Citation: |
Mengjia Li, Zuolin Zhang, Jie Sun, Fan Liu, Jiangzhao Chen, Liming Ding, Cong Chen. Perovskite solar cells with NiOx hole-transport layer[J]. Journal of Semiconductors, 2023, 44(10): 100201. doi: 10.1088/1674-4926/44/10/100201
****
M J Li, Z L Zhang, J Sun, F Liu, J Z Chen, L M Ding, C Chen. Perovskite solar cells with NiOx hole-transport layer[J]. J. Semicond, 2023, 44(10): 100201. doi: 10.1088/1674-4926/44/10/100201
|
Perovskite solar cells with NiOx hole-transport layer
DOI: 10.1088/1674-4926/44/10/100201
More Information
-
References
[1] Li Z, Li B, Wu X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376, 416 doi: 10.1126/science.abm8566[2] Luo M, Zong X, Zhao M, et al. Synergistic effect of amide and fluorine of polymers assist stable inverted perovskite solar cells with fill factor > 83%. Chem Eng J, 2022, 442, 136136 doi: 10.1016/j.cej.2022.136136[3] Li M J, Li H Y, Zhuang Q X, et al. Stabilizing perovskite precursor by synergy of functional groups for NiO x-based inverted solar cells with 23.5 % efficiency. Angew Chem Int Ed, 2022, 61, e202206914 doi: 10.1002/anie.202206914[4] Jiang F, Choy W C H, Li X C, et al. Post-treatment-free solution-processed non-stoichiometric NiO(x) nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv Mater, 2015, 27, 2930 doi: 10.1002/adma.201405391[5] Zhang H, Cheng J Q, Lin F, et al. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 2016, 10, 1503 doi: 10.1021/acsnano.5b07043[6] Lee J H, Noh Y W, Jin I S, et al. A solution-processed cobalt-doped nickel oxide for high efficiency inverted type perovskite solar cells. J Power Sources, 2019, 412, 425 doi: 10.1016/j.jpowsour.2018.11.081[7] Jung J W, Chueh C C, Jen A K Y. A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv Mater, 2015, 27, 7874 doi: 10.1002/adma.201503298[8] Zhang H, Zhao C X, Yao J X, et al. Dopant-free NiO x nanocrystals: A low-cost and stable hole transport material for commercializing perovskite optoelectronics. Angew Chem Int Ed, 2023, 62, e202219307 doi: 10.1002/anie.202219307[9] Zhang S H, Wang H Y, Duan X, et al. Printable and homogeneous NiO x hole transport layers prepared by a polymer-network gel method for large-area and flexible perovskite solar cells. Adv Funct Materials, 2021, 31, 2106495 doi: 10.1002/adfm.202106495[10] Wu T H, Ono L K, Yoshioka R, et al. Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy Environ Sci, 2022, 15, 4612 doi: 10.1039/D2EE01801B[11] Chen W, Wu Y Z, Yue Y F, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350, 944 doi: 10.1126/science.aad1015[12] Chen W, Liu F Z, Feng X Y, et al. Cesium doped NiO x as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv Energy Mater, 2017, 7, 1700722 doi: 10.1002/aenm.201700722[13] Wei Y, Yao K, Wang X F, et al. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Appl Surf Sci, 2018, 427, 782 doi: 10.1016/j.apsusc.2017.08.184[14] Chen W, Wu Y H, Fan J, et al. Understanding the doping effect on NiO: Toward high-performance inverted perovskite solar cells. Adv Energy Mater, 2018, 8, 1703519 doi: 10.1002/aenm.201703519[15] Zhang J K, Mao W J, Hou X, et al. Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells. Sol Energy, 2018, 174, 1133 doi: 10.1016/j.solener.2018.10.004[16] Wan X X, Jiang Y N, Qiu Z W, et al. Zinc as a new dopant for NiO x-based planar perovskite solar cells with stable efficiency near 20%. ACS Appl Energy Mater, 2018, 1, 3947 doi: 10.1021/acsaem.8b00671[17] Chen X F, Xu L, Chen C, et al. Rare earth ions doped NiO x hole transport layer for efficient and stable inverted perovskite solar cells. J Power Sources, 2019, 444, 227267 doi: 10.1016/j.jpowsour.2019.227267[18] Hou D G, Zhang J, Gan X L, et al. Pb and Li co-doped NiOx for efficient inverted planar perovskite solar cells. J Colloid Interface Sci, 2020, 559, 29 doi: 10.1016/j.jcis.2019.09.087[19] Di Girolamo D, Di Giacomo F, Matteocci F, et al. Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chem Sci, 2020, 11, 7746 doi: 10.1039/D0SC02859B[20] Dong X T, Wu G C, Cui G L, et al. Boosting efficiency and stability with KBr interface modification for NiOx-based inverted perovskite solar cells. Mater Sci Semicond Process, 2023, 160, 107454 doi: 10.1016/j.mssp.2023.107454[21] Chen W, Zhou Y C, Chen G C, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv Energy Mater, 2019, 9, 1803872 doi: 10.1002/aenm.201803872[22] Wang S J, Li Y K, Yang J B, et al. Critical role of removing impurities in nickel oxide on high-efficiency and long-term stability of inverted perovskite solar cells. Angew Chem Int Ed, 2022, 61, e202116534 doi: 10.1002/anie.202116534[23] Li C Y, Zhang Y, Zhang X J, et al. Efficient inverted perovskite solar cells with a fill factor over 86% via surface modification of the nickel oxide hole contact. Adv Funct Mater, 2023, 33, 2214774 doi: 10.1002/adfm.202214774[24] Yin X, Zhai J F, Ingabire P B, et al. Design of NiO x/carbon heterostructure interlayer to improve hole extraction efficiency of inverted perovskite solar cells. Adv Materials Inter, 2021, 8, 2100862 doi: 10.1002/admi.202100862[25] Lin Y B, Zhang Y D, Zhang J X, et al. 18.9% efficient organic solar cells based on n-doped bulk-heterojunction and halogen-substituted self-assembled monolayers as hole extracting interlayers. Adv Energy Mater, 2022, 12, 2202503 doi: 10.1002/aenm.202202503[26] Li Z N, Tan Q, Chen G C, et al. Simple and robust phenoxazine phosphonic acid molecules as self-assembled hole selective contacts for high-performance inverted perovskite solar cells. Nanoscale, 2023, 15, 1676 doi: 10.1039/D2NR05677A[27] Sun J J, Shou C H, Sun J S, et al. NiO x-seeded self-assembled monolayers as highly hole-selective passivating contacts for efficient inverted perovskite solar cells. Sol RRL, 2021, 5, 2100663 doi: 10.1002/solr.202100663[28] Li L D, Wang Y R, Wang X Y, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat Energy, 2022, 7, 708 doi: 10.1038/s41560-022-01045-2[29] Zhang J Q, Yang J, Dai R Y, et al. Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv Energy Mater, 2022, 12, 2103674 doi: 10.1002/aenm.202103674[30] Wang Y S, Ju H, Mahmoudi T, et al. Cation-size mismatch and interface stabilization for efficient NiO x-based inverted perovskite solar cells with 21.9% efficiency. Nano Energy, 2021, 88, 106285 doi: 10.1016/j.nanoen.2021.106285[31] Li H Y, Zhang C, Gong C, et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat Energy, 2023, 8, 946 doi: 10.1038/s41560-023-01295-8 -
Proportional views