ARTICLES

High-performance enhancement-mode GaN-based p-FETs fabricated with O3-Al2O3/HfO2-stacked gate dielectric

Hao Jin1, 2, Sen Huang1, 2, , Qimeng Jiang1, , Yingjie Wang1, 2, Jie Fan1, Haibo Yin1, 2, Xinhua Wang1, 2, Ke Wei1, 2, Jianxun Liu3, Yaozong Zhong3, Qian Sun3 and Xinyu Liu1, 2

+ Author Affiliations

 Corresponding author: Sen Huang, huangsen@ime.ac.cn; Qimeng Jiang, jiangqimeng@ime.ac.cn

PDF

Turn off MathJax

Abstract: In this letter, an enhancement-mode (E-mode) GaN p-channel field-effect transistor (p-FET) with a high current density of −4.9 mA/mm based on a O3-Al2O3/HfO2 (5/15 nm) stacked gate dielectric was demonstrated on a p++-GaN/p-GaN/AlN/AlGaN/AlN/GaN/Si heterostructure. Attributed to the p++-GaN capping layer, a good linear ohmic IV characteristic featuring a low-contact resistivity (ρc) of 1.34 × 10−4 Ω·cm2 was obtained. High gate leakage associated with the HfO2 high-k gate dielectric was effectively blocked by the 5-nm O3-Al2O3 insertion layer grown by atomic layer deposition, contributing to a high ION/IOFF ratio of 6 × 106 and a remarkably reduced subthreshold swing (SS) in the fabricated p-FETs. The proposed structure is compelling for energy-efficient GaN complementary logic (CL) circuits.

Key words: GaNp-FETsenhancement-modeHfO2subthreshold swing



[1]
Hoo Teo K, Zhang Y H, Chowdhury N, et al. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J Appl Phys, 2021, 130, 160902 doi: 10.1063/5.0061555
[2]
Wu K F, Huang S Y, Wang W L, et al. Recent progress in III-nitride nanosheets: Properties, materials and applications. Semicond Sci Technol, 2021, 36, 123002 doi: 10.1088/1361-6641/ac2c26
[3]
Jones E A, Wang F, Ozpineci B. Application-based review of GaN HFETs. 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 2014, 24 doi: 10.1109/WiPDA.2014.6964617
[4]
Chen K J, Häberlen O, Lidow A, et al. GaN-on-Si power technology: Devices and applications. IEEE Trans Electron Devices, 2017, 64, 779 doi: 10.1109/TED.2017.2657579
[5]
Amano H, Baines Y, Beam E, et al. The 2018 GaN power electronics roadmap. J Phys D: Appl Phys, 2018, 51, 163001 doi: 10.1088/1361-6463/aaaf9d
[6]
Wang W L, Jiang H S, Li L H, et al. Two-dimensional group-III nitrides and devices: A critical review. Rep Prog Phys, 2021, 84, 086501 doi: 10.1088/1361-6633/ac11c4
[7]
Bader S J, Lee H, Chaudhuri R, et al. Prospects for wide bandgap and ultrawide bandgap CMOS devices. IEEE Trans Electron Devices, 2020, 67, 4010 doi: 10.1109/TED.2020.3010471
[8]
Götz W, Johnson N M, Walker J, et al. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett, 1996, 68, 667 doi: 10.1063/1.116503
[9]
Li S J, Sun P Y, Xing Z H, et al. Degradation mechanisms of Mg-doped GaN/AlN superlattices HEMTs under electrical stress. Appl Phys Lett, 2022, 121, 062101 doi: 10.1063/5.0094957
[10]
Song J O, Ha J S, Seong T Y. Ohmic-contact technology for GaN-based light-emitting diodes: Role of P-type contact. IEEE Trans Electron Devices, 2010, 57, 42 doi: 10.1109/TED.2009.2034506
[11]
Chaudhuri R, Bader S J, Chen Z, et al. A polarization-induced 2D hole gas in undoped gallium nitride quantum wells. Science, 2019, 365(6460), 1454 doi: 10.1126/science.aau8623
[12]
Zimmermann T, Neuburger M, Kunze M, et al. P-channel InGaN-HFET structure based on polarization doping. IEEE Electron Device Lett, 2004, 25, 450 doi: 10.1109/LED.2004.830285
[13]
Hahn H, Reuters B, Pooth A, et al. P-channel enhancement and depletion mode GaN-based HFETs with quaternary backbarriers. IEEE Trans Electron Devices, 2013, 60, 3005 doi: 10.1109/TED.2013.2272330
[14]
Nakajima A, Sumida Y, Dhyani M H, et al. High density two-dimensional hole gas induced by negative polarization at GaN/AlGaN heterointerface. Appl Phys Express, 2010, 3, 121004 doi: 10.1143/APEX.3.121004
[15]
Chowdhury N, Lemettinen J, Xie Q Y, et al. P-channel GaN transistor based on p-GaN/AlGaN/GaN on Si. IEEE Electron Device Lett, 2019, 40, 1036 doi: 10.1109/LED.2019.2916253
[16]
Chowdhury N, Xie Q Y, Niroula J, et al. Field-induced acceptor ionization in enhancement-mode GaN p-MOSFETs. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 5.5. 1 doi: 10.1109/IEDM13553.2020.9371963
[17]
Chowdhury N, Xie Q Y, Palacios T. Tungsten-gated GaN/AlGaN p-FET with Imax > 120 mA/mm on GaN-on-Si. IEEE Electron Device Lett, 2022, 43, 545 doi: 10.1109/LED.2022.3149659
[18]
Chowdhury N, Xie Q Y, Yuan M Y, et al. First demonstration of a self-aligned GaN p-FET. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 4.6. 1 doi: 10.1109/IEDM19573.2019.8993569
[19]
Yin Y D, Lee K B. High-performance enhancement-mode p-channel GaN MISFETs with steep subthreshold swing. IEEE Electron Device Lett, 2022, 43, 533 doi: 10.1109/LED.2022.3152308
[20]
Bader S J, Chaudhuri R, Nomoto K, et al. Gate-recessed E-mode p-channel HFET with high on-current based on GaN/AlN 2D hole gas. IEEE Electron Device Lett, 2018, 39, 1848 doi: 10.1109/LED.2018.2874190
[21]
Chowdhury N, Xie Q Y, Yuan M Y, et al. Regrowth-free GaN-based complementary logic on a Si substrate. IEEE Electron Device Lett, 2020, 41, 820 doi: 10.1109/LED.2020.2987003
[22]
Chu R M, Cao Y, Chen M, et al. An experimental demonstration of GaN CMOS technology. IEEE Electron Device Lett, 2016, 37, 269 doi: 10.1109/LED.2016.2515103
[23]
Ma J, Yoo G. Low subthreshold swing double-gate β-Ga2O3 field-effect transistors with polycrystalline hafnium oxide dielectrics. IEEE Electron Device Lett, 2019, 40, 1317 doi: 10.1109/LED.2019.2924680
[24]
Mistry K, Allen C, Auth C, et al. A 45nm logic technology with high-k metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. 2007 IEEE International Electron Devices Meeting, 2008, 247 doi: 10.1109/IEDM.2007.4418914
[25]
Huang S, Wang X H, Liu X Y, et al. An ultrathin-barrier AlGaN/GaN heterostructure: A recess-free technology for the fabrication and integration of GaN-based power devices and power-driven circuits. Semicond Sci Technol, 2021, 36, 044002 doi: 10.1088/1361-6641/abd2fe
[26]
Huang S, Liu X Y, Wei K, et al. O3-sourced atomic layer deposition of high quality Al2O3 gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors. Appl Phys Lett, 2015, 106, 033507 doi: 10.1063/1.4906601
[27]
Huang H H, Fang G J, Li Y, et al. Improved and color tunable electroluminescence from n-ZnO/HfO2/p-GaN heterojunction light emitting diodes. Appl Phys Lett, 2012, 100, 233502 doi: 10.1063/1.4724212
[28]
Jin H, Jiang Q M, Huang S, et al. An enhancement-mode GaN p-FET with improved breakdown voltage. IEEE Electron Device Lett, 2022, 43, 1191 doi: 10.1109/LED.2022.3184998
[29]
Guo F Q, Huang S, Wang X H, et al. Suppression of interface states between nitride-based gate dielectrics and ultrathin-barrier AlGaN/GaN heterostructure with in situ remote plasma pretreatments. Appl Phys Lett, 2021, 118, 093503 doi: 10.1063/5.0041421
[30]
Zheng Z Y, Song W J, Zhang L, et al. High ION and ION/IOFF ratio enhancement-mode buried p-channel GaN MOSFETs on p-GaN gate power HEMT platform. IEEE Electron Device Lett, 2020, 41, 26 doi: 10.1109/LED.2019.2954035
[31]
Yang C, Fu H Q, Peri P, et al. Enhancement-mode gate-recess-free GaN-based p-channel heterojunction field-effect transistor with ultra-low subthreshold swing. IEEE Electron Device Lett, 2021, 42, 1128 doi: 10.1109/LED.2021.3092040
[32]
Zheng Z Y, Song W J, Zhang L, et al. Enhancement-mode GaN p-channel MOSFETs for power integration. 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2020, 525 doi: 10.1109/ISPSD46842.2020.9170081
Fig. 1.  (Color online) (a) Cross-sectional schematic and (b) current density−voltage curves of the MOS device on the p++-GaN/p-GaN/AlN/AlGaN/AlN/GaN heterostructure.

Fig. 2.  (Color online) (a) Cross-sectional schematic of the fabricate E-mode GaN p-FETs. (b) TLM analysis of the ohmic contact. (c) Benchmarking the Rc and hole sheet density of the fabricated GaN p-FET with some state-of-the-art GaN p-FETs. (d) Depth profile of the gate recess trench measured by the atomic force microscope. The inset figure presents measured resistances as a function of ohmic metal spacing.

Fig. 3.  (Color online) (a) DC transfer and (b) SS vs ID plot of fabricated GaN p-FETs with the O3-Al2O3 and O3-Al2O3/HfO2 stack as the gate dielectric.

Fig. 4.  (Color online) (a) DC output and (b) OFF-state characteristics of fabricated GaN p-FETs with the O3-Al2O3 and O3-Al2O3/HfO2 stack as the gate dielectric.

Fig. 5.  (Color online) (a) Output characteristics for the GaN p-FET using O3-Al2O3/HfO2 as the gate stack with LG of 1 μm. (b) Trend of |ID,max| enhancement and Ron reduction with LG scaling.

Table 1.   Benchmark of GaN-based p-FETs.

Vth (V)Id,max (mA/mm)ION/IOFFSS (mV/dec)
MIT[16]−0.5−45104800
Cornell[20]−0.35−101041027
HRL[22]−0.36−1.65106304
HKUST[30]−1.7−6.1107230
ASU[31]−0.6−0.25 × 107123
This work−0.8−4.96 × 106107
DownLoad: CSV
[1]
Hoo Teo K, Zhang Y H, Chowdhury N, et al. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J Appl Phys, 2021, 130, 160902 doi: 10.1063/5.0061555
[2]
Wu K F, Huang S Y, Wang W L, et al. Recent progress in III-nitride nanosheets: Properties, materials and applications. Semicond Sci Technol, 2021, 36, 123002 doi: 10.1088/1361-6641/ac2c26
[3]
Jones E A, Wang F, Ozpineci B. Application-based review of GaN HFETs. 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 2014, 24 doi: 10.1109/WiPDA.2014.6964617
[4]
Chen K J, Häberlen O, Lidow A, et al. GaN-on-Si power technology: Devices and applications. IEEE Trans Electron Devices, 2017, 64, 779 doi: 10.1109/TED.2017.2657579
[5]
Amano H, Baines Y, Beam E, et al. The 2018 GaN power electronics roadmap. J Phys D: Appl Phys, 2018, 51, 163001 doi: 10.1088/1361-6463/aaaf9d
[6]
Wang W L, Jiang H S, Li L H, et al. Two-dimensional group-III nitrides and devices: A critical review. Rep Prog Phys, 2021, 84, 086501 doi: 10.1088/1361-6633/ac11c4
[7]
Bader S J, Lee H, Chaudhuri R, et al. Prospects for wide bandgap and ultrawide bandgap CMOS devices. IEEE Trans Electron Devices, 2020, 67, 4010 doi: 10.1109/TED.2020.3010471
[8]
Götz W, Johnson N M, Walker J, et al. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett, 1996, 68, 667 doi: 10.1063/1.116503
[9]
Li S J, Sun P Y, Xing Z H, et al. Degradation mechanisms of Mg-doped GaN/AlN superlattices HEMTs under electrical stress. Appl Phys Lett, 2022, 121, 062101 doi: 10.1063/5.0094957
[10]
Song J O, Ha J S, Seong T Y. Ohmic-contact technology for GaN-based light-emitting diodes: Role of P-type contact. IEEE Trans Electron Devices, 2010, 57, 42 doi: 10.1109/TED.2009.2034506
[11]
Chaudhuri R, Bader S J, Chen Z, et al. A polarization-induced 2D hole gas in undoped gallium nitride quantum wells. Science, 2019, 365(6460), 1454 doi: 10.1126/science.aau8623
[12]
Zimmermann T, Neuburger M, Kunze M, et al. P-channel InGaN-HFET structure based on polarization doping. IEEE Electron Device Lett, 2004, 25, 450 doi: 10.1109/LED.2004.830285
[13]
Hahn H, Reuters B, Pooth A, et al. P-channel enhancement and depletion mode GaN-based HFETs with quaternary backbarriers. IEEE Trans Electron Devices, 2013, 60, 3005 doi: 10.1109/TED.2013.2272330
[14]
Nakajima A, Sumida Y, Dhyani M H, et al. High density two-dimensional hole gas induced by negative polarization at GaN/AlGaN heterointerface. Appl Phys Express, 2010, 3, 121004 doi: 10.1143/APEX.3.121004
[15]
Chowdhury N, Lemettinen J, Xie Q Y, et al. P-channel GaN transistor based on p-GaN/AlGaN/GaN on Si. IEEE Electron Device Lett, 2019, 40, 1036 doi: 10.1109/LED.2019.2916253
[16]
Chowdhury N, Xie Q Y, Niroula J, et al. Field-induced acceptor ionization in enhancement-mode GaN p-MOSFETs. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 5.5. 1 doi: 10.1109/IEDM13553.2020.9371963
[17]
Chowdhury N, Xie Q Y, Palacios T. Tungsten-gated GaN/AlGaN p-FET with Imax > 120 mA/mm on GaN-on-Si. IEEE Electron Device Lett, 2022, 43, 545 doi: 10.1109/LED.2022.3149659
[18]
Chowdhury N, Xie Q Y, Yuan M Y, et al. First demonstration of a self-aligned GaN p-FET. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 4.6. 1 doi: 10.1109/IEDM19573.2019.8993569
[19]
Yin Y D, Lee K B. High-performance enhancement-mode p-channel GaN MISFETs with steep subthreshold swing. IEEE Electron Device Lett, 2022, 43, 533 doi: 10.1109/LED.2022.3152308
[20]
Bader S J, Chaudhuri R, Nomoto K, et al. Gate-recessed E-mode p-channel HFET with high on-current based on GaN/AlN 2D hole gas. IEEE Electron Device Lett, 2018, 39, 1848 doi: 10.1109/LED.2018.2874190
[21]
Chowdhury N, Xie Q Y, Yuan M Y, et al. Regrowth-free GaN-based complementary logic on a Si substrate. IEEE Electron Device Lett, 2020, 41, 820 doi: 10.1109/LED.2020.2987003
[22]
Chu R M, Cao Y, Chen M, et al. An experimental demonstration of GaN CMOS technology. IEEE Electron Device Lett, 2016, 37, 269 doi: 10.1109/LED.2016.2515103
[23]
Ma J, Yoo G. Low subthreshold swing double-gate β-Ga2O3 field-effect transistors with polycrystalline hafnium oxide dielectrics. IEEE Electron Device Lett, 2019, 40, 1317 doi: 10.1109/LED.2019.2924680
[24]
Mistry K, Allen C, Auth C, et al. A 45nm logic technology with high-k metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. 2007 IEEE International Electron Devices Meeting, 2008, 247 doi: 10.1109/IEDM.2007.4418914
[25]
Huang S, Wang X H, Liu X Y, et al. An ultrathin-barrier AlGaN/GaN heterostructure: A recess-free technology for the fabrication and integration of GaN-based power devices and power-driven circuits. Semicond Sci Technol, 2021, 36, 044002 doi: 10.1088/1361-6641/abd2fe
[26]
Huang S, Liu X Y, Wei K, et al. O3-sourced atomic layer deposition of high quality Al2O3 gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors. Appl Phys Lett, 2015, 106, 033507 doi: 10.1063/1.4906601
[27]
Huang H H, Fang G J, Li Y, et al. Improved and color tunable electroluminescence from n-ZnO/HfO2/p-GaN heterojunction light emitting diodes. Appl Phys Lett, 2012, 100, 233502 doi: 10.1063/1.4724212
[28]
Jin H, Jiang Q M, Huang S, et al. An enhancement-mode GaN p-FET with improved breakdown voltage. IEEE Electron Device Lett, 2022, 43, 1191 doi: 10.1109/LED.2022.3184998
[29]
Guo F Q, Huang S, Wang X H, et al. Suppression of interface states between nitride-based gate dielectrics and ultrathin-barrier AlGaN/GaN heterostructure with in situ remote plasma pretreatments. Appl Phys Lett, 2021, 118, 093503 doi: 10.1063/5.0041421
[30]
Zheng Z Y, Song W J, Zhang L, et al. High ION and ION/IOFF ratio enhancement-mode buried p-channel GaN MOSFETs on p-GaN gate power HEMT platform. IEEE Electron Device Lett, 2020, 41, 26 doi: 10.1109/LED.2019.2954035
[31]
Yang C, Fu H Q, Peri P, et al. Enhancement-mode gate-recess-free GaN-based p-channel heterojunction field-effect transistor with ultra-low subthreshold swing. IEEE Electron Device Lett, 2021, 42, 1128 doi: 10.1109/LED.2021.3092040
[32]
Zheng Z Y, Song W J, Zhang L, et al. Enhancement-mode GaN p-channel MOSFETs for power integration. 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2020, 525 doi: 10.1109/ISPSD46842.2020.9170081
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 757 Times PDF downloads: 110 Times Cited by: 0 Times

    History

    Received: 10 February 2023 Revised: 27 March 2023 Online: Accepted Manuscript: 20 June 2023Uncorrected proof: 20 June 2023Corrected proof: 12 September 2023Published: 10 October 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hao Jin, Sen Huang, Qimeng Jiang, Yingjie Wang, Jie Fan, Haibo Yin, Xinhua Wang, Ke Wei, Jianxun Liu, Yaozong Zhong, Qian Sun, Xinyu Liu. High-performance enhancement-mode GaN-based p-FETs fabricated with O3-Al2O3/HfO2-stacked gate dielectric[J]. Journal of Semiconductors, 2023, 44(10): 102801. doi: 10.1088/1674-4926/44/10/102801 H Jin, S Huang, Q M Jiang, Y J Wang, J Fan, H B Yin, X H Wang, K Wei, J X Liu, Y Z Zhong, Q Sun, X Y Liu. High-performance enhancement-mode GaN-based p-FETs fabricated with O3-Al2O3/HfO2-stacked gate dielectric[J]. J. Semicond, 2023, 44(10): 102801. doi: 10.1088/1674-4926/44/10/102801Export: BibTex EndNote
      Citation:
      Hao Jin, Sen Huang, Qimeng Jiang, Yingjie Wang, Jie Fan, Haibo Yin, Xinhua Wang, Ke Wei, Jianxun Liu, Yaozong Zhong, Qian Sun, Xinyu Liu. High-performance enhancement-mode GaN-based p-FETs fabricated with O3-Al2O3/HfO2-stacked gate dielectric[J]. Journal of Semiconductors, 2023, 44(10): 102801. doi: 10.1088/1674-4926/44/10/102801

      H Jin, S Huang, Q M Jiang, Y J Wang, J Fan, H B Yin, X H Wang, K Wei, J X Liu, Y Z Zhong, Q Sun, X Y Liu. High-performance enhancement-mode GaN-based p-FETs fabricated with O3-Al2O3/HfO2-stacked gate dielectric[J]. J. Semicond, 2023, 44(10): 102801. doi: 10.1088/1674-4926/44/10/102801
      Export: BibTex EndNote

      High-performance enhancement-mode GaN-based p-FETs fabricated with O3-Al2O3/HfO2-stacked gate dielectric

      doi: 10.1088/1674-4926/44/10/102801
      More Information
      • Author Bio:

        Hao Jin received his MS degree from the Beijing Institute of Technology, Beijing, China, in 2020. He is pursuing a PhD degree at the Institute of Microelectronics, Chinese Academy of Science, Beijing. His research focuses on fabrication and monolithic integration of GaN devices

        Sen Huang received his PhD degree from Peking University, Beijing, China, in 2009. He is currently a professor with the Institute of Microelectronics, Chinese Academy of Sciences, Beijing. His current research interests include advanced design, fabrication, and characterization technologies for III–V power semiconductor or devices

        Qimeng Jiang received his PhD degree from The Hong Kong University of Science and Technology, Hong Kong, China, in 2015. He is currently a professor with the Institute of Microelectronics, Chinese Academy of Sciences, Beijing. His current research interests include advanced design and fabrication technologies for power semiconductor devices and ICs

      • Corresponding author: huangsen@ime.ac.cnjiangqimeng@ime.ac.cn
      • Received Date: 2023-02-10
      • Revised Date: 2023-03-27
      • Available Online: 2023-06-20

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return