Citation: |
Zejie Yu, He Gao, Yi Wang, Yue Yu, Hon Ki Tsang, Xiankai Sun, Daoxin Dai. Fundamentals and applications of photonic waveguides with bound states in the continuum[J]. Journal of Semiconductors, 2023, 44(10): 101301. doi: 10.1088/1674-4926/44/10/101301
****
Z J Yu, H Gao, Y Wang, Y Yu, H K Tsang, X K Sun, D X Dai. Fundamentals and applications of photonic waveguides with bound states in the continuum[J]. J. Semicond, 2023, 44(10): 101301. doi: 10.1088/1674-4926/44/10/101301
|
Fundamentals and applications of photonic waveguides with bound states in the continuum
DOI: 10.1088/1674-4926/44/10/101301
More Information
-
Abstract
Photonic waveguides are the most fundamental element for photonic integrated circuits (PICs). Waveguide properties, such as propagation loss, modal areas, nonlinear coefficients, etc., directly determine the functionalities and performance of PICs. Recently, the emerging waveguides with bound states in the continuum (BICs) have opened new opportunities for PICs because of their special properties in resonance and radiation. Here, we review the recent progress of PICs composed of waveguides with BICs. First, fundamentals including background physics and design rules of a BIC-based waveguide will be introduced. Next, two types of BIC-based waveguide structures, including shallowly etched dielectric and hybrid waveguides, will be presented. Lastly, the challenges and opportunities of PICs with BICs will be discussed. -
References
[1] Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003[2] Doerr C R. Silicon photonic integration in telecommunications. Front Phys, 2015, 3, 37 doi: 10.3389/fphy.2015.00037[3] Shastri B J, Tait A N, Ferreira de Lima T, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 2021, 15, 102 doi: 10.1038/s41566-020-00754-y[4] Shen Y C, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 2017, 11, 441 doi: 10.1038/nphoton.2017.93[5] Wang J W, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat Photonics, 2020, 14, 273 doi: 10.1038/s41566-019-0532-1[6] Elshaari A W, Pernice W, Srinivasan K, et al. Hybrid integrated quantum photonic circuits. Nat Photonics, 2020, 14, 285 doi: 10.1038/s41566-020-0609-x[7] Liu J Q, Tian H, Lucas E, et al. Monolithic piezoelectric control of soliton microcombs. Nature, 2020, 583, 385 doi: 10.1038/s41586-020-2465-8[8] Weimann C, Lauermann M, Hoeller F, et al. Silicon photonic integrated circuit for fast and precise dual-comb distance metrology. Opt Express, 2017, 25, 30091 doi: 10.1364/OE.25.030091[9] Lu Y J, Wang C Y, Kim J, et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett, 2014, 14, 4381 doi: 10.1021/nl501273u[10] Liu X F, Zhang Q, Yip J N, et al. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced burstein–moss effect. Nano Lett, 2013, 13, 5336 doi: 10.1021/nl402836x[11] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461, 629 doi: 10.1038/nature08364[12] Grandi S, Nielsen M P, Cambiasso J, et al. Hybrid plasmonic waveguide coupling of photons from a single molecule. APL Photonics, 2019, 4, 086101 doi: 10.1063/1.5110275[13] Guo J S, Li J, Liu C Y, et al. High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci Appl, 2020, 29, 1 doi: 10.1038/s41377-020-0263-6[14] Ding Y H, Cheng Z, Zhu X L, et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 2020, 9, 317 doi: 10.1515/nanoph-2019-0167[15] Li Z, Corbett B, Gocalinska A, et al. Direct visualization of phase-matched efficient second harmonic and broadband sum frequency generation in hybrid plasmonic nanostructures. Light Sci Appl, 2020, 9, 180 doi: 10.1038/s41377-020-00414-4[16] Agreda A, Sharma D K, Colas des Francs G, et al. Modal and wavelength conversions in plasmonic nanowires. Opt Express, 2021, 29, 15366 doi: 10.1364/OE.421183[17] Heni W, Haffner C, Elder D L, et al. Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. Opt Express, 2017, 25, 2627 doi: 10.1364/OE.25.002627[18] Ferrotti T, Blampey B, Jany C, et al. Co-integrated 13µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/S. Opt Express, 2016, 24, 30379 doi: 10.1364/OE.24.030379[19] Zhou J, Huang L J, Fu Z Y, et al. Multiplexed simultaneous high sensitivity sensors with high-order mode based on the integration of photonic crystal 1 × 3 beam splitter and three different single-slot PCNCs. Sensors (Basel), 2016, 16, 1050 doi: 10.3390/s16071050[20] Bettotti P. Hybrid materials for integrated photonics. Adv Opt, 2014, 2014, 1 doi: 10.1155/2014/891395[21] Heni W, Fedoryshyn Y, Baeuerle B, et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat Commun, 2019, 10, 1694 doi: 10.1038/s41467-019-09724-7[22] Dai D X, Shi Y C, He S L, et al. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express, 2011, 19, 12925 doi: 10.1364/OE.19.012925[23] Halir R, Bock P J, Cheben P, et al. Waveguide sub-wavelength structures: A review of principles and applications. Laser Photonics Rev, 2015, 9, 25 doi: 10.1002/lpor.201400083[24] Ma J W, Xi X, Sun X K. Topological photonic integrated circuits based on valley kink states. Laser Photonics Rev, 2019, 13, 1900087 doi: 10.1002/lpor.201900087[25] Baba T. Slow light in photonic crystals. Nat Photonics, 2008, 2, 465 doi: 10.1038/nphoton.2008.146[26] Iwamoto S, Ota Y, Arakawa Y. Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform. Opt Mater Express, 2021, 11, 319 doi: 10.1364/OME.415128[27] Ono M, Hata M, Tsunekawa M, et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics, 2020, 14, 37 doi: 10.1038/s41566-019-0547-7[28] Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express, 2009, 17, 16646 doi: 10.1364/OE.17.016646[29] He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13, 359 doi: 10.1038/s41566-019-0378-6[30] von Neumann J, Wigner E. On some peculiar discrete eigenvalues. Phys Z, 1929, 30, 465[31] Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum. Nat Rev Mater, 2016, 1, 16048 doi: 10.1038/natrevmats.2016.48[32] Bulgakov E N, Maksimov D N. Light guiding above the light line in arrays of dielectric nanospheres. Opt Lett, 2016, 41, 3888 doi: 10.1364/OL.41.003888[33] Bulgakov E N, Maksimov D N. Topological bound states in the continuum in arrays of dielectric spheres. Phys Rev Lett, 2017, 118, 267401 doi: 10.1103/PhysRevLett.118.267401[34] Bykov D A, Bezus E A, Doskolovich L L. Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings. Phys Rev A, 2019, 99, 063805 doi: 10.1103/PhysRevA.99.063805[35] Gomis-Bresco J, Artigas D, Torner L. Anisotropy-induced photonic bound states in the continuum. Nat Photonics, 2017, 11, 232 doi: 10.1038/nphoton.2017.31[36] Hsu C W, Zhen B, Lee J, et al. Observation of trapped light within the radiation continuum. Nature, 2013, 499, 188 doi: 10.1038/nature12289[37] Kodigala A, Lepetit T, Gu Q, et al. Lasing action from photonic bound states in continuum. Nature, 2017, 541, 196 doi: 10.1038/nature20799[38] Koshelev K, Favraud G, Bogdanov A, et al. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics, 2019, 8, 725 doi: 10.1515/nanoph-2019-0024[39] Longhi S. Optical analog of population trapping in the continuum: Classical and quantum interference effects. Phys Rev A, 2009, 79, 023811 doi: 10.1103/PhysRevA.79.023811[40] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics. Phys Rev Lett, 2008, 100, 183902 doi: 10.1103/PhysRevLett.100.183902[41] Monticone F, Alù A. Embedded photonic eigenvalues in 3D nanostructures. Phys Rev Lett, 2014, 112, 213903 doi: 10.1103/PhysRevLett.112.213903[42] Plotnik Y, Peleg O, Dreisow F, et al. Experimental observation of optical bound states in the continuum. Phys Rev Lett, 2011, 107, 183901 doi: 10.1103/PhysRevLett.107.183901[43] Rybin M V, Koshelev K L, Sadrieva Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys Rev Lett, 2017, 119, 243901 doi: 10.1103/PhysRevLett.119.243901[44] Weimann S, Xu Y, Keil R, et al. Compact fano states embedded in the continuum of waveguide arrays. Phys Rev Lett, 2013, 111, 240403 doi: 10.1103/PhysRevLett.111.240403[45] Zhen B, Hsu C W, Lu L, et al. Topological nature of optical bound states in the continuum. Phys Rev Lett, 2014, 113, 257401 doi: 10.1103/PhysRevLett.113.257401[46] Chen Y, Shen Z, Xiong X, et al. Mechanical bound state in the continuum for optomechanical microresonators. New J Phys, 2016, 18, 063031 doi: 10.1088/1367-2630/18/6/063031[47] Hein S, Koch W, Nannen L. Trapped modes and Fano resonances in two-dimensional acoustical duct–cavity systems. J Fluid Mech, 2012, 692, 257 doi: 10.1017/jfm.2011.509[48] Linton C M, McIver P. Embedded trapped modes in water waves and acoustics. Wave Motion, 2007, 45, 16 doi: 10.1016/j.wavemoti.2007.04.009[49] Lyapina A, Maksimov D, Pilipchuk A, et al. Bound states in the continuum in open acoustic resonators. J Fluid Mech, 2015, 780, 370 doi: 10.1017/jfm.2015.480[50] Xiao Y X, Ma G C, Zhang Z Q, et al. Topological subspace-induced bound state in the continuum. Phys Rev Lett, 2017, 118, 166803 doi: 10.1103/PhysRevLett.118.166803[51] Bulgakov E N, Maksimov D N, Semina P N, et al. Propagating bound states in the continuum in dielectric gratings. J Opt Soc Am B, 2018, 35, 1218 doi: 10.1364/JOSAB.35.001218[52] Koshelev K, Lepeshov S, Liu M K, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett, 2018, 121, 193903 doi: 10.1103/PhysRevLett.121.193903[53] Liang Y, Koshelev K, Zhang F C, et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett, 2020, 20, 6351 doi: 10.1021/acs.nanolett.0c01752[54] Bulgakov E N, Sadreev A F. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys Rev A, 2014, 90, 053801 doi: 10.1103/PhysRevA.90.053801[55] Yu Z J, Tong Y Y, Tsang H K, et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun, 2020, 11, 1 doi: 10.1038/s41467-019-13993-7[56] Yu Z J, Xi X, Ma J W, et al. Photonic integrated circuits with bound states in the continuum. Optica, 2019, 6, 1342 doi: 10.1364/OPTICA.6.001342[57] Azzam S I, Shalaev V M, Boltasseva A, et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys Rev Lett, 2018, 121, 253901 doi: 10.1103/PhysRevLett.121.253901[58] Zou C L, Cui J M, Sun F W, et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photonics Rev, 2015, 9, 114 doi: 10.1002/lpor.201400178[59] Yu Z J, Sun X K. Acousto-optic modulation of photonic bound state in the continuum. Light Sci Appl, 2020, 9, 1 doi: 10.1038/s41377-019-0231-1[60] Doskolovich L L, Bezus E A, Bykov D A. Integrated flat-top reflection filters operating near bound states in the continuum. Photon Res, 2019, 7, 1314 doi: 10.1364/PRJ.7.001314[61] Yu Z J, Sun X K. Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform. ACS Photonics, 2021, 8, 798 doi: 10.1021/acsphotonics.0c01607[62] Wang Y, Yu Z J, Zhang Z Y, et al. Bound-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photonics, 2020, 7, 2643 doi: 10.1021/acsphotonics.0c01233[63] Yu Z J, Wang Y, Sun B L, et al. Hybrid 2D-material photonics with bound states in the continuum. Adv Optical Mater, 2019, 7, 1901306 doi: 10.1002/adom.201901306[64] Dalvand N, Nguyen T G, Koch T L, et al. Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers. IEEE Photonics Technol Lett, 2013, 25, 163 doi: 10.1109/LPT.2012.2230620[65] Dalvand N, Nguyen T G, Tummidi R S, et al. Transition from “magic width” to “anti-magic width” in thin-ridge silicon-on-insulator waveguides. 2012 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2012, 1[66] Hope A P, Nguyen T G, Mitchell A, et al. Quantitative analysis of TM lateral leakage in foundry fabricated silicon rib waveguides. IEEE Photonics Technol Lett, 2016, 28, 493 doi: 10.1109/LPT.2015.2500233[67] Webster M A, Pafchek R M, Mitchell A, et al. Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides. IEEE Photonics Technol Lett, 2007, 19, 429 doi: 10.1109/LPT.2007.891979[68] Koshiba M, Kakihara K, Saitoh K. Reduced lateral leakage losses of TM-like modes in silicon-on-insulator ridge waveguides. Opt Lett, 2008, 33, 2008 doi: 10.1364/OL.33.002008[69] Xu X J, Chen S W, Yu J Z, et al. An investigation of the mode characteristics of SOI submicron rib waveguides using the film mode matching method. J Opt A: Pure Appl Opt, 2009, 11, 015508 doi: 10.1088/1464-4258/11/1/015508[70] Ako T, Hope A, Nguyen T, et al. Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides. Opt Express, 2015, 23, 2846 doi: 10.1364/OE.23.002846[71] Kakihara K, Saitoh K, Koshiba M. Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides. J Light Technol, 2009, 27, 5492 doi: 10.1109/JLT.2009.2027720[72] Nguyen T G, Tummidi R S, Koch T L, et al. Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers. IEEE Photonics Technol Lett, 2009, 21, 486 doi: 10.1109/LPT.2009.2013965[73] Ako T, Beeckman J, Bogaerts W, et al. Tuning the lateral leakage loss of TM-like modes in shallow-etched waveguides using liquid crystals. Appl Opt, 2014, 53, 214 doi: 10.1364/AO.53.000214[74] Nguyen T G, Tummidi R S, Koch T L, et al. Lateral leakage in TM-like whispering gallery mode of thin-ridge silicon-on-insulator disk resonators. Opt Lett, 2009, 34, 980 doi: 10.1364/OL.34.000980[75] Dalvand N, Nguyen T G, Tummidi R S, et al. Thin-ridge silicon-on-insulator waveguides with directional control of lateral leakage radiation. Opt Express, 2011, 19, 5635 doi: 10.1364/OE.19.005635[76] Nguyen T G, Ren G H, Schoenhardt S, et al. Ridge resonance in silicon photonics harnessing bound states in the continuum. Laser Photonics Rev, 2019, 13, 1900035 doi: 10.1002/lpor.201900035[77] Bezus E A, Bykov D A, Doskolovich L L. Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide. Photon Res, 2018, 6, 1084 doi: 10.1364/PRJ.6.001084[78] Hammer M, Ebers L, Förstner J. Oblique evanescent excitation of a dielectric strip: A model resonator with an open optical cavity of unlimited Q. Opt Express, 2019, 27, 9313 doi: 10.1364/OE.27.009313[79] Peng S T, Oliner A A. Guidance and leakage properties of a class of open dielectric waveguides: Part I - mathematical formulations. IEEE Trans Microw Theory Tech, 1981, 29, 843 doi: 10.1109/TMTT.1981.1130465[80] Muellner, P., N. Finger, and R. Hainberger. Lateral leakage in symmetric SOI rib-type slot waveguides. Optics Express, 2008, 16(1): p.287−294. doi: 10.1109/AOE.2007.4410799[81] Nguyen T G, Tummidi R S, Koch T L, et al. Lateral leakage of TM-like mode in thin-ridge silicon-on-insulator bent waveguides and ring resonators. Opt Express, 2010, 18, 7243 doi: 10.1364/OE.18.007243[82] Dai D X, Wang Z, Julian N, et al. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Opt Express, 2010, 18, 27404 doi: 10.1364/OE.18.027404[83] Xu H N, Shi Y C. Silicon-waveguide-integrated high-quality metagrating supporting bound state in the continuum. Laser Photonics Rev, 2020, 14, 1900430 doi: 10.1002/lpor.201900430[84] Yu Y, Yu Z J, Wang L, et al. Ultralow-loss etchless lithium niobate integrated photonics at near-visible wavelengths. Adv Optical Mater, 2021, 9, 2100060 doi: 10.1002/adom.202100060[85] Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat Photonics, 2018, 12, 91 doi: 10.1038/s41566-017-0075-2[86] Gavartin E, Verlot P, Kippenberg T J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat Nanotechnol, 2012, 7, 509 doi: 10.1038/nnano.2012.97[87] Beugnot J C, Lebrun S, Pauliat G, et al. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat Commun, 2014, 5, 1 doi: 10.1038/ncomms6242[88] Chan E H W, Minasian R A. All-optical frequency shifter based on stimulated Brillouin scattering in an optical fiber. IEEE Photonics J, 2014, 6, 1 doi: 10.1109/JPHOT.2014.2312921[89] Kang M S, Butsch A, St J Russell P. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat Photonics, 2011, 5, 549 doi: 10.1038/nphoton.2011.180[90] Santagiustina M, Chin S, Primerov N, et al. All-optical signal processing using dynamic Brillouin gratings. Sci Rep, 2013, 3, 1594 doi: 10.1038/srep01594[91] Alexander K, Savostianova N A, Mikhailov S A, et al. Electrically tunable optical nonlinearities in graphene-covered SiN waveguides characterized by four-wave mixing. ACS Photonics, 2017, 4, 3039 doi: 10.1021/acsphotonics.7b00559[92] Ge X C, Minkov M, Fan S H, et al. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide. Npj 2D Mater Appl, 2019, 3, 1 doi: 10.1038/s41699-018-0083-1[93] Phare C T, Lee Y H D, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics, 2015, 9, 511 doi: 10.1038/nphoton.2015.122[94] Li Z Q, Dong N N, Zhang Y X, et al. Invited article: Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber. APL Photonics, 2018, 3, 080802 doi: 10.1063/1.5032243 -
Proportional views