ARTICLES 

Electromechanical and photoelectric properties of a novel semiconducting Janus InGaSSe monolayer

Li Zhong1, Xiaobao Li1, 2, , Wei Wang1 and Xinle Xiao3,

+ Author Affiliations

 Corresponding author: Xiaobao Li, xiaobaoli@hfut.edu.cn; Xinle Xiao, xlxiao@mail.ustc.edu.cn

PDF

Turn off MathJax

Abstract:

In recent years, Janus two-dimensional (2D) materials have received extensive research interests because of their outstanding electronic, mechanical, electromechanical, and optoelectronic properties. In this work, we explore the structural, electromechanical, and optoelectronic properties of a novel hypothesized Janus InGaSSe monolayer by means of first-principles calculations. It is confirmed that the Janus InGaSSe monolayer indeed show extraordinary charge transport properties with intrinsic electron mobility of 48 139 cm2/(V·s) and hole mobility of 16 311 cm2/(V·s). Both uniaxial and biaxial strains can effectively tune its electronic property. Moreover, the Janus InGaSSe monolayer possesses excellent piezoelectric property along both in-plane and out-of-plane directions. The results of this work imply that the Janus InGaSSe monolayer is in fact an efficient photocatalyst candidate, and may provide useful guidelines for the discovery of other new 2D photocatalytic and piezoelectric materials.

Key words: Janus InGaSSe monolayersemiconductingphotocatalystpiezoelectricity



[1]
Zhang B T, Liu J, Yue S Z, et al. Hot electron injection: An efficacious approach to charge LaCoO3 for improving the water splitting efficiency. Appl Catal B, 2017, 219, 432 doi: 10.1016/j.apcatb.2017.07.033
[2]
Wang W, Tade M O, Shao Z P. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev, 2015, 44, 5371 doi: 10.1039/C5CS00113G
[3]
Ma M M, Huang Y B, Liu J, et al. Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting. J Semicond, 2020, 41, 091702 doi: 10.1088/1674-4926/41/9/091702
[4]
Concina I, Ibupoto Z H, Vomiero A. Electrochemical water splitting: Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv Energy Mater, 2017, 7, 1770138 doi: 10.1002/aenm.201770138
[5]
Zhao H, Dai Z Y, Xu X Y, et al. Integrating semiconducting catalyst of ReS2 nanosheets into P-silicon photocathode for enhanced solar water reduction. ACS Appl Mater Interfaces, 2018, 10, 23074 doi: 10.1021/acsami.8b04740
[6]
Reece S Y, Hamel J A, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 2011, 334, 645 doi: 10.1126/science.1209816
[7]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[8]
Alyörük M M. Piezoelectric properties of monolayer II-VI group oxides by first-principles calculations. Phys Status Solidi B, 2016, 253, 2534 doi: 10.1002/pssb.201600387
[9]
Li X M, Zhang X, Park H, et al. Editorial: Electronics and optoelectronics of graphene and related 2D materials. Front Mater, 2020, 7, 235 doi: 10.3389/fmats.2020.00235
[10]
Liu B, Zhou K. Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Prog Mater Sci, 2019, 100, 99 doi: 10.1016/j.pmatsci.2018.09.004
[11]
Li C, Li J, Huang Y B, et al. Recent development in electronic structure tuning of graphitic carbon nitride for highly efficient photocatalysis. J Semicond, 2022, 43, 021701 doi: 10.1088/1674-4926/43/2/021701
[12]
Taghinejad H, Rehn D A, Muccianti C, et al. Defect-mediated alloying of monolayer transition-metal dichalcogenides. ACS Nano, 2018, 12, 12795 doi: 10.1021/acsnano.8b07920
[13]
Qiao M, Liu J, Wang Y, et al. PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts. J Am Chem Soc, 2018, 140, 12256 doi: 10.1021/jacs.8b07855
[14]
Sun Y H, Wang X J, Zhao X G, et al. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J Semicond, 2018, 39, 072001 doi: 10.1088/1674-4926/39/7/072001
[15]
Lu A Y, Zhu H Y, Xiao J, et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol, 2017, 12, 744 doi: 10.1038/nnano.2017.100
[16]
Zhang J, Jia S, Kholmanov I, et al. Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11, 8192 doi: 10.1021/acsnano.7b03186
[17]
Ju L, Bie M, Shang J, et al. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J Phys Mater, 2020, 3, 022004 doi: 10.1088/2515-7639/ab7c57
[18]
Zhao P, Ma Y D, Lv X S, et al. Two-dimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy, 2018, 51, 533 doi: 10.1016/j.nanoen.2018.07.010
[19]
Zhou X F, Shen B, Lyubartsev A, et al. Semiconducting piezoelectric heterostructures for piezo- and piezophotocatalysis. Nano Energy, 2022, 96, 107141 doi: 10.1016/j.nanoen.2022.107141
[20]
Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem Rev, 2014, 114, 9919 doi: 10.1021/cr5001892
[21]
Liao G F, Gong Y, Zhang L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ Sci, 2019, 12, 2080 doi: 10.1039/C9EE00717B
[22]
Wang P, Zong Y X, Liu H, et al. Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J Mater Chem C, 2021, 9, 4989 doi: 10.1039/D1TC00318F
[23]
Rahaman R, Sharmin M, Podder J. Band gap tuning and p to n-type transition in Mn-doped CuO nanostructured thin films. J Semicond, 2022, 43, 012801 doi: 10.1088/1674-4926/43/1/012801
[24]
Yin Z, Hu M, Liu J, et al. Tunable crystal structure of Cu-Zn-Sn-S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation. J Semicond, 2022, 43, 032701 doi: 10.1088/1674-4926/43/3/032701
[25]
Lee H J, Lee S W, Hwang H, et al. Vertically oriented MoS2/WS2 heterostructures on reduced graphene oxide sheets as electrocatalysts for hydrogen evolution reaction. Mater Chem Front, 2021, 5, 3396 doi: 10.1039/D1QM00051A
[26]
Wang S K, Ren C D, Tian H Y, et al. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. Phys Chem Chem Phys, 2018, 20, 13394 doi: 10.1039/C8CP00808F
[27]
Dang C Q, Lu A L, Wang H Y, et al. Diamond semiconductor and elastic strain engineering. J Semicond, 2022, 43, 021801 doi: 10.1088/1674-4926/43/2/021801
[28]
Thulin L, Guerra J. Calculations of strain-modified anatase TiO2 band structures. Phys Rev B, 2008, 77, 195112 doi: 10.1103/PhysRevB.77.195112
[29]
Gao Q, Sahin H, Kang J. Strain tunable band structure of a new 2D carbon allotrope C568. J Semicond, 2020, 41, 082005 doi: 10.1088/1674-4926/41/8/082005
[30]
Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter, 2009, 21, 395502 doi: 10.1088/0953-8984/21/39/395502
[31]
Giannozzi P, Andreussi O, Brumme T, et al. Advanced capabilities for materials modelling with QUA NTUM ESPRESSO. J Phys: Condens Matter, 2017, 29, 465901 doi: 10.1088/1361-648X/aa8f79
[32]
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118, 8207 doi: 10.1063/1.1564060
[33]
Heyd J, Scuseria G E, Ernzerhof M. Erratum: "Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys, 2006, 124, 219906 doi: 10.1063/1.2204597
[34]
Vanderbilt D. Berry-phase theory of proper piezoelectric response. J Phys Chem Solids, 2000, 61, 147 doi: 10.1016/S0022-3697(99)00273-5
[35]
Guo S D. Phonon transport in Janus monolayer MoSSe: A first-principles study. Phys Chem Chem Phys, 2018, 20, 7236 doi: 10.1039/C8CP00350E
[36]
Dong L, Lou J, Shenoy V B. Large In-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 2017, 11, 8242 doi: 10.1021/acsnano.7b03313
[37]
Ericksen J L. On the cauchy—Born rule. Math Mech Solids, 2008, 13, 199 doi: 10.1177/1081286507086898
[38]
Born M, Huang K. Dynamical theory of crystal lattices. Oxford: Clarendon Press, 1954
[39]
Peng R, Ma Y D, Huang B B, et al. Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J Mater Chem A, 2019, 7, 603 doi: 10.1039/C8TA09177C
[40]
Kaasbjerg K, Thygesen K S, Jauho A P. Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys Rev B, 2013, 87, 235312 doi: 10.1103/PhysRevB.87.235312
[41]
Xi J Y, Long M Q, Tang L, et al. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale, 2012, 4, 4348 doi: 10.1039/c2nr30585b
[42]
Yin W J, Wen B, Nie G Z, et al. Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J Mater Chem C, 2018, 6, 1693 doi: 10.1039/C7TC05225A
[43]
Zhang Y Z, Ye H, Yu Z Y, et al. First-principles study of square phase MX2 and Janus $MX\varUpsilon $ (M = Mo, W; $X $ , $\varUpsilon $ = S, Se, Te) transition metal dichalcogenide monolayers under biaxial strain. Phys E, 2019, 110, 134 doi: 10.1016/j.physe.2019.02.009
[44]
Chaves A, Azadani J G, Alsalman H, et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl, 2020, 4, 1 doi: 10.1038/s41699-019-0135-1
Fig. 1.  (Color online) (a) Top and side views of atomic structure of the Janus InGaSSe monolayer. The yellow, light green, purple and green balls represent S, Ga, In and Se atoms, respectively. (b) Phonon dispersions (left-hand) and corresponding projected density of states (right-hand) of the Janus InGaSSe monolayer.

Fig. 2.  (Color online) Total energy variation of the Janus InGaSSe monolayer with respect to AIMD simulation time at 300, 500, 700 and 900 K. The inset shows the captured snapshot of the InGaSSe monolayer at 900 K.

Fig. 3.  (Color online) (a) The electronic band structure (left) and PDOS (right) of the Janus InGaSSe monolayer. (b) The electronic band structures based on HSE06 functional and (c) LDA functional. The Fermi level is set at zero and the band gap is indicated by shaded area.

Fig. 4.  (Color online) The planar average electrostatic potential of the Janus InGaSSe monolayer along the out-of-plane direction.

Fig. 5.  Linear fitting of (a) the in-plane piezoelectric coefficient e11 and (b) the out-of-plane piezoelectric coefficient e31.

Fig. 6.  The fitting curves of deformation potential constants (a) for electron carrier and (b) for hole carrier of the Janus InGaSSe monolayer.

Fig. 7.  (Color online) The changes of Gibbs free energy (∆GH) for hydrogen adsorption with respect to different adsorption sites (left-hand panel); The possible hydrogen adsorption sites on S-face and Se-face of the Janus InGaSSe monolayer as indicated by the numbers (right-hand panel).

Fig. 8.  (Color online) (a) The dependence of electronic band gap values on both uniaxial and biaxial strains. (b) Band structures of the Janus InGaSSe monolayer under uniaxial strains. (c) Band structures of the Janus InGaSSe monolayer under biaxial strains. The arrows indicate the positions of CBM and VBM for each case.

Fig. 9.  (Color online) Dependence of electrostatic potential difference of the Janus InGaSSe monolayer on uniaxial and biaxial strains.

Fig. 10.  (Color online) (a) Mobility of electron carriers and (b) hole carriers of the Janus InGaSSe monolayer under both uniaxial and biaxial strains.

Table 1.   Structural parameters and the elastic moduli of the Janus InGaSSe monolayer.

Parameter$a$ (Å)C11 (N/m)C22 (N/m)C12 (N/m)E (N/m)v
InGaSSe3.8460601655.730.27
InGaSSe[22]3.8471711965.920.27
MoSSe[35]3.25119119281130.23
MoS2[36]3.18138138321240.24
MoSe2[36]3.30116116271100.23
DownLoad: CSV

Table 2.   The parameters and carriers mobility.

Carrier typem (m0)C2D (N/m)Ed (eV)μ2D (cm2/(V·s))
Electron0.02606.1548139
Hole0.09602.5216311
DownLoad: CSV

Table 3.   Adsorption energies of hydrogen atom at different sites on two faces of the Janus InGaSSe monolayer.

Adsorption site123456
Adsorption energy (eV)–1.04–1.56–0.74–1.46–1.22–0.48
DownLoad: CSV
[1]
Zhang B T, Liu J, Yue S Z, et al. Hot electron injection: An efficacious approach to charge LaCoO3 for improving the water splitting efficiency. Appl Catal B, 2017, 219, 432 doi: 10.1016/j.apcatb.2017.07.033
[2]
Wang W, Tade M O, Shao Z P. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev, 2015, 44, 5371 doi: 10.1039/C5CS00113G
[3]
Ma M M, Huang Y B, Liu J, et al. Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting. J Semicond, 2020, 41, 091702 doi: 10.1088/1674-4926/41/9/091702
[4]
Concina I, Ibupoto Z H, Vomiero A. Electrochemical water splitting: Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv Energy Mater, 2017, 7, 1770138 doi: 10.1002/aenm.201770138
[5]
Zhao H, Dai Z Y, Xu X Y, et al. Integrating semiconducting catalyst of ReS2 nanosheets into P-silicon photocathode for enhanced solar water reduction. ACS Appl Mater Interfaces, 2018, 10, 23074 doi: 10.1021/acsami.8b04740
[6]
Reece S Y, Hamel J A, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 2011, 334, 645 doi: 10.1126/science.1209816
[7]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[8]
Alyörük M M. Piezoelectric properties of monolayer II-VI group oxides by first-principles calculations. Phys Status Solidi B, 2016, 253, 2534 doi: 10.1002/pssb.201600387
[9]
Li X M, Zhang X, Park H, et al. Editorial: Electronics and optoelectronics of graphene and related 2D materials. Front Mater, 2020, 7, 235 doi: 10.3389/fmats.2020.00235
[10]
Liu B, Zhou K. Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Prog Mater Sci, 2019, 100, 99 doi: 10.1016/j.pmatsci.2018.09.004
[11]
Li C, Li J, Huang Y B, et al. Recent development in electronic structure tuning of graphitic carbon nitride for highly efficient photocatalysis. J Semicond, 2022, 43, 021701 doi: 10.1088/1674-4926/43/2/021701
[12]
Taghinejad H, Rehn D A, Muccianti C, et al. Defect-mediated alloying of monolayer transition-metal dichalcogenides. ACS Nano, 2018, 12, 12795 doi: 10.1021/acsnano.8b07920
[13]
Qiao M, Liu J, Wang Y, et al. PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts. J Am Chem Soc, 2018, 140, 12256 doi: 10.1021/jacs.8b07855
[14]
Sun Y H, Wang X J, Zhao X G, et al. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J Semicond, 2018, 39, 072001 doi: 10.1088/1674-4926/39/7/072001
[15]
Lu A Y, Zhu H Y, Xiao J, et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol, 2017, 12, 744 doi: 10.1038/nnano.2017.100
[16]
Zhang J, Jia S, Kholmanov I, et al. Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11, 8192 doi: 10.1021/acsnano.7b03186
[17]
Ju L, Bie M, Shang J, et al. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J Phys Mater, 2020, 3, 022004 doi: 10.1088/2515-7639/ab7c57
[18]
Zhao P, Ma Y D, Lv X S, et al. Two-dimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy, 2018, 51, 533 doi: 10.1016/j.nanoen.2018.07.010
[19]
Zhou X F, Shen B, Lyubartsev A, et al. Semiconducting piezoelectric heterostructures for piezo- and piezophotocatalysis. Nano Energy, 2022, 96, 107141 doi: 10.1016/j.nanoen.2022.107141
[20]
Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem Rev, 2014, 114, 9919 doi: 10.1021/cr5001892
[21]
Liao G F, Gong Y, Zhang L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ Sci, 2019, 12, 2080 doi: 10.1039/C9EE00717B
[22]
Wang P, Zong Y X, Liu H, et al. Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J Mater Chem C, 2021, 9, 4989 doi: 10.1039/D1TC00318F
[23]
Rahaman R, Sharmin M, Podder J. Band gap tuning and p to n-type transition in Mn-doped CuO nanostructured thin films. J Semicond, 2022, 43, 012801 doi: 10.1088/1674-4926/43/1/012801
[24]
Yin Z, Hu M, Liu J, et al. Tunable crystal structure of Cu-Zn-Sn-S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation. J Semicond, 2022, 43, 032701 doi: 10.1088/1674-4926/43/3/032701
[25]
Lee H J, Lee S W, Hwang H, et al. Vertically oriented MoS2/WS2 heterostructures on reduced graphene oxide sheets as electrocatalysts for hydrogen evolution reaction. Mater Chem Front, 2021, 5, 3396 doi: 10.1039/D1QM00051A
[26]
Wang S K, Ren C D, Tian H Y, et al. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. Phys Chem Chem Phys, 2018, 20, 13394 doi: 10.1039/C8CP00808F
[27]
Dang C Q, Lu A L, Wang H Y, et al. Diamond semiconductor and elastic strain engineering. J Semicond, 2022, 43, 021801 doi: 10.1088/1674-4926/43/2/021801
[28]
Thulin L, Guerra J. Calculations of strain-modified anatase TiO2 band structures. Phys Rev B, 2008, 77, 195112 doi: 10.1103/PhysRevB.77.195112
[29]
Gao Q, Sahin H, Kang J. Strain tunable band structure of a new 2D carbon allotrope C568. J Semicond, 2020, 41, 082005 doi: 10.1088/1674-4926/41/8/082005
[30]
Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter, 2009, 21, 395502 doi: 10.1088/0953-8984/21/39/395502
[31]
Giannozzi P, Andreussi O, Brumme T, et al. Advanced capabilities for materials modelling with QUA NTUM ESPRESSO. J Phys: Condens Matter, 2017, 29, 465901 doi: 10.1088/1361-648X/aa8f79
[32]
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118, 8207 doi: 10.1063/1.1564060
[33]
Heyd J, Scuseria G E, Ernzerhof M. Erratum: "Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys, 2006, 124, 219906 doi: 10.1063/1.2204597
[34]
Vanderbilt D. Berry-phase theory of proper piezoelectric response. J Phys Chem Solids, 2000, 61, 147 doi: 10.1016/S0022-3697(99)00273-5
[35]
Guo S D. Phonon transport in Janus monolayer MoSSe: A first-principles study. Phys Chem Chem Phys, 2018, 20, 7236 doi: 10.1039/C8CP00350E
[36]
Dong L, Lou J, Shenoy V B. Large In-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 2017, 11, 8242 doi: 10.1021/acsnano.7b03313
[37]
Ericksen J L. On the cauchy—Born rule. Math Mech Solids, 2008, 13, 199 doi: 10.1177/1081286507086898
[38]
Born M, Huang K. Dynamical theory of crystal lattices. Oxford: Clarendon Press, 1954
[39]
Peng R, Ma Y D, Huang B B, et al. Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J Mater Chem A, 2019, 7, 603 doi: 10.1039/C8TA09177C
[40]
Kaasbjerg K, Thygesen K S, Jauho A P. Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys Rev B, 2013, 87, 235312 doi: 10.1103/PhysRevB.87.235312
[41]
Xi J Y, Long M Q, Tang L, et al. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale, 2012, 4, 4348 doi: 10.1039/c2nr30585b
[42]
Yin W J, Wen B, Nie G Z, et al. Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J Mater Chem C, 2018, 6, 1693 doi: 10.1039/C7TC05225A
[43]
Zhang Y Z, Ye H, Yu Z Y, et al. First-principles study of square phase MX2 and Janus $MX\varUpsilon $ (M = Mo, W; $X $ , $\varUpsilon $ = S, Se, Te) transition metal dichalcogenide monolayers under biaxial strain. Phys E, 2019, 110, 134 doi: 10.1016/j.physe.2019.02.009
[44]
Chaves A, Azadani J G, Alsalman H, et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl, 2020, 4, 1 doi: 10.1038/s41699-019-0135-1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1077 Times PDF downloads: 111 Times Cited by: 0 Times

    History

    Received: 18 June 2022 Revised: 10 September 2022 Online: Uncorrected proof: 17 October 2022Accepted Manuscript: 17 October 2022Published: 14 January 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Li Zhong, Xiaobao Li, Wei Wang, Xinle Xiao. Electromechanical and photoelectric properties of a novel semiconducting Janus InGaSSe monolayer[J]. Journal of Semiconductors, 2023, 44(1): 012701. doi: 10.1088/1674-4926/44/1/012701 L Zhong, X B Li, W Wang, X L Xiao. Electromechanical and photoelectric properties of a novel semiconducting Janus InGaSSe monolayer[J]. J. Semicond, 2023, 44(1): 012701. doi: 10.1088/1674-4926/44/1/012701Export: BibTex EndNote
      Citation:
      Li Zhong, Xiaobao Li, Wei Wang, Xinle Xiao. Electromechanical and photoelectric properties of a novel semiconducting Janus InGaSSe monolayer[J]. Journal of Semiconductors, 2023, 44(1): 012701. doi: 10.1088/1674-4926/44/1/012701

      L Zhong, X B Li, W Wang, X L Xiao. Electromechanical and photoelectric properties of a novel semiconducting Janus InGaSSe monolayer[J]. J. Semicond, 2023, 44(1): 012701. doi: 10.1088/1674-4926/44/1/012701
      Export: BibTex EndNote

      Electromechanical and photoelectric properties of a novel semiconducting Janus InGaSSe monolayer

      doi: 10.1088/1674-4926/44/1/012701
      More Information
      • Author Bio:

        Li Zhong received his BE degree in 2021 from Department of Engineering Mechanics, Hefei University of Technology. Currently he is a master student in Hefei University of Technology. His research interest includes mech-electrochemistry coupling behaviors, energy-related topics in nanomaterials and photocatalytic water splitting

        Xiaobao Li received his BE degree in 2008 from Department of Chemical Engineering and Technology, Hefei University of Technology and PhD degree in 2016 from Mechanical Engineering Department, University of Houston. Currently he is a professor in Department of Engineering Mechanics, Hefei University of Technology. His research interest includes electromechanical coupling, mech-electrochemistry coupling behaviors and energy-related topics in nanomaterials

        Xinle Xiao received his PhD degree from University of Science and Technology of China in 2020. Now he is an associate professor in Chizhou University. His research includes development and performance optimization of fuel cell membranes, preparation of divalent ion separation membranes, and membrane process simulation

      • Corresponding author: xiaobaoli@hfut.edu.cnxlxiao@mail.ustc.edu.cn
      • Received Date: 2022-06-18
      • Revised Date: 2022-09-10
      • Available Online: 2022-10-17

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return