 2021, 42, 020502 doi: 10.1088/1674-4926/42/2/020502
[21]
Shi Y, Zhou D, Yu Y, et al. 80 GHz germanium waveguide photodiode enabled by parasitic parameter engineering. Photonics Res, 2021, 9, 605 doi: 10.1364/PRJ.416887
[22]
Chen G Y, Yu Y, Deng S P, et al. Bandwidth improvement for germanium photodetector using wire bonding technology. Opt Express, 2015, 23, 25700 doi: 10.1364/OE.23.025700
[23]
Sze S M, Ng K K. Physics of semiconductor devices. Berlin Wiley-Interscience, 2006
[24]
Li W Z, Zhang H G, Hu X, et al. 100 Gbit/s co-designed optical receiver with hybrid integration. Opt Express, 2021, 29, 14304 doi: 10.1364/OE.421980
Fig. 1.  (Color online) Equivalent circuit of Ge waveguide photodetector (a) without and (b) with integrated inductor.

Fig. 2.  (Color online) (a) Cross section of the Ge waveguide photodetector. (b) Microscopic image of the device. (c) Microscopic image of the standalone inductors (L1, L2, L3, L4, and L5).

Fig. 3.  (Color online) (a) Equivalent circuit of the extracted parameters of inductors. (b–f) Fitting curves of the standalone inductors (L1, L2, L3, L4, and L5).

Fig. 4.  (Color online) (a) Typical current–voltage characteristics of the Ge waveguide photodetector with and without incident light. (b) Dark current characteristics of Ge waveguide photodetectors without and with integrated inductors. Inset shows the dark current and responsivity of these photodetectors.

Fig. 5.  (Color online) Frequency responses of Ge waveguide photodetectors with and without integrated inductors.

Fig. 6.  (Color online) (a) Simulated frequency response of the photodetector without and with integrated inductors. (b) Simulated 3-dB bandwidth and peak values.

Fig. 7.  (Color online) Eye diagrams of Ge waveguide photodetectors with and without integrated inductors at 50, 55, 60, and 64 Gbps.

Fig. 8.  (Color online) Measured signal-to-noise ratio (SNR) and eye amplitude of the eye diagram at 50 and 64 Gbps.

Table 1.   Parameters of the inductors (L1, L2, L3, L4 and L5).

ParameterRpd
(Ω)
Cj
(fF)
Rload
(Ω)
Cp
(fF)
Lind
(pH)
Rind
(Ω)
Cind
(fF)
f3dB
(GHz)
PD without11015.255017N/AN/AN/A28
PD with L12402.57>75
PD with L22903.2775
PD with L33504.0868
PD with L44104.8862
PD with L54505.0958
DownLoad: CSV

Table 2.   Performance summary of high-speed silicon-based Ge photodetectors with integrated inductances.

TypeDark current (nA)Responsivity (A/W)Bandwidth (GHz)Year
Vertical30000.75602013[19]
Vertical6000.85602015[22]
Vertical460.80622021[20]
Vertical100.75362021[24]
Vertical6.40.8980*2021[21]
Vertical350.81>75This work
* The bandwidth of 80 GHz in the reference is the derived value of fit, not the measured value.
DownLoad: CSV
[1]
Marpaung D, Yao J P, Capmany J. Integrated microwave photonics. Nat Photonics, 2019, 13, 80 doi: 10.1038/s41566-018-0310-5
[2]
Zhou D, Sun C L, Lai Y X, et al. Integrated silicon multifunctional mode-division multiplexing system. Opt Express, 2019, 27, 10798 doi: 10.1364/OE.27.010798
[3]
Shi Y C, Zhang Y, Wan Y T, et al. Silicon photonics for high-capacity data communications. Photonics Res, 2022, 10, A106 doi: 10.1364/PRJ.456772
[4]
Salamin Y, Ma P, Baeuerle B, et al. 100 GHz plasmonic photodetector. ACS Photonics, 2018, 5, 3291 doi: 10.1021/acsphotonics.8b00525
[5]
Liu Z, Yang F, Wu W Z, et al. 48 GHz high-performance Ge-on-SOI photodetector with zero-bias 40 Gbps grown by selective epitaxial growth. J Lightwave Technol, 2017, 35, 5306 doi: 10.1109/JLT.2017.2766266
[6]
Vivien L, Marris-Morini D, Fédéli J-M, et al. Metal-semiconductor-metal Ge photodetectors integrated in silicon waveguides. Appl Phy Lett, 2008, 92, 151114 doi: 10.1063/1.2909590
[7]
DeRose C T, Trotter D C, Zortman W A, et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 2011, 19, 24897 doi: 10.1364/OE.19.024897
[8]
Zhu Y P, Liu Z, Niu C Q, et al. High-speed and high-power germanium photodetector based on a trapezoidal absorber. Opt Lett, 2022, 47, 3263 doi: 10.1364/OL.461673
[9]
Cea M, Orden D, Fini J, et al. High-speed, zero-biased silicon-germanium photodetector. APL Photonics, 2021, 6, 041302 doi: 10.1063/5.0047037
[10]
Chen H, Verheyen P, De Heyn P, et al. –1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond. Opt Express, 2016, 24, 4622 doi: 10.1364/OE.24.004622
[11]
Lischke S, Knoll D, Mai C, et al. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt Express, 2015, 23, 27213 doi: 10.1364/OE.23.027213
[12]
Going R, Seok T J, Loo J, et al. Germanium wrap-around photodetectors on silicon photonics. Opt Express, 2015, 23, 11975 doi: 10.1364/OE.23.011975
[13]
Lischke S, Peczek A, Morgan J S, et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat Photonics, 2021, 15, 925 doi: 10.1038/s41566-021-00893-w
[14]
Hu X, Wu D Y, Zhang H G, et al. High-speed and high-power germanium photodetector with a lateral silicon nitride waveguide. Photonics Res, 2021, 9, 749 doi: 10.1364/PRJ.417601
[15]
Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15, 13965 doi: 10.1364/OE.15.013965
[16]
Liao S R, Feng N N, Feng D Z, et al. 36 GHz submicron silicon waveguide germanium photodetector. Opt Express, 2011, 19, 10967 doi: 10.1364/OE.19.010967
[17]
Vivien L, Osmond J, Fédéli J M, et al. 42 GHz p. i. n germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Express, 2009, 17, 6252 doi: 10.1364/OE.17.006252
[18]
Gould M, Baehr-Jones T, Ding R, et al. Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking. Opt Express, 2012, 20, 7101 doi: 10.1364/OE.20.007101
[19]
Novack A, Gould M, Yang Y S, et al. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. Opt Express, 2013, 21, 28387 doi: 10.1364/OE.21.028387
[20]
Wu D Y, Hu X, Li W Z, et al. 62 GHz germanium photodetector with inductive gain peaking electrode for photonic receiving beyond 100 Gbaud. J Semicond, 2021, 42, 020502 doi: 10.1088/1674-4926/42/2/020502
[21]
Shi Y, Zhou D, Yu Y, et al. 80 GHz germanium waveguide photodiode enabled by parasitic parameter engineering. Photonics Res, 2021, 9, 605 doi: 10.1364/PRJ.416887
[22]
Chen G Y, Yu Y, Deng S P, et al. Bandwidth improvement for germanium photodetector using wire bonding technology. Opt Express, 2015, 23, 25700 doi: 10.1364/OE.23.025700
[23]
Sze S M, Ng K K. Physics of semiconductor devices. Berlin Wiley-Interscience, 2006
[24]
Li W Z, Zhang H G, Hu X, et al. 100 Gbit/s co-designed optical receiver with hybrid integration. Opt Express, 2021, 29, 14304 doi: 10.1364/OE.421980
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1137 Times PDF downloads: 177 Times Cited by: 0 Times

    History

    Received: 14 September 2022 Revised: 27 September 2022 Online: Accepted Manuscript: 19 October 2022Uncorrected proof: 21 October 2022Published: 14 January 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiuli Li, Yupeng Zhu, Zhi Liu, Linzhi Peng, Xiangquan Liu, Chaoqun Niu, Jun Zheng, Yuhua Zuo, Buwen Cheng. 75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique[J]. Journal of Semiconductors, 2023, 44(1): 012301. doi: 10.1088/1674-4926/44/1/012301 X L Li, Y P Zhu, Z Liu, L Z Peng, X Q Liu, C Q Niu, J Zheng, Y H Zuo, B W Cheng. 75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique[J]. J. Semicond, 2023, 44(1): 012301. doi: 10.1088/1674-4926/44/1/012301Export: BibTex EndNote
      Citation:
      Xiuli Li, Yupeng Zhu, Zhi Liu, Linzhi Peng, Xiangquan Liu, Chaoqun Niu, Jun Zheng, Yuhua Zuo, Buwen Cheng. 75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique[J]. Journal of Semiconductors, 2023, 44(1): 012301. doi: 10.1088/1674-4926/44/1/012301

      X L Li, Y P Zhu, Z Liu, L Z Peng, X Q Liu, C Q Niu, J Zheng, Y H Zuo, B W Cheng. 75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique[J]. J. Semicond, 2023, 44(1): 012301. doi: 10.1088/1674-4926/44/1/012301
      Export: BibTex EndNote

      75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique

      doi: 10.1088/1674-4926/44/1/012301
      More Information
      • Author Bio:

        Xiuli Li received the Ph.D. degree from Institute of Semiconductors, Chinese Academy of Sciences, in 2020. Her research interests include high speed and high power silicon-based photodetector

        Yupeng Zhu received the B.S. degree from the East China University of Science and Technology, Shanghai, China, in 2020. He is currently working toward the Ph.D. degree at the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China. His research interests include high-speed silicon-based photodetectors and modulators

        Zhi Liu received the Ph.D. degree from Institute of Semiconductor, Chinese Academy of Sciences, in 2014. Since 2014, he has been with the Institute of Semiconductors, Chinese Academy of Sciences. His research interests include silicon-based group IV material growth and silicon photonics

      • Corresponding author: zhiliu@semi.ac.cn
      • Received Date: 2022-09-14
      • Revised Date: 2022-09-27
      • Available Online: 2022-10-19

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return