Citation: |
Chunbao Feng, Changhe Wu, Xin Luo, Tao Hu, Fanchuan Chen, Shichang Li, Shengnan Duan, Wenjie Hou, Dengfeng Li, Gang Tang, Gang Zhang. Pressure-dependent electronic, optical, and mechanical properties of antiperovskite X3NP (X = Ca, Mg): A first-principles study[J]. Journal of Semiconductors, 2023, 44(10): 102101. doi: 10.1088/1674-4926/44/10/102101
****
C B Feng, C H Wu, X Luo, T Hu, F C Chen, S C Li, S N Duan, W J Hou, D F Li, G Tang, G Zhang. Pressure-dependent electronic, optical, and mechanical properties of antiperovskite X3NP (X = Ca, Mg): A first-principles study[J]. J. Semicond, 2023, 44(10): 102101. doi: 10.1088/1674-4926/44/10/102101
|
Pressure-dependent electronic, optical, and mechanical properties of antiperovskite X3NP (X = Ca, Mg): A first-principles study
DOI: 10.1088/1674-4926/44/10/102101
More Information
-
Abstract
Hydrostatic pressure provides an efficient way to tune and optimize the properties of solid materials without changing their composition. In this work, we investigate the electronic, optical, and mechanical properties of antiperovskite X3NP (X2+ = Ca, Mg) upon compression by first-principles calculations. Our results reveal that the system is anisotropic, and the lattice constant a of X3NP exhibits the fastest rate of decrease upon compression among the three directions, which is different from the typical Pnma phase of halide and chalcogenide perovskites. Meanwhile, Ca3NP has higher compressibility than Mg3NP due to its small bulk modulus. The electronic and optical properties of Mg3NP show small fluctuations upon compression, but those of Ca3NP are more sensitive to pressure due to its higher compressibility and lower unoccupied 3d orbital energy. For example, the band gap, lattice dielectric constant, and exciton binding energy of Ca3NP decrease rapidly as the pressure increases. In addition, the increase in pressure significantly improves the optical absorption and theoretical conversion efficiency of Ca3NP. Finally, the mechanical properties of X3NP are also increased upon compression due to the reduction in bond length, while inducing a brittle-to-ductile transition. Our research provides theoretical guidance and insights for future experimental tuning of the physical properties of antiperovskite semiconductors by pressure. -
References
[1] Brenner T M, Egger D A, Kronik L, et al. Hybrid organic-inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 2016, 1, 15007 doi: 10.1038/natrevmats.2015.7[2] Tiwari A, Satpute N S, Mehare C M, et al. Challenges, recent advances and improvements for enhancing the efficiencies of ABX3-based PeLEDs (perovskites light emitting diodes): A review. J Alloys Compd, 2021, 850, 156827 doi: 10.1016/j.jallcom.2020.156827[3] Sun S Y, Salim T, Mathews N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci, 2014, 7, 399 doi: 10.1039/C3EE43161D[4] Xing G C, Mathews N, Sun S Y, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342, 344 doi: 10.1126/science.1243167[5] Kim J Y, Lee J W, Jung H S, et al. High-efficiency perovskite solar cells. Chem Rev, 2020, 120, 7867 doi: 10.1021/acs.chemrev.0c00107[6] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r[7] NREL Best Research-Cell Efficiencies. https://www.nrel.gov/pv/cell-efficiency.html (accessed March 10, 2023[8] Abhishek S, Marshall Ashley R, Sanehira Erin M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354, 92 doi: 10.1126/science.aag2700[9] Ju M G, Chen M, Zhou Y Y, et al. Toward eco-friendly and stable perovskite materials for photovoltaics. Joule, 2018, 2, 1231 doi: 10.1016/j.joule.2018.04.026[10] Fu P F, Hu S L, Tang J, et al. Material exploration via designing spatial arrangement of octahedral units: A case study of lead halide perovskites. Front Optoelectron, 2021, 14, 252 doi: 10.1007/s12200-021-1227-z[11] Zhong H X, Feng C B, Wang H, et al. Structure–composition–property relationships in antiperovskite nitrides: Guiding a rational alloy design. ACS Appl Mater Interfaces, 2021, 13, 48516 doi: 10.1021/acsami.1c10137[12] Han D, Feng C B, Du M H, et al. Design of high-performance lead-free quaternary antiperovskites for photovoltaics via ion type inversion and anion ordering. J Am Chem Soc, 2021, 143, 12369 doi: 10.1021/jacs.1c06403[13] Mochizuki Y, Sung H J, Takahashi A, et al. Theoretical exploration of mixed-anion antiperovskite semiconductors M3XN(M=Mg, Ca, Sr, Ba;X=P, As, Sb, Bi). Phys Rev Materials, 2020, 4, 044601 doi: 10.1103/PhysRevMaterials.4.044601[14] Dai J, Ju M G, Ma L, et al. Bi(Sb)NCa3: Expansion of perovskite photovoltaics into all-inorganic anti-perovskite materials. J Phys Chem C, 2019, 123, 6363 doi: 10.1021/acs.jpcc.8b11821[15] Heinselman K N, Lany S, Perkins J D, et al. Thin film synthesis of semiconductors in the Mg–Sb–N materials system. Chem Mater, 2019, 31, 8717 doi: 10.1021/acs.chemmater.9b02380[16] Gäbler F, Kirchner M, Schnelle W, et al. (Sr3N)E and (Ba3N)E (E = Sb, Bi): Synthesis, crystal structures, and physical properties. Zeitschrift Anorg Allge Chemie, 2004, 630, 2292 doi: 10.1002/zaac.200400256[17] Zada R, Ali Z, Mehmood S. Optoelectronic, elastic and thermoelectric properties of the perovskites (Sr3N)Sb and (Sr3N)Bi. Mater Sci Semicond Process, 2022, 147, 106734 doi: 10.1016/j.mssp.2022.106734[18] Chi E O, Kim W S, Hur N H, et al. New Mg-based antiperovskites PnNMg3 (Pn=As, Sb). Solid State Commun, 2002, 121, 309 doi: 10.1016/S0038-1098(02)00011-X[19] Chern M Y, Vennos D A, Disalvo F J. Synthesis, structure, and properties of anti-perovskite nitrides Ca3MN, M=P, As, Sb, Bi, Ge, Sn, and Pb. J Solid State Chem, 1992, 96, 415 doi: 10.1016/S0022-4596(05)80276-2[20] Niewa R, Schnelle W, Wagner F R. Synthesis, crystal structure and physical properties of (Ca3N)Tl. Z Anorg Allg Chem, 2001, 627(3), 365. doi: 10.1002/1521-3749(200103)627:3<365::AID-ZAAC365>3.0.CO;2-Z[21] Stoiber D, Niewa R. Perovskite distortion inverted: Crystal structures of (A3N)As (A = Mg, Ca, Sr, Ba). Z Anorg Allg Chem, 2019, 645, 329 doi: 10.1002/zaac.201800295[22] Iqbal S, Murtaza G, Khenata R, et al. Electronic and optical properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds . J Electron Mater, 2016, 45, 4188 doi: 10.1007/s11664-016-4563-9[23] Ullah I, Murtaza G, Khenata R, et al. Structural and optoelectronic properties of X3ZN (X = Ca, Sr, Ba; Z = As, Sb, Bi) anti-perovskite compounds. J Electron Mater, 2016, 45, 3059 doi: 10.1007/s11664-015-4330-3[24] He B, Dong C, Yang L H, et al. CuNNi3: A new nitride superconductor with antiperovskite structure. Supercond Sci Technol, 2013, 26, 125015 doi: 10.1088/0953-2048/26/12/125015[25] Uehara M, Uehara A, Kozawa K, et al. New antiperovskite superconductor ZnNNi3, and related compounds CdNNi3 and InNNi3. Phys C Supercond Appl, 2010, 470, S688 doi: 10.1016/j.physc.2009.11.131[26] Shan L L, Feng S J, Liu X S, et al. Superconductivity and magnetic properties in antiperovskite nitride ZnNNi3. Phys C Supercond Appl, 2022, 603, 1354158 doi: 10.1016/j.physc.2022.1354158[27] Shim J H, Kwon S K, Min B I. Electronic structures of antiperovskite superconductors MgXNi3(X=B, C, and N). Phys Rev B, 2001, 64, 180510 doi: 10.1103/PhysRevB.64.180510[28] Zhang X H, Yin Y, Yuan Q, et al. Magnetoresistance reversal in antiperovskite compound Mn3Cu0.5Zn0.5N. J Appl Phys, 2014, 115, 123905 doi: 10.1063/1.4869797[29] Sakakibara H, Ando H, Kuroki Y, et al. Magnetic properties and anisotropic magnetoresistance of antiperovskite nitride Mn3GaN/Co3FeN exchange-coupled bilayers. J Appl Phys, 2015, 117, 17D725 doi: 10.1063/1.4917501[30] Shibayama T, Takenaka K. Giant magnetostriction in antiperovskite Mn3CuN. J Appl Phys, 2011, 109, 07A928 doi: 10.1063/1.3560892[31] Amraoui S, Feraoun A, Kerouad M. Theoretical study of the magnetic and magnetocaloric properties of the ZnFe3N antiperovskite. Curr Appl Phys, 2021, 31, 68 doi: 10.1016/j.cap.2021.07.019[32] Bilal M, Shafiq M, Khan B, et al. Antiperovskite compounds SbNSr3 and BiNSr3: Potential candidates for thermoelectric renewable energy generators. Phys Lett A, 2015, 379, 206 doi: 10.1016/j.physleta.2014.11.016[33] Rani U, Kamlesh P K, Shukla A, et al. Emerging potential antiperovskite materials ANX3 (A = P, As, Sb, Bi; X = Sr, Ca, Mg) for thermoelectric renewable energy generators. J Solid State Chem, 2021, 300, 122246 doi: 10.1016/j.jssc.2021.122246[34] Iikubo S, Kodama K, Takenaka K, et al. Magnetic structure and local lattice distortion in giant negative thermal expansion material Mn3Cu1– xGe xN. J Phys: Conf Ser, 2010, 251, 012014 doi: 10.1088/1742-6596/251/1/012014[35] Hamada T, Takenaka K. Giant negative thermal expansion in antiperovskite Manganese nitrides. J Appl Phys, 2011, 109, 07E309 doi: 10.1063/1.3540604[36] Yu R, Weng H M, Fang Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys Rev Lett, 2015, 115, 036807 doi: 10.1103/PhysRevLett.115.036807[37] Quintela C X, Campbell N, Shao D F, et al. Epitaxial thin films of Dirac semimetal antiperovskite Cu3PdN. APL Mater, 2017, 5, 096103 doi: 10.1063/1.4992006[38] Goh W F, Pickett W E. Coemergence of Dirac and multi-weyl topological excitations in pnictide antiperovskites. Phys Rev B, 2018, 98, 125147 doi: 10.1103/PhysRevB.98.125147[39] Sreedevi P D, Vidya R, Ravindran P. Antiperovskite materials as promising candidates for efficient tandem photovoltaics: First-principles investigation. Mater Sci Semicond Process, 2022, 147, 106727 doi: 10.1016/j.mssp.2022.106727[40] Samanta D, Saha P K, Ghosh B, et al. Pressure-induced emergence of visible luminescence in lead free halide perovskite Cs3Bi2Br9: Effect of structural distortion. J Phys Chem C, 2021, 125, 3432 doi: 10.1021/acs.jpcc.0c10624[41] Cui Y Q, Cheng H, Tian H, et al. Pressure-induced reconstructive phase transitions, polarization with metallicity, and enhanced hardness in antiperovskite MgCNi3. Phys Chem Chem Phys, 2021, 23, 18221 doi: 10.1039/D1CP02742E[42] Fu R J, Chen Y P, Yong X, et al. Pressure-induced structural transition and band gap evolution of double perovskite Cs2AgBiBr6 nanocrystals. Nanoscale, 2019, 11, 17004 doi: 10.1039/C9NR07030C[43] Wu L W, Dong Z Y, Zhang L, et al. High-pressure band-gap engineering and metallization in the perovskite derivative Cs3Sb2I9. Chem Sus Chem, 2019, 12, 3971 doi: 10.1002/cssc.201901388[44] Cheng H, Mao A J, Yang S M, et al. Correction: Semiconductor-to-metal reconstructive phase transition and superconductivity of anti-perovskite Ca3PN under hydrostatic pressure. J Mater Chem C, 2020, 8, 13090 doi: 10.1039/D0TC90190C[45] Samanta D, Chaudhary S P, Ghosh B, et al. Pressure-induced emission enhancement and bandgap narrowing: Experimental investigations and first-principles theoretical simulations on the model halide perovskite Cs3Sb2Br9. Phys Rev B, 2022, 105, 104103 doi: 10.1103/PhysRevB.105.104103[46] Zhang L, Liu C M, Wang L R, et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9. Angew Chem Int Ed, 2018, 57, 11213 doi: 10.1002/anie.201804310[47] Li Q, Yin L X, Chen Z W, et al. High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9. Inorg Chem, 2019, 58, 1621 doi: 10.1021/acs.inorgchem.8b03190[48] Ma Z W, Liu Z, Lu S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat Commun, 2018, 9, 1 doi: 10.1038/s41467-017-02088-w[49] Szafrański M, Katrusiak A. Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide. J Phys Chem Lett, 2016, 7, 3458 doi: 10.1021/acs.jpclett.6b01648[50] Momma K, Izumi F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J Appl Cryst, 2008, 41, 653 doi: 10.1107/S0021889808012016[51] Wang X Y, Tian H, Li X, et al. Pressure effects on the structures and electronic properties of halide perovskite CsPbX3 (X = I, Br, Cl). Phys Chem Chem Phys, 2021, 23, 3479 doi: 10.1039/D0CP05892K[52] Majumdar A, Adeleke A A, Chakraborty S, et al. Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS3 (A = Mg, Ca, Sr and Ba) under pressure. J Mater Chem C, 2020, 8, 16392 doi: 10.1039/D0TC04516K[53] Tang G, Ghosez P, Hong J W. Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. J Phys Chem Lett, 2021, 12, 4227 doi: 10.1021/acs.jpclett.0c03816[54] Ming W M, Shi H L, Du M H. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3. J Mater Chem A, 2016, 4, 13852 doi: 10.1039/C6TA04685A[55] Juarez-Perez E J, Sanchez R S, Badia L, et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J Phys Chem Lett, 2014, 5, 2390 doi: 10.1021/jz5011169[56] Han D, Shi H L, Ming W M, et al. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. J Mater Chem C, 2018, 6, 6398 doi: 10.1039/C8TC01291A[57] Takahashi A, Kumagai Y, Miyamoto J, et al. Machine learning models for predicting the dielectric constants of oxides based on high-throughput first-principles calculations. Phys Rev Materials, 2020, 4, 103801 doi: 10.1103/PhysRevMaterials.4.103801[58] Zhao X Y, Vanderbilt D. Phonons and lattice dielectric properties of zirconia. Phys Rev B, 2002, 65, 075105 doi: 10.1103/PhysRevB.65.075105[59] Tang G, Xiao Z W, Hosono H, et al. Layered halide double perovskites Cs3+ nM(II) nSb2X9+3 n (M = Sn, Ge) for photovoltaic applications. J Phys Chem Lett, 2018, 9, 43 doi: 10.1021/acs.jpclett.7b02829[60] Zhao X G, Yang J H, Fu Y H, et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J Am Chem Soc, 2017, 139, 2630 doi: 10.1021/jacs.6b09645[61] Shirayama M, Kadowaki H, Miyadera T, et al. Optical transitions in hybrid perovskite solar cells: Ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys Rev Applied, 2016, 5, 014012 doi: 10.1103/PhysRevApplied.5.014012[62] Yokoyama T, Oba F, Seko A, et al. Theoretical photovoltaic conversion efficiencies of ZnSnP2, CdSnP2, and Zn1- xCd xSnP2 alloys. Appl Phys Express, 2013, 6, 061201 doi: 10.7567/APEX.6.061201[63] Savory C N, Ganose A M, Travis W, et al. An assessment of silver copper sulfides for photovoltaic applications: Theoretical and experimental insights. J Mater Chem A, 2016, 4, 12648 doi: 10.1039/C6TA03376H[64] Han D, Du M H, Huang M L, et al. Ground-state structures, electronic structure, transport properties and optical properties of Ca-based anti-Ruddlesden-Popper phase oxide perovskites. Phys Rev Materials, 2022, 6, 114601 doi: 10.1103/PhysRevMaterials.6.114601[65] Bush K A, Rolston N, Gold-Parker A, et al. Controlling thin-film stress and wrinkling during perovskite film formation. ACS Energy Lett, 2018, 3, 1225 doi: 10.1021/acsenergylett.8b00544[66] Guo L, Tang G, Hong J W. Mechanical properties of formamidinium halide perovskites FABX3 (FA=CH(NH2)2; B=Pb, Sn; X=Br, I) by first-principles calculations. Chin Phys Lett, 2019, 36, 056201 doi: 10.1088/0256-307X/36/5/056201[67] Tasnim A, Mahamudujjaman M, Asif Afzal M, et al. Pressure-dependent semiconductor–metal transition and elastic, electronic, optical, and thermophysical properties of orthorhombic SnS binary chalcogenide. Results Phys, 2023, 45, 106236 doi: 10.1016/j.rinp.2023.106236[68] Rong Z, Zhi C, Jun C. Ab initio calculation of mechanical, electronic and optical characteristics of chalcogenide perovskite BaZrS3 at high pressures. Acta Crystallogr C, 2022, 78, 570 doi: 10.1107/S2053229622009147[69] Wu Z J, Zhao E J, Xiang H P, et al. Publisher’s Note: Crystal structures and elastic properties of superhard IrN2 andIrN3 from first principles. Phys Rev B, 2007, 76, 059904 doi: 10.1103/PhysRevB.76.059904[70] Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A, 1952, 65, 349 doi: 10.1088/0370-1298/65/5/307[71] Hadi M A, Nasir M T, Roknuzzaman M, et al. First-principles prediction of mechanical and bonding characteristics of new T2 superconductor Ta5GeB2. Phys Status Solidi B, 2016, 253, 2020 doi: 10.1002/pssb.201600209[72] Li S, Zhao S G, Chu H Q, et al. Unraveling the factors affecting the mechanical properties of halide perovskites from first-principles calculations. J Phys Chem C, 2022, 126, 4715 doi: 10.1021/acs.jpcc.1c10635[73] Li Z G, Qin Y, Dong L Y, et al. Elastic and electronic origins of strain stabilized photovoltaic γ-CsPbI3. Phys Chem Chem Phys, 2020, 22, 12706 doi: 10.1039/D0CP01649G[74] Elahmar M H, Rached H, Rached D, et al. Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z=Si, As, Sb): A first-principle study. J Magn Magn Mater, 2015, 393, 165 doi: 10.1016/j.jmmm.2015.05.019[75] Saravana Karthikeyan S K S, Santhoshkumar P, Joe Y C, et al. Understanding of the elastic constants, energetics, and bonding in dicalcium silicate using first-principles calculations. J Phys Chem C, 2018, 122, 24235 doi: 10.1021/acs.jpcc.8b06630 -
Supplements
SM-23040022.docx
-
Proportional views