Citation: |
Chenglin Wang, Jie Sun, Jiangzhao Chen, Cong Chen, Liming Ding. Mechanical pressing method for making high-quality perovskite single crystals[J]. Journal of Semiconductors, 2023, 44(11): 110201. doi: 10.1088/1674-4926/44/11/110201
****
C L Wang, J Sun, J Z Chen, C Chen, L M Ding. Mechanical pressing method for making high-quality perovskite single crystals[J]. J. Semicond, 2023, 44(11): 110201. doi: 10.1088/1674-4926/44/11/110201
|
Mechanical pressing method for making high-quality perovskite single crystals
DOI: 10.1088/1674-4926/44/11/110201
More Information
-
References
[1] Zhu L H, Zhang X, Li M J, et al. Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv Energy Mater, 2021, 11, 2100529 doi: 10.1002/aenm.202100529[2] Gao D Y, Li R, Chen X H, et al. Managing interfacial defects and carriers by synergistic modulation of functional groups and spatial conformation for high-performance perovskite photovoltaics based on vacuum flash method. Adv Mater, 2023, 35, 2301028 doi: 10.1002/adma.202301028[3] Zhao Y, Ma F, Qu Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377, 531 doi: 10.1126/science.abp8873[4] Park J, Kim J, Yun H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 616, 724 doi: 10.1038/s41586-023-05825-y[5] Wu H R, Su Z S, Jin F M, et al. Improved performance of perovskite photodetectors based on a solution-processed CH3NH3PbI3/SnO2 heterojunction. Org Electron, 2018, 57, 206 doi: 10.1016/j.orgel.2018.03.018[6] Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104, 063903 doi: 10.1063/1.4864778[7] Ono L K, Liu S Z, Qi Y B. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew Chem Int Ed, 2020, 59, 6676 doi: 10.1002/anie.201905521[8] Bao C X, Chen Z L, Fang Y J, et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv Mater, 2017, 29, 1703209 doi: 10.1002/adma.201703209[9] Zhang Y X, Liu Y C, Yang Z, et al. High-quality perovskite MAPbI3 single crystals for broad-spectrum and rapid response integrate photodetector. J Energy Chem, 2018, 27, 722 doi: 10.1016/j.jechem.2017.11.002[10] Ding J, Fang H J, Lian Z P, et al. A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes. Cryst Eng Comm, 2016, 18, 4405 doi: 10.1039/C5CE02531A[11] Yu J, Zheng J, Chen H Y, et al. Near-infrared photodetectors based on CH3NH3PbI3 perovskite single crystals for bioimaging applications. J Mater Chem C, 2022, 10, 274 doi: 10.1039/D1TC04961E[12] Leupold N, Panzer F. Recent advances and perspectives on powder-based halide perovskite film processing. Adv Funct Mater, 2021, 31, 2007350 doi: 10.1002/adfm.202007350[13] Shrestha S, Fischer R, Matt G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photonics, 2017, 11, 436 doi: 10.1038/nphoton.2017.94[14] Yang B, Pan W C, Wu H D, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat Commun, 2019, 10, 1989 doi: 10.1038/s41467-019-09968-3[15] Witt C, Schmid A, Leupold N, et al. Impact of pressure and temperature on the compaction dynamics and layer properties of powder-pressed methylammonium lead halide thick films. ACS Appl Electron Mater, 2020, 2, 2619 doi: 10.1021/acsaelm.0c00493[16] Zheng L Y, Nozariasbmarz A, Hou Y C, et al. A universal all-solid synthesis for high throughput production of halide perovskite. Nat Commun, 2022, 13, 7399 doi: 10.1038/s41467-022-35122-7[17] Bonn M, Miyata K, Hendry E, et al. Role of dielectric drag in polaron mobility in lead halide perovskites. ACS Energy Lett, 2017, 2, 2555 doi: 10.1021/acsenergylett.7b00717[18] Skrotzki W, Frommeyer O, Haasen P. Plasticity of polycrystalline ionic solids. Phys Status Solidi A, 1981, 66, 219 doi: 10.1002/pssa.2210660125[19] Hu M X, Jia S S, Liu Y C, et al. Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl Mater Interfaces, 2020, 12, 16592 doi: 10.1021/acsami.9b23158[20] Yu J, Qu Y M, Deng Y F, et al. Hot-pressed CH3NH3PbI3 polycrystalline wafers for near-infrared bioimaging and medical X-ray imaging. J Mater Chem C, 2023, 11, 5815 doi: 10.1039/D3TC00760J[21] Jing H, Peng R W, Ma R M, et al. Flexible ultrathin single-crystalline perovskite photodetector. Nano Lett, 2020, 20, 7144 doi: 10.1021/acs.nanolett.0c02468[22] Sun J, Ding L M. Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett, 2023, 15, 90 doi: 10.1007/s40820-023-01048-y[23] Cheng Y H, Ding L M. Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy Environ Sci, 2021, 14, 3233 doi: 10.1039/D1EE00493J[24] Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13, 460 doi: 10.1038/s41566-019-0398-2[25] Liu X X, Yu Z G, Wang T A, et al. Full defects passivation enables 21% efficiency perovskite solar cells operating in air. Adv Energy Mater, 2020, 10, 2001958 doi: 10.1002/aenm.202001958[26] Gao D Y, Yang L Q, Ma X H, et al. Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency. J Energy Chem, 2022, 69, 659 doi: 10.1016/j.jechem.2022.02.016[27] Zuo C T, Ding L M. Modified PEDOT layer makes a 1.52 V Voc for perovskite/PCBM solar cells. Adv Energy Mater, 2017, 7, 1601193 doi: 10.1002/aenm.201601193[28] Zuo C T, Ding L M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 133, 11342 doi: 10.1002/ange.202101868[29] Liu B, Wang J S, Liu Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics, 2016, 75, 25 doi: 10.1016/j.intermet.2016.05.006[30] Ibrahim K, Shahin A, Jones A, et al. Humidity-resistant perovskite solar cells via the incorporation of halogenated graphene particles. Sol Energy, 2021, 224, 787 doi: 10.1016/j.solener.2021.06.016[31] Li X T, Hoffman J M, Kanatzidis M G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem Rev, 2021, 121, 2230 doi: 10.1021/acs.chemrev.0c01006 -
Proportional views