REVIEWS

Fundamentals and applications of photonic waveguides with bound states in the continuum

Zejie Yu1, 3, 4, , He Gao1, Yi Wang2, Yue Yu2, Hon Ki Tsang2, Xiankai Sun2 and Daoxin Dai1, 3, 4, 5

+ Author Affiliations

 Corresponding author: Zejie Yu, zjyu@zju.edu.cn

PDF

Turn off MathJax

Abstract: Photonic waveguides are the most fundamental element for photonic integrated circuits (PICs). Waveguide properties, such as propagation loss, modal areas, nonlinear coefficients, etc., directly determine the functionalities and performance of PICs. Recently, the emerging waveguides with bound states in the continuum (BICs) have opened new opportunities for PICs because of their special properties in resonance and radiation. Here, we review the recent progress of PICs composed of waveguides with BICs. First, fundamentals including background physics and design rules of a BIC-based waveguide will be introduced. Next, two types of BIC-based waveguide structures, including shallowly etched dielectric and hybrid waveguides, will be presented. Lastly, the challenges and opportunities of PICs with BICs will be discussed.

Key words: photonic waveguidebound states in the continuumintegrated photonics



[1]
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[2]
Doerr C R. Silicon photonic integration in telecommunications. Front Phys, 2015, 3, 37 doi: 10.3389/fphy.2015.00037
[3]
Shastri B J, Tait A N, Ferreira de Lima T, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 2021, 15, 102 doi: 10.1038/s41566-020-00754-y
[4]
Shen Y C, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 2017, 11, 441 doi: 10.1038/nphoton.2017.93
[5]
Wang J W, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat Photonics, 2020, 14, 273 doi: 10.1038/s41566-019-0532-1
[6]
Elshaari A W, Pernice W, Srinivasan K, et al. Hybrid integrated quantum photonic circuits. Nat Photonics, 2020, 14, 285 doi: 10.1038/s41566-020-0609-x
[7]
Liu J Q, Tian H, Lucas E, et al. Monolithic piezoelectric control of soliton microcombs. Nature, 2020, 583, 385 doi: 10.1038/s41586-020-2465-8
[8]
Weimann C, Lauermann M, Hoeller F, et al. Silicon photonic integrated circuit for fast and precise dual-comb distance metrology. Opt Express, 2017, 25, 30091 doi: 10.1364/OE.25.030091
[9]
Lu Y J, Wang C Y, Kim J, et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett, 2014, 14, 4381 doi: 10.1021/nl501273u
[10]
Liu X F, Zhang Q, Yip J N, et al. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced burstein–moss effect. Nano Lett, 2013, 13, 5336 doi: 10.1021/nl402836x
[11]
Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461, 629 doi: 10.1038/nature08364
[12]
Grandi S, Nielsen M P, Cambiasso J, et al. Hybrid plasmonic waveguide coupling of photons from a single molecule. APL Photonics, 2019, 4, 086101 doi: 10.1063/1.5110275
[13]
Guo J S, Li J, Liu C Y, et al. High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci Appl, 2020, 29, 1 doi: 10.1038/s41377-020-0263-6
[14]
Ding Y H, Cheng Z, Zhu X L, et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 2020, 9, 317 doi: 10.1515/nanoph-2019-0167
[15]
Li Z, Corbett B, Gocalinska A, et al. Direct visualization of phase-matched efficient second harmonic and broadband sum frequency generation in hybrid plasmonic nanostructures. Light Sci Appl, 2020, 9, 180 doi: 10.1038/s41377-020-00414-4
[16]
Agreda A, Sharma D K, Colas des Francs G, et al. Modal and wavelength conversions in plasmonic nanowires. Opt Express, 2021, 29, 15366 doi: 10.1364/OE.421183
[17]
Heni W, Haffner C, Elder D L, et al. Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. Opt Express, 2017, 25, 2627 doi: 10.1364/OE.25.002627
[18]
Ferrotti T, Blampey B, Jany C, et al. Co-integrated 13µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/S. Opt Express, 2016, 24, 30379 doi: 10.1364/OE.24.030379
[19]
Zhou J, Huang L J, Fu Z Y, et al. Multiplexed simultaneous high sensitivity sensors with high-order mode based on the integration of photonic crystal 1 × 3 beam splitter and three different single-slot PCNCs. Sensors (Basel), 2016, 16, 1050 doi: 10.3390/s16071050
[20]
Bettotti P. Hybrid materials for integrated photonics. Adv Opt, 2014, 2014, 1 doi: 10.1155/2014/891395
[21]
Heni W, Fedoryshyn Y, Baeuerle B, et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat Commun, 2019, 10, 1694 doi: 10.1038/s41467-019-09724-7
[22]
Dai D X, Shi Y C, He S L, et al. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express, 2011, 19, 12925 doi: 10.1364/OE.19.012925
[23]
Halir R, Bock P J, Cheben P, et al. Waveguide sub-wavelength structures: A review of principles and applications. Laser Photonics Rev, 2015, 9, 25 doi: 10.1002/lpor.201400083
[24]
Ma J W, Xi X, Sun X K. Topological photonic integrated circuits based on valley kink states. Laser Photonics Rev, 2019, 13, 1900087 doi: 10.1002/lpor.201900087
[25]
Baba T. Slow light in photonic crystals. Nat Photonics, 2008, 2, 465 doi: 10.1038/nphoton.2008.146
[26]
Iwamoto S, Ota Y, Arakawa Y. Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform. Opt Mater Express, 2021, 11, 319 doi: 10.1364/OME.415128
[27]
Ono M, Hata M, Tsunekawa M, et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics, 2020, 14, 37 doi: 10.1038/s41566-019-0547-7
[28]
Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express, 2009, 17, 16646 doi: 10.1364/OE.17.016646
[29]
He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13, 359 doi: 10.1038/s41566-019-0378-6
[30]
von Neumann J, Wigner E. On some peculiar discrete eigenvalues. Phys Z, 1929, 30, 465
[31]
Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum. Nat Rev Mater, 2016, 1, 16048 doi: 10.1038/natrevmats.2016.48
[32]
Bulgakov E N, Maksimov D N. Light guiding above the light line in arrays of dielectric nanospheres. Opt Lett, 2016, 41, 3888 doi: 10.1364/OL.41.003888
[33]
Bulgakov E N, Maksimov D N. Topological bound states in the continuum in arrays of dielectric spheres. Phys Rev Lett, 2017, 118, 267401 doi: 10.1103/PhysRevLett.118.267401
[34]
Bykov D A, Bezus E A, Doskolovich L L. Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings. Phys Rev A, 2019, 99, 063805 doi: 10.1103/PhysRevA.99.063805
[35]
Gomis-Bresco J, Artigas D, Torner L. Anisotropy-induced photonic bound states in the continuum. Nat Photonics, 2017, 11, 232 doi: 10.1038/nphoton.2017.31
[36]
Hsu C W, Zhen B, Lee J, et al. Observation of trapped light within the radiation continuum. Nature, 2013, 499, 188 doi: 10.1038/nature12289
[37]
Kodigala A, Lepetit T, Gu Q, et al. Lasing action from photonic bound states in continuum. Nature, 2017, 541, 196 doi: 10.1038/nature20799
[38]
Koshelev K, Favraud G, Bogdanov A, et al. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics, 2019, 8, 725 doi: 10.1515/nanoph-2019-0024
[39]
Longhi S. Optical analog of population trapping in the continuum: Classical and quantum interference effects. Phys Rev A, 2009, 79, 023811 doi: 10.1103/PhysRevA.79.023811
[40]
Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics. Phys Rev Lett, 2008, 100, 183902 doi: 10.1103/PhysRevLett.100.183902
[41]
Monticone F, Alù A. Embedded photonic eigenvalues in 3D nanostructures. Phys Rev Lett, 2014, 112, 213903 doi: 10.1103/PhysRevLett.112.213903
[42]
Plotnik Y, Peleg O, Dreisow F, et al. Experimental observation of optical bound states in the continuum. Phys Rev Lett, 2011, 107, 183901 doi: 10.1103/PhysRevLett.107.183901
[43]
Rybin M V, Koshelev K L, Sadrieva Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys Rev Lett, 2017, 119, 243901 doi: 10.1103/PhysRevLett.119.243901
[44]
Weimann S, Xu Y, Keil R, et al. Compact fano states embedded in the continuum of waveguide arrays. Phys Rev Lett, 2013, 111, 240403 doi: 10.1103/PhysRevLett.111.240403
[45]
Zhen B, Hsu C W, Lu L, et al. Topological nature of optical bound states in the continuum. Phys Rev Lett, 2014, 113, 257401 doi: 10.1103/PhysRevLett.113.257401
[46]
Chen Y, Shen Z, Xiong X, et al. Mechanical bound state in the continuum for optomechanical microresonators. New J Phys, 2016, 18, 063031 doi: 10.1088/1367-2630/18/6/063031
[47]
Hein S, Koch W, Nannen L. Trapped modes and Fano resonances in two-dimensional acoustical duct–cavity systems. J Fluid Mech, 2012, 692, 257 doi: 10.1017/jfm.2011.509
[48]
Linton C M, McIver P. Embedded trapped modes in water waves and acoustics. Wave Motion, 2007, 45, 16 doi: 10.1016/j.wavemoti.2007.04.009
[49]
Lyapina A, Maksimov D, Pilipchuk A, et al. Bound states in the continuum in open acoustic resonators. J Fluid Mech, 2015, 780, 370 doi: 10.1017/jfm.2015.480
[50]
Xiao Y X, Ma G C, Zhang Z Q, et al. Topological subspace-induced bound state in the continuum. Phys Rev Lett, 2017, 118, 166803 doi: 10.1103/PhysRevLett.118.166803
[51]
Bulgakov E N, Maksimov D N, Semina P N, et al. Propagating bound states in the continuum in dielectric gratings. J Opt Soc Am B, 2018, 35, 1218 doi: 10.1364/JOSAB.35.001218
[52]
Koshelev K, Lepeshov S, Liu M K, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett, 2018, 121, 193903 doi: 10.1103/PhysRevLett.121.193903
[53]
Liang Y, Koshelev K, Zhang F C, et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett, 2020, 20, 6351 doi: 10.1021/acs.nanolett.0c01752
[54]
Bulgakov E N, Sadreev A F. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys Rev A, 2014, 90, 053801 doi: 10.1103/PhysRevA.90.053801
[55]
Yu Z J, Tong Y Y, Tsang H K, et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun, 2020, 11, 1 doi: 10.1038/s41467-019-13993-7
[56]
Yu Z J, Xi X, Ma J W, et al. Photonic integrated circuits with bound states in the continuum. Optica, 2019, 6, 1342 doi: 10.1364/OPTICA.6.001342
[57]
Azzam S I, Shalaev V M, Boltasseva A, et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys Rev Lett, 2018, 121, 253901 doi: 10.1103/PhysRevLett.121.253901
[58]
Zou C L, Cui J M, Sun F W, et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photonics Rev, 2015, 9, 114 doi: 10.1002/lpor.201400178
[59]
Yu Z J, Sun X K. Acousto-optic modulation of photonic bound state in the continuum. Light Sci Appl, 2020, 9, 1 doi: 10.1038/s41377-019-0231-1
[60]
Doskolovich L L, Bezus E A, Bykov D A. Integrated flat-top reflection filters operating near bound states in the continuum. Photon Res, 2019, 7, 1314 doi: 10.1364/PRJ.7.001314
[61]
Yu Z J, Sun X K. Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform. ACS Photonics, 2021, 8, 798 doi: 10.1021/acsphotonics.0c01607
[62]
Wang Y, Yu Z J, Zhang Z Y, et al. Bound-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photonics, 2020, 7, 2643 doi: 10.1021/acsphotonics.0c01233
[63]
Yu Z J, Wang Y, Sun B L, et al. Hybrid 2D-material photonics with bound states in the continuum. Adv Optical Mater, 2019, 7, 1901306 doi: 10.1002/adom.201901306
[64]
Dalvand N, Nguyen T G, Koch T L, et al. Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers. IEEE Photonics Technol Lett, 2013, 25, 163 doi: 10.1109/LPT.2012.2230620
[65]
Dalvand N, Nguyen T G, Tummidi R S, et al. Transition from “magic width” to “anti-magic width” in thin-ridge silicon-on-insulator waveguides. 2012 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2012, 1
[66]
Hope A P, Nguyen T G, Mitchell A, et al. Quantitative analysis of TM lateral leakage in foundry fabricated silicon rib waveguides. IEEE Photonics Technol Lett, 2016, 28, 493 doi: 10.1109/LPT.2015.2500233
[67]
Webster M A, Pafchek R M, Mitchell A, et al. Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides. IEEE Photonics Technol Lett, 2007, 19, 429 doi: 10.1109/LPT.2007.891979
[68]
Koshiba M, Kakihara K, Saitoh K. Reduced lateral leakage losses of TM-like modes in silicon-on-insulator ridge waveguides. Opt Lett, 2008, 33, 2008 doi: 10.1364/OL.33.002008
[69]
Xu X J, Chen S W, Yu J Z, et al. An investigation of the mode characteristics of SOI submicron rib waveguides using the film mode matching method. J Opt A: Pure Appl Opt, 2009, 11, 015508 doi: 10.1088/1464-4258/11/1/015508
[70]
Ako T, Hope A, Nguyen T, et al. Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides. Opt Express, 2015, 23, 2846 doi: 10.1364/OE.23.002846
[71]
Kakihara K, Saitoh K, Koshiba M. Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides. J Light Technol, 2009, 27, 5492 doi: 10.1109/JLT.2009.2027720
[72]
Nguyen T G, Tummidi R S, Koch T L, et al. Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers. IEEE Photonics Technol Lett, 2009, 21, 486 doi: 10.1109/LPT.2009.2013965
[73]
Ako T, Beeckman J, Bogaerts W, et al. Tuning the lateral leakage loss of TM-like modes in shallow-etched waveguides using liquid crystals. Appl Opt, 2014, 53, 214 doi: 10.1364/AO.53.000214
[74]
Nguyen T G, Tummidi R S, Koch T L, et al. Lateral leakage in TM-like whispering gallery mode of thin-ridge silicon-on-insulator disk resonators. Opt Lett, 2009, 34, 980 doi: 10.1364/OL.34.000980
[75]
Dalvand N, Nguyen T G, Tummidi R S, et al. Thin-ridge silicon-on-insulator waveguides with directional control of lateral leakage radiation. Opt Express, 2011, 19, 5635 doi: 10.1364/OE.19.005635
[76]
Nguyen T G, Ren G H, Schoenhardt S, et al. Ridge resonance in silicon photonics harnessing bound states in the continuum. Laser Photonics Rev, 2019, 13, 1900035 doi: 10.1002/lpor.201900035
[77]
Bezus E A, Bykov D A, Doskolovich L L. Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide. Photon Res, 2018, 6, 1084 doi: 10.1364/PRJ.6.001084
[78]
Hammer M, Ebers L, Förstner J. Oblique evanescent excitation of a dielectric strip: A model resonator with an open optical cavity of unlimited Q. Opt Express, 2019, 27, 9313 doi: 10.1364/OE.27.009313
[79]
Peng S T, Oliner A A. Guidance and leakage properties of a class of open dielectric waveguides: Part I - mathematical formulations. IEEE Trans Microw Theory Tech, 1981, 29, 843 doi: 10.1109/TMTT.1981.1130465
[80]
Muellner, P., N. Finger, and R. Hainberger. Lateral leakage in symmetric SOI rib-type slot waveguides. Optics Express, 2008, 16(1): p.287−294. doi: 10.1109/AOE.2007.4410799
[81]
Nguyen T G, Tummidi R S, Koch T L, et al. Lateral leakage of TM-like mode in thin-ridge silicon-on-insulator bent waveguides and ring resonators. Opt Express, 2010, 18, 7243 doi: 10.1364/OE.18.007243
[82]
Dai D X, Wang Z, Julian N, et al. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Opt Express, 2010, 18, 27404 doi: 10.1364/OE.18.027404
[83]
Xu H N, Shi Y C. Silicon-waveguide-integrated high-quality metagrating supporting bound state in the continuum. Laser Photonics Rev, 2020, 14, 1900430 doi: 10.1002/lpor.201900430
[84]
Yu Y, Yu Z J, Wang L, et al. Ultralow-loss etchless lithium niobate integrated photonics at near-visible wavelengths. Adv Optical Mater, 2021, 9, 2100060 doi: 10.1002/adom.202100060
[85]
Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat Photonics, 2018, 12, 91 doi: 10.1038/s41566-017-0075-2
[86]
Gavartin E, Verlot P, Kippenberg T J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat Nanotechnol, 2012, 7, 509 doi: 10.1038/nnano.2012.97
[87]
Beugnot J C, Lebrun S, Pauliat G, et al. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat Commun, 2014, 5, 1 doi: 10.1038/ncomms6242
[88]
Chan E H W, Minasian R A. All-optical frequency shifter based on stimulated Brillouin scattering in an optical fiber. IEEE Photonics J, 2014, 6, 1 doi: 10.1109/JPHOT.2014.2312921
[89]
Kang M S, Butsch A, St J Russell P. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat Photonics, 2011, 5, 549 doi: 10.1038/nphoton.2011.180
[90]
Santagiustina M, Chin S, Primerov N, et al. All-optical signal processing using dynamic Brillouin gratings. Sci Rep, 2013, 3, 1594 doi: 10.1038/srep01594
[91]
Alexander K, Savostianova N A, Mikhailov S A, et al. Electrically tunable optical nonlinearities in graphene-covered SiN waveguides characterized by four-wave mixing. ACS Photonics, 2017, 4, 3039 doi: 10.1021/acsphotonics.7b00559
[92]
Ge X C, Minkov M, Fan S H, et al. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide. Npj 2D Mater Appl, 2019, 3, 1 doi: 10.1038/s41699-018-0083-1
[93]
Phare C T, Lee Y H D, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics, 2015, 9, 511 doi: 10.1038/nphoton.2015.122
[94]
Li Z Q, Dong N N, Zhang Y X, et al. Invited article: Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber. APL Photonics, 2018, 3, 080802 doi: 10.1063/1.5032243
Fig. 1.  (Color online) (a) Strip, slot, ridge, and subwavelength waveguides. (b) A plasmonic slot waveguide. (c) A hybrid waveguide[18]. Copyright 2016, The Optical Society. (d) A photonic crystal waveguide. (e) A hybrid plasmonic cap waveguide[28]. Copyright 2009, The Optical Society.

Fig. 2.  (Color online) (a) A slab waveguide and its s- and p-polarized modal profiles. (b) A strip waveguide with its RI distributions of both s and p polarizations. (c) Modal profiles |E| of the TE and TM modes in a strip waveguide. (d) A ridge waveguide. (e) Modal profiles |E| of TE and TM continuous modes. The RI distributions of the ridge waveguide with nsc > nps (f) and nsc < nps (g). (h) Modal profiles of the TE and TM modes in a thin-ridge waveguide with nsc < nps. (i) Schematically illustration of leakage channels.

Fig. 3.  (Color online) (a) Schematically illustration of a thin-ridge silicon waveguide. (b) The propagation loss of the TM mode as a function of the waveguide width[72]. Copyright 2009, IEEE. (c) Modal profiles of the TM mode at waveguides with “magic width” and “anti-magic width”[72]. Copyright 2009, IEEE. (d) Planar view and modal coupling diagram of a bend thin-ridge waveguide[81]. Copyright 2010, The Optical Society. (e) The propagation loss of the TM mode in a bent waveguide as a function of the waveguide width and radius[81]. Copyright 2010, The Optical Society.

Fig. 4.  (Color online) (a) A fabricated silicon thin-ridge waveguide and the scattering field views of waveguides with “magic width” and “non-magic width”[66]. Copyright 2016, IEEE. (b) The measured propagation loss of the waveguide with different widths[66]. Copyright 2016, IEEE. (c) Modal profiles of the TE and TM modes in a waveguide with “anti-magic” structural parameters[82]. Copyright 2010, The Optical Society. (d) The measured results for the transmissions of the TE and TM modes[82]. Copyright 2010, The Optical Society.

Fig. 5.  (Color online) (a) Schematic illustration of a silicon thin-ridge waveguide supporting BIC resonances and its simulated transmission spectra as a function of waveguide width and incident angle[77]. Copyright 2018, Chinese Laser Press. (b) A fabricated silicon waveguide supporting BIC resonances and its measured resonance[76]. Copyright 2019, John Wiley & Sons. (c) A fabricated metagrating waveguide and its measured BIC resonance for applications in sensing[83]. Copyright 2020, John Wiley & Sons. (d) A flat-top filter based on BIC waveguides and its simulated transmission and reflection spectra[60]. Copyright 2019, Chinese Laser Press.

Fig. 6.  (Color online) (a) Schematic illustration of a straight hybrid waveguide[56]. (b) RI distributions of s and p polarizations. (c) Modal profiles of a TM mode in waveguides with BIC and non-BIC parameters[56]. (d) Fabricated straight waveguides and measured propagation loss as a function of waveguide width[56]. (e) Fabricated bent waveguides and measured propagation loss as functions of waveguide width and bending radius[56]. Copyright 2019, The Optical Society.

Fig. 7.  (Color online) (a) Measured transmission spectrum of the fabricated microring cavity with structural parameters satisfying the BIC condition[56]. (b) Optical microscope image of the fabricated directional coupler and the corresponding measured spectrum[56]. (c) Optical microscope image of the fabricated MZI and the corresponding measured spectrum[56]. Copyright 2019, The Optical Society.

Fig. 8.  (Color online) (a) An optical microscope image of the fabricated mode (de)multiplexer integrated with EO modulators[55]. (b) Propagation loss and effective RIs of the different orders of TM modes as a function of the waveguide width w[55]. (c) Normalized spectra of light transmission for a fabricated mode (de)multiplexer[55]. (d) Measured modulated signals for each order of modes[55]. Copyright 2020, Springer Nature Limited.

Fig. 9.  (Color online) (a) Schematic illustration of AO cavity modulation[59]. (b) Measured AO modulation signals with a frequency higher than 4 GHz[59]. (c) Measured AO-induced transparency and absorption[59]. Copyright 2020, Light: Science & Applications. (d) Schematic illustration of AO waveguide modulation[61]. (e) Measured frequency shifts[61]. Copyright 2021, ACS.

Fig. 10.  (Color online) (a) Schematic illustration of a 2D material integrated with a BIC waveguide[63]. (b) A fabricated hybrid graphene thermo-optic modulator with BICs and its measured spectra[63]. (c) A fabricated hybrid graphene photodetector with BICs and its measured optoelectrical response[63]. (d) A fabricated hybrid graphene EO modulation with BIC and its measured EO response[63]. Copyright 2019, John Wiley & Sons. (e) A fabricated hybrid PtSe2 photodetector with BICs and its measured optoelectrical response[62]. Copyright 2020, ACS.

[1]
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[2]
Doerr C R. Silicon photonic integration in telecommunications. Front Phys, 2015, 3, 37 doi: 10.3389/fphy.2015.00037
[3]
Shastri B J, Tait A N, Ferreira de Lima T, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 2021, 15, 102 doi: 10.1038/s41566-020-00754-y
[4]
Shen Y C, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 2017, 11, 441 doi: 10.1038/nphoton.2017.93
[5]
Wang J W, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat Photonics, 2020, 14, 273 doi: 10.1038/s41566-019-0532-1
[6]
Elshaari A W, Pernice W, Srinivasan K, et al. Hybrid integrated quantum photonic circuits. Nat Photonics, 2020, 14, 285 doi: 10.1038/s41566-020-0609-x
[7]
Liu J Q, Tian H, Lucas E, et al. Monolithic piezoelectric control of soliton microcombs. Nature, 2020, 583, 385 doi: 10.1038/s41586-020-2465-8
[8]
Weimann C, Lauermann M, Hoeller F, et al. Silicon photonic integrated circuit for fast and precise dual-comb distance metrology. Opt Express, 2017, 25, 30091 doi: 10.1364/OE.25.030091
[9]
Lu Y J, Wang C Y, Kim J, et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett, 2014, 14, 4381 doi: 10.1021/nl501273u
[10]
Liu X F, Zhang Q, Yip J N, et al. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced burstein–moss effect. Nano Lett, 2013, 13, 5336 doi: 10.1021/nl402836x
[11]
Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461, 629 doi: 10.1038/nature08364
[12]
Grandi S, Nielsen M P, Cambiasso J, et al. Hybrid plasmonic waveguide coupling of photons from a single molecule. APL Photonics, 2019, 4, 086101 doi: 10.1063/1.5110275
[13]
Guo J S, Li J, Liu C Y, et al. High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci Appl, 2020, 29, 1 doi: 10.1038/s41377-020-0263-6
[14]
Ding Y H, Cheng Z, Zhu X L, et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 2020, 9, 317 doi: 10.1515/nanoph-2019-0167
[15]
Li Z, Corbett B, Gocalinska A, et al. Direct visualization of phase-matched efficient second harmonic and broadband sum frequency generation in hybrid plasmonic nanostructures. Light Sci Appl, 2020, 9, 180 doi: 10.1038/s41377-020-00414-4
[16]
Agreda A, Sharma D K, Colas des Francs G, et al. Modal and wavelength conversions in plasmonic nanowires. Opt Express, 2021, 29, 15366 doi: 10.1364/OE.421183
[17]
Heni W, Haffner C, Elder D L, et al. Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. Opt Express, 2017, 25, 2627 doi: 10.1364/OE.25.002627
[18]
Ferrotti T, Blampey B, Jany C, et al. Co-integrated 13µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/S. Opt Express, 2016, 24, 30379 doi: 10.1364/OE.24.030379
[19]
Zhou J, Huang L J, Fu Z Y, et al. Multiplexed simultaneous high sensitivity sensors with high-order mode based on the integration of photonic crystal 1 × 3 beam splitter and three different single-slot PCNCs. Sensors (Basel), 2016, 16, 1050 doi: 10.3390/s16071050
[20]
Bettotti P. Hybrid materials for integrated photonics. Adv Opt, 2014, 2014, 1 doi: 10.1155/2014/891395
[21]
Heni W, Fedoryshyn Y, Baeuerle B, et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat Commun, 2019, 10, 1694 doi: 10.1038/s41467-019-09724-7
[22]
Dai D X, Shi Y C, He S L, et al. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express, 2011, 19, 12925 doi: 10.1364/OE.19.012925
[23]
Halir R, Bock P J, Cheben P, et al. Waveguide sub-wavelength structures: A review of principles and applications. Laser Photonics Rev, 2015, 9, 25 doi: 10.1002/lpor.201400083
[24]
Ma J W, Xi X, Sun X K. Topological photonic integrated circuits based on valley kink states. Laser Photonics Rev, 2019, 13, 1900087 doi: 10.1002/lpor.201900087
[25]
Baba T. Slow light in photonic crystals. Nat Photonics, 2008, 2, 465 doi: 10.1038/nphoton.2008.146
[26]
Iwamoto S, Ota Y, Arakawa Y. Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform. Opt Mater Express, 2021, 11, 319 doi: 10.1364/OME.415128
[27]
Ono M, Hata M, Tsunekawa M, et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics, 2020, 14, 37 doi: 10.1038/s41566-019-0547-7
[28]
Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express, 2009, 17, 16646 doi: 10.1364/OE.17.016646
[29]
He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13, 359 doi: 10.1038/s41566-019-0378-6
[30]
von Neumann J, Wigner E. On some peculiar discrete eigenvalues. Phys Z, 1929, 30, 465
[31]
Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum. Nat Rev Mater, 2016, 1, 16048 doi: 10.1038/natrevmats.2016.48
[32]
Bulgakov E N, Maksimov D N. Light guiding above the light line in arrays of dielectric nanospheres. Opt Lett, 2016, 41, 3888 doi: 10.1364/OL.41.003888
[33]
Bulgakov E N, Maksimov D N. Topological bound states in the continuum in arrays of dielectric spheres. Phys Rev Lett, 2017, 118, 267401 doi: 10.1103/PhysRevLett.118.267401
[34]
Bykov D A, Bezus E A, Doskolovich L L. Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings. Phys Rev A, 2019, 99, 063805 doi: 10.1103/PhysRevA.99.063805
[35]
Gomis-Bresco J, Artigas D, Torner L. Anisotropy-induced photonic bound states in the continuum. Nat Photonics, 2017, 11, 232 doi: 10.1038/nphoton.2017.31
[36]
Hsu C W, Zhen B, Lee J, et al. Observation of trapped light within the radiation continuum. Nature, 2013, 499, 188 doi: 10.1038/nature12289
[37]
Kodigala A, Lepetit T, Gu Q, et al. Lasing action from photonic bound states in continuum. Nature, 2017, 541, 196 doi: 10.1038/nature20799
[38]
Koshelev K, Favraud G, Bogdanov A, et al. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics, 2019, 8, 725 doi: 10.1515/nanoph-2019-0024
[39]
Longhi S. Optical analog of population trapping in the continuum: Classical and quantum interference effects. Phys Rev A, 2009, 79, 023811 doi: 10.1103/PhysRevA.79.023811
[40]
Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics. Phys Rev Lett, 2008, 100, 183902 doi: 10.1103/PhysRevLett.100.183902
[41]
Monticone F, Alù A. Embedded photonic eigenvalues in 3D nanostructures. Phys Rev Lett, 2014, 112, 213903 doi: 10.1103/PhysRevLett.112.213903
[42]
Plotnik Y, Peleg O, Dreisow F, et al. Experimental observation of optical bound states in the continuum. Phys Rev Lett, 2011, 107, 183901 doi: 10.1103/PhysRevLett.107.183901
[43]
Rybin M V, Koshelev K L, Sadrieva Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys Rev Lett, 2017, 119, 243901 doi: 10.1103/PhysRevLett.119.243901
[44]
Weimann S, Xu Y, Keil R, et al. Compact fano states embedded in the continuum of waveguide arrays. Phys Rev Lett, 2013, 111, 240403 doi: 10.1103/PhysRevLett.111.240403
[45]
Zhen B, Hsu C W, Lu L, et al. Topological nature of optical bound states in the continuum. Phys Rev Lett, 2014, 113, 257401 doi: 10.1103/PhysRevLett.113.257401
[46]
Chen Y, Shen Z, Xiong X, et al. Mechanical bound state in the continuum for optomechanical microresonators. New J Phys, 2016, 18, 063031 doi: 10.1088/1367-2630/18/6/063031
[47]
Hein S, Koch W, Nannen L. Trapped modes and Fano resonances in two-dimensional acoustical duct–cavity systems. J Fluid Mech, 2012, 692, 257 doi: 10.1017/jfm.2011.509
[48]
Linton C M, McIver P. Embedded trapped modes in water waves and acoustics. Wave Motion, 2007, 45, 16 doi: 10.1016/j.wavemoti.2007.04.009
[49]
Lyapina A, Maksimov D, Pilipchuk A, et al. Bound states in the continuum in open acoustic resonators. J Fluid Mech, 2015, 780, 370 doi: 10.1017/jfm.2015.480
[50]
Xiao Y X, Ma G C, Zhang Z Q, et al. Topological subspace-induced bound state in the continuum. Phys Rev Lett, 2017, 118, 166803 doi: 10.1103/PhysRevLett.118.166803
[51]
Bulgakov E N, Maksimov D N, Semina P N, et al. Propagating bound states in the continuum in dielectric gratings. J Opt Soc Am B, 2018, 35, 1218 doi: 10.1364/JOSAB.35.001218
[52]
Koshelev K, Lepeshov S, Liu M K, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett, 2018, 121, 193903 doi: 10.1103/PhysRevLett.121.193903
[53]
Liang Y, Koshelev K, Zhang F C, et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett, 2020, 20, 6351 doi: 10.1021/acs.nanolett.0c01752
[54]
Bulgakov E N, Sadreev A F. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys Rev A, 2014, 90, 053801 doi: 10.1103/PhysRevA.90.053801
[55]
Yu Z J, Tong Y Y, Tsang H K, et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun, 2020, 11, 1 doi: 10.1038/s41467-019-13993-7
[56]
Yu Z J, Xi X, Ma J W, et al. Photonic integrated circuits with bound states in the continuum. Optica, 2019, 6, 1342 doi: 10.1364/OPTICA.6.001342
[57]
Azzam S I, Shalaev V M, Boltasseva A, et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys Rev Lett, 2018, 121, 253901 doi: 10.1103/PhysRevLett.121.253901
[58]
Zou C L, Cui J M, Sun F W, et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photonics Rev, 2015, 9, 114 doi: 10.1002/lpor.201400178
[59]
Yu Z J, Sun X K. Acousto-optic modulation of photonic bound state in the continuum. Light Sci Appl, 2020, 9, 1 doi: 10.1038/s41377-019-0231-1
[60]
Doskolovich L L, Bezus E A, Bykov D A. Integrated flat-top reflection filters operating near bound states in the continuum. Photon Res, 2019, 7, 1314 doi: 10.1364/PRJ.7.001314
[61]
Yu Z J, Sun X K. Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform. ACS Photonics, 2021, 8, 798 doi: 10.1021/acsphotonics.0c01607
[62]
Wang Y, Yu Z J, Zhang Z Y, et al. Bound-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photonics, 2020, 7, 2643 doi: 10.1021/acsphotonics.0c01233
[63]
Yu Z J, Wang Y, Sun B L, et al. Hybrid 2D-material photonics with bound states in the continuum. Adv Optical Mater, 2019, 7, 1901306 doi: 10.1002/adom.201901306
[64]
Dalvand N, Nguyen T G, Koch T L, et al. Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers. IEEE Photonics Technol Lett, 2013, 25, 163 doi: 10.1109/LPT.2012.2230620
[65]
Dalvand N, Nguyen T G, Tummidi R S, et al. Transition from “magic width” to “anti-magic width” in thin-ridge silicon-on-insulator waveguides. 2012 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2012, 1
[66]
Hope A P, Nguyen T G, Mitchell A, et al. Quantitative analysis of TM lateral leakage in foundry fabricated silicon rib waveguides. IEEE Photonics Technol Lett, 2016, 28, 493 doi: 10.1109/LPT.2015.2500233
[67]
Webster M A, Pafchek R M, Mitchell A, et al. Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides. IEEE Photonics Technol Lett, 2007, 19, 429 doi: 10.1109/LPT.2007.891979
[68]
Koshiba M, Kakihara K, Saitoh K. Reduced lateral leakage losses of TM-like modes in silicon-on-insulator ridge waveguides. Opt Lett, 2008, 33, 2008 doi: 10.1364/OL.33.002008
[69]
Xu X J, Chen S W, Yu J Z, et al. An investigation of the mode characteristics of SOI submicron rib waveguides using the film mode matching method. J Opt A: Pure Appl Opt, 2009, 11, 015508 doi: 10.1088/1464-4258/11/1/015508
[70]
Ako T, Hope A, Nguyen T, et al. Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides. Opt Express, 2015, 23, 2846 doi: 10.1364/OE.23.002846
[71]
Kakihara K, Saitoh K, Koshiba M. Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides. J Light Technol, 2009, 27, 5492 doi: 10.1109/JLT.2009.2027720
[72]
Nguyen T G, Tummidi R S, Koch T L, et al. Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers. IEEE Photonics Technol Lett, 2009, 21, 486 doi: 10.1109/LPT.2009.2013965
[73]
Ako T, Beeckman J, Bogaerts W, et al. Tuning the lateral leakage loss of TM-like modes in shallow-etched waveguides using liquid crystals. Appl Opt, 2014, 53, 214 doi: 10.1364/AO.53.000214
[74]
Nguyen T G, Tummidi R S, Koch T L, et al. Lateral leakage in TM-like whispering gallery mode of thin-ridge silicon-on-insulator disk resonators. Opt Lett, 2009, 34, 980 doi: 10.1364/OL.34.000980
[75]
Dalvand N, Nguyen T G, Tummidi R S, et al. Thin-ridge silicon-on-insulator waveguides with directional control of lateral leakage radiation. Opt Express, 2011, 19, 5635 doi: 10.1364/OE.19.005635
[76]
Nguyen T G, Ren G H, Schoenhardt S, et al. Ridge resonance in silicon photonics harnessing bound states in the continuum. Laser Photonics Rev, 2019, 13, 1900035 doi: 10.1002/lpor.201900035
[77]
Bezus E A, Bykov D A, Doskolovich L L. Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide. Photon Res, 2018, 6, 1084 doi: 10.1364/PRJ.6.001084
[78]
Hammer M, Ebers L, Förstner J. Oblique evanescent excitation of a dielectric strip: A model resonator with an open optical cavity of unlimited Q. Opt Express, 2019, 27, 9313 doi: 10.1364/OE.27.009313
[79]
Peng S T, Oliner A A. Guidance and leakage properties of a class of open dielectric waveguides: Part I - mathematical formulations. IEEE Trans Microw Theory Tech, 1981, 29, 843 doi: 10.1109/TMTT.1981.1130465
[80]
Muellner, P., N. Finger, and R. Hainberger. Lateral leakage in symmetric SOI rib-type slot waveguides. Optics Express, 2008, 16(1): p.287−294. doi: 10.1109/AOE.2007.4410799
[81]
Nguyen T G, Tummidi R S, Koch T L, et al. Lateral leakage of TM-like mode in thin-ridge silicon-on-insulator bent waveguides and ring resonators. Opt Express, 2010, 18, 7243 doi: 10.1364/OE.18.007243
[82]
Dai D X, Wang Z, Julian N, et al. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Opt Express, 2010, 18, 27404 doi: 10.1364/OE.18.027404
[83]
Xu H N, Shi Y C. Silicon-waveguide-integrated high-quality metagrating supporting bound state in the continuum. Laser Photonics Rev, 2020, 14, 1900430 doi: 10.1002/lpor.201900430
[84]
Yu Y, Yu Z J, Wang L, et al. Ultralow-loss etchless lithium niobate integrated photonics at near-visible wavelengths. Adv Optical Mater, 2021, 9, 2100060 doi: 10.1002/adom.202100060
[85]
Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat Photonics, 2018, 12, 91 doi: 10.1038/s41566-017-0075-2
[86]
Gavartin E, Verlot P, Kippenberg T J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat Nanotechnol, 2012, 7, 509 doi: 10.1038/nnano.2012.97
[87]
Beugnot J C, Lebrun S, Pauliat G, et al. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat Commun, 2014, 5, 1 doi: 10.1038/ncomms6242
[88]
Chan E H W, Minasian R A. All-optical frequency shifter based on stimulated Brillouin scattering in an optical fiber. IEEE Photonics J, 2014, 6, 1 doi: 10.1109/JPHOT.2014.2312921
[89]
Kang M S, Butsch A, St J Russell P. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat Photonics, 2011, 5, 549 doi: 10.1038/nphoton.2011.180
[90]
Santagiustina M, Chin S, Primerov N, et al. All-optical signal processing using dynamic Brillouin gratings. Sci Rep, 2013, 3, 1594 doi: 10.1038/srep01594
[91]
Alexander K, Savostianova N A, Mikhailov S A, et al. Electrically tunable optical nonlinearities in graphene-covered SiN waveguides characterized by four-wave mixing. ACS Photonics, 2017, 4, 3039 doi: 10.1021/acsphotonics.7b00559
[92]
Ge X C, Minkov M, Fan S H, et al. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide. Npj 2D Mater Appl, 2019, 3, 1 doi: 10.1038/s41699-018-0083-1
[93]
Phare C T, Lee Y H D, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics, 2015, 9, 511 doi: 10.1038/nphoton.2015.122
[94]
Li Z Q, Dong N N, Zhang Y X, et al. Invited article: Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber. APL Photonics, 2018, 3, 080802 doi: 10.1063/1.5032243
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1259 Times PDF downloads: 209 Times Cited by: 0 Times

    History

    Received: 15 March 2023 Revised: 09 May 2023 Online: Accepted Manuscript: 14 July 2023Uncorrected proof: 14 September 2023Published: 10 October 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zejie Yu, He Gao, Yi Wang, Yue Yu, Hon Ki Tsang, Xiankai Sun, Daoxin Dai. Fundamentals and applications of photonic waveguides with bound states in the continuum[J]. Journal of Semiconductors, 2023, 44(10): 101301. doi: 10.1088/1674-4926/44/10/101301 Z J Yu, H Gao, Y Wang, Y Yu, H K Tsang, X K Sun, D X Dai. Fundamentals and applications of photonic waveguides with bound states in the continuum[J]. J. Semicond, 2023, 44(10): 101301. doi: 10.1088/1674-4926/44/10/101301Export: BibTex EndNote
      Citation:
      Zejie Yu, He Gao, Yi Wang, Yue Yu, Hon Ki Tsang, Xiankai Sun, Daoxin Dai. Fundamentals and applications of photonic waveguides with bound states in the continuum[J]. Journal of Semiconductors, 2023, 44(10): 101301. doi: 10.1088/1674-4926/44/10/101301

      Z J Yu, H Gao, Y Wang, Y Yu, H K Tsang, X K Sun, D X Dai. Fundamentals and applications of photonic waveguides with bound states in the continuum[J]. J. Semicond, 2023, 44(10): 101301. doi: 10.1088/1674-4926/44/10/101301
      Export: BibTex EndNote

      Fundamentals and applications of photonic waveguides with bound states in the continuum

      doi: 10.1088/1674-4926/44/10/101301
      More Information
      • Author Bio:

        Zejie Yu received the B.E. degree in Optical Engineering from Zhejiang University and the Ph.D. degree in Electronic Engineering from The Chinese University of Hong Kong. Later he was a Postdoctoral Scholar at the Department of Electronic Engineering, The Chinese University of Hong Kong. He is currently a tenure-track Professor with the College of Optical Science and Engineering, Zhejiang University. His research interests include silicon photonics and heterogeneous integration

        Hon Ki Tsang (Fellow, IEEE) received the B.A. (Hons.) and Ph.D. degrees from the University of Cambridge, Cambridge, U.K., in 1987 and 1991, respectively. He joined The Chinese University of Hong Kong, Hong Kong, in 1993 and was the Chairman of the Department of Electronic Engineering during 2010–2016. He is currently an Associate Dean (Research) of the Faculty of Engineering. He has coauthored more than 400 papers in journals and conference proceedings. His research interests include photonic integrated circuits, silicon photonics, nonlinear waveguides, hybrid integration of two-dimensional materials, optical communications, and integrated quantum photonics. He is currently the Editor-in-Chief of the IEEE Journal of Quantum Electronics

      • Corresponding author: zjyu@zju.edu.cn
      • Received Date: 2023-03-15
      • Revised Date: 2023-05-09
      • Available Online: 2023-07-14

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return