ARTICLES

Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability

Chengyun Dong1, Xiang An1, Zhicheng Wu1, Zhiguo Zhu1, Chao Xie2, , Jian-An Huang3 and Linbao Luo1,

+ Author Affiliations

 Corresponding author: Chao Xie, chaoxie@ahu.edu.cn; Linbao Luo, luolb@hfut.edu.cn

PDF

Turn off MathJax

Abstract: Two-dimensional layered material/semiconductor heterostructures have emerged as a category of fascinating architectures for developing highly efficient and low-cost photodetection devices. Herein, we present the construction of a highly efficient flexible light detector operating in the visible-near infrared wavelength regime by integrating a PdTe2 multilayer on a thin Si film. A representative device achieves a good photoresponse performance at zero bias including a sizeable current on/off ratio exceeding 105, a decent responsivity of ~343 mA/W, a respectable specific detectivity of ~2.56 × 1012 Jones, and a rapid response time of 4.5/379 μs, under 730 nm light irradiation. The detector also displays an outstanding long-term air stability and operational durability. In addition, thanks to the excellent flexibility, the device can retain its prominent photodetection performance at various bending radii of curvature and upon hundreds of bending tests. Furthermore, the large responsivity and rapid response speed endow the photodetector with the ability to accurately probe heart rate, suggesting a possible application in the area of flexible and wearable health monitoring.

Key words: 2D layered materialheterostructureflexiblephotodetectorhealth monitoring



[1]
Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech, 2014, 9, 780 doi: 10.1038/nnano.2014.215
[2]
Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44, 3691 doi: 10.1039/C5CS00106D
[3]
Long M S, Wang P, Fang H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29, 1803807 doi: 10.1002/adfm.201803807
[4]
Fang H H, Hu W D. Photogating in low dimensional photodetectors. Adv Sci, 2017, 4, 1700323 doi: 10.1002/advs.201700323
[5]
Xie C, Yan F. Flexible photodetectors based on novel functional materials. Small, 2017, 13, 1701822 doi: 10.1002/smll.201701822
[6]
Lou Z, Shen G. Flexible photodetectors based on 1D inorganic nanostructures. Adv Sci, 2016, 3(6), 2198 doi: 10.1002/advs.201500287
[7]
Ren A B, Yuan L M, Xu H, et al. Recent progress of III–V quantum dot infrared photodetectors on silicon. J Mater Chem C, 2019, 7, 14441 doi: 10.1039/C9TC05738B
[8]
Wu J H, Lu Y H, Feng S R, et al. The interaction between quantum dots and graphene: The applications in graphene-based solar cells and photodetectors. Adv Funct Mater, 2018, 28, 1804712 doi: 10.1002/adfm.201804712
[9]
Zhai T Y, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem Soc Rev, 2011, 40, 2986 doi: 10.1039/c0cs00126k
[10]
Zhai T Y, Fang X S, Li L, et al. One-dimensional CdS nanostructures: Synthesis, properties, and applications. Nanoscale, 2010, 2, 168 doi: 10.1039/b9nr00415g
[11]
Jie J S, Zhang W J, Bello I, et al. One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications. Nano Today, 2010, 5, 313 doi: 10.1016/j.nantod.2010.06.009
[12]
Xie C, Mak C, Tao X M, et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater, 2017, 27, 1603886 doi: 10.1002/adfm.201603886
[13]
Pi L J, Li L, Liu K L, et al. Recent progress on 2D noble-transition-metal dichalcogenides. Adv Funct Materials, 2019, 29, 1904932 doi: 10.1002/adfm.201904932
[14]
Liu C Y, Guo J S, Yu L W, et al. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci Appl, 2021, 10, 123 doi: 10.1038/s41377-021-00551-4
[15]
Yao J D, Yang G W. 2D material broadband photodetectors. Nanoscale, 2020, 12, 454 doi: 10.1039/C9NR09070C
[16]
Tian W, Zhou H P, Li L. Hybrid organic-inorganic perovskite photodetectors. Small, 2017, 13, 1702107 doi: 10.1002/smll.201702107
[17]
Wang H, Kim D H. Perovskite-based photodetectors: Materials and devices. Chem Soc Rev, 2017, 46, 5204 doi: 10.1039/C6CS00896H
[18]
Xie C, Liu C K, Loi H L, et al. Perovskite-based phototransistors and hybrid photodetectors. Adv Funct Mater, 2020, 30, 1903907 doi: 10.1002/adfm.201903907
[19]
Yan Z H, Yang H, Yang Z, et al. Emerging two-dimensional tellurene and tellurides for broadband photodetectors. Small, 2022, 18, 2200016 doi: 10.1002/smll.202200016
[20]
Zhao Y D, Qiao J S, Yu Z H, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29, 1604230 doi: 10.1002/adma.201604230
[21]
Yu X C, Yu P, Wu D, et al. Atomicallythin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat Commun, 2018, 9, 1545 doi: 10.1038/s41467-018-03935-0
[22]
Li L, Wang W K, Chai Y, et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv Funct Mater, 2017, 27, 1701011 doi: 10.1002/adfm.201701011
[23]
Liang Q J, Wang Q X, Zhang Q, et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv Mater, 2019, 31, 1807609 doi: 10.1002/adma.201807609
[24]
Guo C, Hu Y B, Chen G, et al. Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection. Sci Adv, 2020, 6, eabb6500 doi: 10.1126/sciadv.abb6500
[25]
Li Z X, Ran W H, Yan Y X, et al. High-performance optical noncontact controlling system based on broadband PtTe x /Si heterojunction photodetectors for human–machine interaction. InfoMat, 2022, 4, e12261 doi: 10.1002/inf2.12261
[26]
Yim C, McEvoy N, Riazimehr S, et al. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett, 2018, 18, 1794 doi: 10.1021/acs.nanolett.7b05000
[27]
Wu D, Guo J W, Du J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano, 2019, 13, 9907 doi: 10.1021/acsnano.9b03994
[28]
Zeng L H, Wu D, Lin S H, et al. Photodetectors: Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv Funct Mater, 2019, 29, 1970005 doi: 10.1002/adfm.201970005
[29]
Luo L B, Wang D, Xie C, et al. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv Funct Mater, 2019, 29, 1900849 doi: 10.1002/adfm.201900849
[30]
Chen C, Li K H, Li F, et al. One-dimensional Sb2Se3 enabling a highly flexible photodiode for light-source-free heart rate detection. ACS Photonics, 2020, 7, 352 doi: 10.1021/acsphotonics.9b01609
[31]
Xu Y J, Shen H L, Li Y F, et al. Self-powered and fast response MoO3/n-Si photodetectors on flexible silicon substrates with light-trapping structures. ACS Appl Electron Mater, 2022, 4, 4641 doi: 10.1021/acsaelm.2c00875
[32]
Ruan K Q, Ding K, Wang Y M, et al. Flexible graphene/silicon heterojunction solar cells. J Mater Chem A, 2015, 3, 14370 doi: 10.1039/C5TA03652F
[33]
Liang Y, Xie C, Dong C Y, et al. Electrically adjusted deep-ultraviolet/near-infrared single-band/dual-band imaging photodetectors based on Cs3Cu2I5/PdTe2/Ge multiheterostructures. J Mater Chem C, 2021, 9, 14897 doi: 10.1039/D1TC04290D
[34]
Tong X-W, Fan M, Xie C, Wang L, et al. A self-driven wideband wavelength sensor based on an individual PdTe2/Thin Si/PdTe2 heterojunction. J Mater Chem C, 2022, 10, 14334 doi: 10.1039/D2TC02850F
[35]
D'Olimpio G, Guo C, Kuo C N, et al. PdTe2 transition-metal dichalcogenide: Chemical reactivity, thermal stability, and device implementation. Adv Funct Mater, 2020, 30, 1906556 doi: 10.1002/adfm.201906556
[36]
Li E, Zhang R Z, Li H, et al. High quality PdTe2 thin films grown by molecular beam epitaxy. Chin Phys B, 2018, 27, 086804 doi: 10.1088/1674-1056/27/8/086804
[37]
Wu E, Wu D, Jia C, et al. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics, 2019, 6, 565 doi: 10.1021/acsphotonics.8b01675
[38]
Li X M, Zhu M, Du M D, et al. High detectivity graphene-silicon heterojunction photodetector. Small, 2016, 12, 595 doi: 10.1002/smll.201502336
[39]
Wang L, Jie J S, Shao Z B, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater, 2015, 25, 2910 doi: 10.1002/adfm.201500216
[40]
Zeng L H, Wu D, Jie J S, et al. Mid-infrared photodetectors: Van der waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv Mater, 2020, 32, 2070394 doi: 10.1002/adma.202070394
[41]
An X H, Liu F Z, Jung Y J, et al. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett, 2013, 13, 909 doi: 10.1021/nl303682j
[42]
Xie C, Wang Y, Zhang Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today, 2018, 19, 41 doi: 10.1016/j.nantod.2018.02.009
[43]
García de Arquer F P, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater, 2017, 2, 16100 doi: 10.1038/natrevmats.2016.100
[44]
Gong X, Tong M H, Xia Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325, 1665 doi: 10.1126/science.1176706
[45]
Xiao P, Mao J, Ding K, et al. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv Mater, 2018, 30, 1801729 doi: 10.1002/adma.201801729
[46]
Li J H, Niu L Y, Zheng Z J, et al. Photosensitive graphene transistors. Adv Mater, 2014, 26, 5239 doi: 10.1002/adma.201400349
[47]
Yao J D, Zheng Z Q, Yang G W. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog Mater Sci, 2019, 106, 100573 doi: 10.1016/j.pmatsci.2019.100573
[48]
Palik E D, Glembocki O J, Heard I Jr, et al. Etching roughness for (100) silicon surfaces in aqueous KOH. J Appl Phys, 1991, 70, 3291 doi: 10.1063/1.349263
[49]
Lochner C M, Khan Y, Pierre A, et al. All-organic optoelectronic sensor for pulse oximetry. Nat Commun, 2014, 5, 5745 doi: 10.1038/ncomms6745
[50]
Xu H H, Liu J, Zhang J, et al. Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring. Adv Mater, 2017, 29, 1700975 doi: 10.1002/adma.201700975
Fig. 1.  (Color online) (a) Schematic diagram of the PdTe2 multilayer/thin Si heterostructure-based flexible photodetector. (b) Cross-sectional SEM images (top panel) thin Si films with different thicknesses. The bottom panel shows photographs of thin Si films under bending conditions. (c) Absorption spectra of thin Si films with different thicknesses. (d) SEM images, (e) height profile, (f) XRD pattern, and (g) XPS spectra of as-prepared PdTe2 multilayer. Inset in (e) displays an AFM image of the PdTe2 multilayer. (h) Raman spectra of as-prepared PdTe2 multilayer on a SiO2/Si substrate and PdTe2 multilayer transferred onto a thin Si film.

Fig. 2.  (Color online) (a) IV curves, (b) transient photoresponse at zero bias and (c) responsivity versus light wavelength of PdTe2 multilayer/thin Si heterostructure with diverse Si thicknesses. (d) IV curves of PdTe2 multilayer/thin Si heterostructure with different PdTe2 thicknesses.

Fig. 3.  (Color online) (a) Dark IV curve of the PdTe2 multilayer/thin Si heterostructure in linear and logarithmic coordinates. (b) The comparison of the IV curves in darkness and upon 730 nm light irradiation. (c) Transient photoresponse upon periodically switched 730 nm light irradiation. Transient photoresponse (d) after over 650 cycles of working and (e) before and after storage for 3 months in air conditions. (f) Energy band diagram of the heterostructure upon light irradiation at 0 V.

Fig. 4.  (Color online) (a) IV characteristics and (b) transient photoresponse of the heterostructure photodetector under 730 nm light irradiation with diverse intensities. (c) Photocurrent at 0 V versus intensity of incident light. The dark current level and deviation current from linearity determine the LDR of the light detector. (d) Dependence of responsivity and EQE on wavelength of incident light.

Fig. 5.  (Color online) (a) Transient photoresponse upon 730 nm light irradiation with various modulated frequencies. (b) Relative balance (VmaxVmin)/Vmax versus incident light frequency, showing a 3 dB frequency at about 994 Hz. (c) An individual cycle transient photoresponse.

Fig. 6.  (Color online) (a) IV curves and (b) dark current and photocurrent of the heterostructure-based flexible light detector under different bending radii of curvature. (c) IV curves and (d) photocurrent and dark current of the heterostructure-based flexible light detector before and after 100 and 200 cycles of bending tests.

Fig. 7.  (Color online) (a) Schematic diagram and (b) experimental setup of the HR detection system. LED and PD represent light emitting diode and photodetector, respectively. Normalized transient photoresponse of the heterostructure (c) at normal and (d) after exercise conditions (upon 730 nm light illumination). Insets in (c) and (d) are photographs of a commercial Mi smart bracelet, showing HR measurement results at normal and after exercise statuses, respectively.

Table 1.   Comparison of key performance parameters of previously reported 2D material/Si heterostructure-based photodetectors with our device.

Device structure R (mA/W) D* (Jones) Rise/fall time (μs) Ref.
PdSe2/bulk Si 300.2 (0 V) ~1013 38/44 [28]
WS2/bulk Si 224 (0 V) 1.5 × 1012 16/29 [37]
MoS2/bulk Si ~300 (0 V) ~1013 3/40 [39]
PtTe2/bulk Si 428 (0 V) 5.89 × 1011 2.4/32 [40]
Graphene/bulk Si 435 (-2 V) 7.69 × 109 1200/3000 [41]
PdTe2/thin Si 343 (0 V) ~2.56 × 1012 4.5/379 This work
DownLoad: CSV
[1]
Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech, 2014, 9, 780 doi: 10.1038/nnano.2014.215
[2]
Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44, 3691 doi: 10.1039/C5CS00106D
[3]
Long M S, Wang P, Fang H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29, 1803807 doi: 10.1002/adfm.201803807
[4]
Fang H H, Hu W D. Photogating in low dimensional photodetectors. Adv Sci, 2017, 4, 1700323 doi: 10.1002/advs.201700323
[5]
Xie C, Yan F. Flexible photodetectors based on novel functional materials. Small, 2017, 13, 1701822 doi: 10.1002/smll.201701822
[6]
Lou Z, Shen G. Flexible photodetectors based on 1D inorganic nanostructures. Adv Sci, 2016, 3(6), 2198 doi: 10.1002/advs.201500287
[7]
Ren A B, Yuan L M, Xu H, et al. Recent progress of III–V quantum dot infrared photodetectors on silicon. J Mater Chem C, 2019, 7, 14441 doi: 10.1039/C9TC05738B
[8]
Wu J H, Lu Y H, Feng S R, et al. The interaction between quantum dots and graphene: The applications in graphene-based solar cells and photodetectors. Adv Funct Mater, 2018, 28, 1804712 doi: 10.1002/adfm.201804712
[9]
Zhai T Y, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem Soc Rev, 2011, 40, 2986 doi: 10.1039/c0cs00126k
[10]
Zhai T Y, Fang X S, Li L, et al. One-dimensional CdS nanostructures: Synthesis, properties, and applications. Nanoscale, 2010, 2, 168 doi: 10.1039/b9nr00415g
[11]
Jie J S, Zhang W J, Bello I, et al. One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications. Nano Today, 2010, 5, 313 doi: 10.1016/j.nantod.2010.06.009
[12]
Xie C, Mak C, Tao X M, et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater, 2017, 27, 1603886 doi: 10.1002/adfm.201603886
[13]
Pi L J, Li L, Liu K L, et al. Recent progress on 2D noble-transition-metal dichalcogenides. Adv Funct Materials, 2019, 29, 1904932 doi: 10.1002/adfm.201904932
[14]
Liu C Y, Guo J S, Yu L W, et al. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci Appl, 2021, 10, 123 doi: 10.1038/s41377-021-00551-4
[15]
Yao J D, Yang G W. 2D material broadband photodetectors. Nanoscale, 2020, 12, 454 doi: 10.1039/C9NR09070C
[16]
Tian W, Zhou H P, Li L. Hybrid organic-inorganic perovskite photodetectors. Small, 2017, 13, 1702107 doi: 10.1002/smll.201702107
[17]
Wang H, Kim D H. Perovskite-based photodetectors: Materials and devices. Chem Soc Rev, 2017, 46, 5204 doi: 10.1039/C6CS00896H
[18]
Xie C, Liu C K, Loi H L, et al. Perovskite-based phototransistors and hybrid photodetectors. Adv Funct Mater, 2020, 30, 1903907 doi: 10.1002/adfm.201903907
[19]
Yan Z H, Yang H, Yang Z, et al. Emerging two-dimensional tellurene and tellurides for broadband photodetectors. Small, 2022, 18, 2200016 doi: 10.1002/smll.202200016
[20]
Zhao Y D, Qiao J S, Yu Z H, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29, 1604230 doi: 10.1002/adma.201604230
[21]
Yu X C, Yu P, Wu D, et al. Atomicallythin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat Commun, 2018, 9, 1545 doi: 10.1038/s41467-018-03935-0
[22]
Li L, Wang W K, Chai Y, et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv Funct Mater, 2017, 27, 1701011 doi: 10.1002/adfm.201701011
[23]
Liang Q J, Wang Q X, Zhang Q, et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv Mater, 2019, 31, 1807609 doi: 10.1002/adma.201807609
[24]
Guo C, Hu Y B, Chen G, et al. Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection. Sci Adv, 2020, 6, eabb6500 doi: 10.1126/sciadv.abb6500
[25]
Li Z X, Ran W H, Yan Y X, et al. High-performance optical noncontact controlling system based on broadband PtTe x /Si heterojunction photodetectors for human–machine interaction. InfoMat, 2022, 4, e12261 doi: 10.1002/inf2.12261
[26]
Yim C, McEvoy N, Riazimehr S, et al. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett, 2018, 18, 1794 doi: 10.1021/acs.nanolett.7b05000
[27]
Wu D, Guo J W, Du J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano, 2019, 13, 9907 doi: 10.1021/acsnano.9b03994
[28]
Zeng L H, Wu D, Lin S H, et al. Photodetectors: Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv Funct Mater, 2019, 29, 1970005 doi: 10.1002/adfm.201970005
[29]
Luo L B, Wang D, Xie C, et al. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv Funct Mater, 2019, 29, 1900849 doi: 10.1002/adfm.201900849
[30]
Chen C, Li K H, Li F, et al. One-dimensional Sb2Se3 enabling a highly flexible photodiode for light-source-free heart rate detection. ACS Photonics, 2020, 7, 352 doi: 10.1021/acsphotonics.9b01609
[31]
Xu Y J, Shen H L, Li Y F, et al. Self-powered and fast response MoO3/n-Si photodetectors on flexible silicon substrates with light-trapping structures. ACS Appl Electron Mater, 2022, 4, 4641 doi: 10.1021/acsaelm.2c00875
[32]
Ruan K Q, Ding K, Wang Y M, et al. Flexible graphene/silicon heterojunction solar cells. J Mater Chem A, 2015, 3, 14370 doi: 10.1039/C5TA03652F
[33]
Liang Y, Xie C, Dong C Y, et al. Electrically adjusted deep-ultraviolet/near-infrared single-band/dual-band imaging photodetectors based on Cs3Cu2I5/PdTe2/Ge multiheterostructures. J Mater Chem C, 2021, 9, 14897 doi: 10.1039/D1TC04290D
[34]
Tong X-W, Fan M, Xie C, Wang L, et al. A self-driven wideband wavelength sensor based on an individual PdTe2/Thin Si/PdTe2 heterojunction. J Mater Chem C, 2022, 10, 14334 doi: 10.1039/D2TC02850F
[35]
D'Olimpio G, Guo C, Kuo C N, et al. PdTe2 transition-metal dichalcogenide: Chemical reactivity, thermal stability, and device implementation. Adv Funct Mater, 2020, 30, 1906556 doi: 10.1002/adfm.201906556
[36]
Li E, Zhang R Z, Li H, et al. High quality PdTe2 thin films grown by molecular beam epitaxy. Chin Phys B, 2018, 27, 086804 doi: 10.1088/1674-1056/27/8/086804
[37]
Wu E, Wu D, Jia C, et al. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics, 2019, 6, 565 doi: 10.1021/acsphotonics.8b01675
[38]
Li X M, Zhu M, Du M D, et al. High detectivity graphene-silicon heterojunction photodetector. Small, 2016, 12, 595 doi: 10.1002/smll.201502336
[39]
Wang L, Jie J S, Shao Z B, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater, 2015, 25, 2910 doi: 10.1002/adfm.201500216
[40]
Zeng L H, Wu D, Jie J S, et al. Mid-infrared photodetectors: Van der waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv Mater, 2020, 32, 2070394 doi: 10.1002/adma.202070394
[41]
An X H, Liu F Z, Jung Y J, et al. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett, 2013, 13, 909 doi: 10.1021/nl303682j
[42]
Xie C, Wang Y, Zhang Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today, 2018, 19, 41 doi: 10.1016/j.nantod.2018.02.009
[43]
García de Arquer F P, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater, 2017, 2, 16100 doi: 10.1038/natrevmats.2016.100
[44]
Gong X, Tong M H, Xia Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325, 1665 doi: 10.1126/science.1176706
[45]
Xiao P, Mao J, Ding K, et al. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv Mater, 2018, 30, 1801729 doi: 10.1002/adma.201801729
[46]
Li J H, Niu L Y, Zheng Z J, et al. Photosensitive graphene transistors. Adv Mater, 2014, 26, 5239 doi: 10.1002/adma.201400349
[47]
Yao J D, Zheng Z Q, Yang G W. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog Mater Sci, 2019, 106, 100573 doi: 10.1016/j.pmatsci.2019.100573
[48]
Palik E D, Glembocki O J, Heard I Jr, et al. Etching roughness for (100) silicon surfaces in aqueous KOH. J Appl Phys, 1991, 70, 3291 doi: 10.1063/1.349263
[49]
Lochner C M, Khan Y, Pierre A, et al. All-organic optoelectronic sensor for pulse oximetry. Nat Commun, 2014, 5, 5745 doi: 10.1038/ncomms6745
[50]
Xu H H, Liu J, Zhang J, et al. Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring. Adv Mater, 2017, 29, 1700975 doi: 10.1002/adma.201700975

23040024 补充材料.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 663 Times PDF downloads: 51 Times Cited by: 0 Times

    History

    Received: 20 April 2023 Revised: 06 June 2023 Online: Accepted Manuscript: 28 August 2023Corrected proof: 13 October 2023Uncorrected proof: 17 October 2023Published: 10 November 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chengyun Dong, Xiang An, Zhicheng Wu, Zhiguo Zhu, Chao Xie, Jian-An Huang, Linbao Luo. Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability[J]. Journal of Semiconductors, 2023, 44(11): 112001. doi: 10.1088/1674-4926/44/11/112001 C Y Dong, X An, Z C Wu, Z G Zhu, C Xie, J A Huang, L B Luo. Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability[J]. J. Semicond, 2023, 44(11): 112001. doi: 10.1088/1674-4926/44/11/112001Export: BibTex EndNote
      Citation:
      Chengyun Dong, Xiang An, Zhicheng Wu, Zhiguo Zhu, Chao Xie, Jian-An Huang, Linbao Luo. Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability[J]. Journal of Semiconductors, 2023, 44(11): 112001. doi: 10.1088/1674-4926/44/11/112001

      C Y Dong, X An, Z C Wu, Z G Zhu, C Xie, J A Huang, L B Luo. Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability[J]. J. Semicond, 2023, 44(11): 112001. doi: 10.1088/1674-4926/44/11/112001
      Export: BibTex EndNote

      Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability

      doi: 10.1088/1674-4926/44/11/112001
      More Information
      • Author Bio:

        Chengyun Dong got his BS degree from Anhui Polytechnic University in 2020. Now he is a master student at School of Microelectronics, Hefei University of Technology, under the supervision of Prof. Linbao Luo. His research focuses on two-dimensional layered materials and optoelectronic devices

        Chao Xie received his doctoral degree from Hefei University of Technology, Hefei, China, in 2014. He is currently a Professor with Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, China. His current research focuses on development of high-performance optoelectronic devices based on novel functional materials

        Linbao Luo received his doctoral degree from City University of Hong Kong in 2009. He is currently a Professor with School of Microelectronics, Hefei University of Technology, Hefei, China. He has long been engaged in the research of high-performance optoelectronic devices and optoelectronic integration technology based on new semiconductor materials

      • Corresponding author: chaoxie@ahu.edu.cnluolb@hfut.edu.cn
      • Received Date: 2023-04-20
      • Revised Date: 2023-06-06
      • Available Online: 2023-08-28

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return