REVIEWS

Microcantilever sensors for biochemical detection

Jingjing Wang1, Baozheng Xu1, Yinfang Zhu2, and Junyuan Zhao2,

+ Author Affiliations

 Corresponding author: Yinfang Zhu, yfzhu@semi.ac.cn; Junyuan Zhao, junyuanzhao@semi.ac.cn

PDF

Turn off MathJax

Abstract: Microcantilever is one of the most popular miniaturized structures in micro-electromechanical systems (MEMS). Sensors based on microcantilever are ideal for biochemical detection, since they have high sensitivity, high throughput, good specification, fast response, thus have attracted extensive attentions. A number of devices that are based on static deflections or shifts of resonant frequency of the cantilevers responding to analyte attachment have been demonstrated. This review comprehensively presents state of art of microcantilever sensors working in gaseous and aqueous environments and highlights the challenges and opportunities of microcantilever biochemical sensors.

Key words: microcantileversensorbiochemical detectionMEMS



[1]
Mouro J, Pinto R, Paoletti P, et al. Microcantilever: Dynamical response for mass sensing and fluid characterization. Sensors, 2020, 21, 115 doi: 10.3390/s21010115
[2]
Peng R P, Chen B, Ji H F, et al. Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. Analyst, 2012, 137, 1220 doi: 10.1039/c2an15950c
[3]
Ricciardi C, Ferrante I, Castagna R, et al. Immunodetection of 17β-estradiol in serum at ppt level by microcantilever resonators. Biosens Bioelectron, 2013, 40, 407 doi: 10.1016/j.bios.2012.08.043
[4]
Xue C G, Zhao H W, Liu H, et al. Development of sulfhydrylated antibody functionalized microcantilever immunosensor for taxol. Sens Actuat B, 2011, 156, 863 doi: 10.1016/j.snb.2011.02.055
[5]
Biavardi E, Federici S, Tudisco C, et al. Cavitand-grafted silicon microcantilevers as a universal probe for illicit and designer drugs in water. Angew Chem Int Ed, 2014, 53, 9183 doi: 10.1002/anie.201404774
[6]
Ricciardi C, Fiorilli S, Bianco S, et al. Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis. Biosens Bioelectron, 2010, 25, 1193 doi: 10.1016/j.bios.2009.10.006
[7]
Oliviero G, Chiari M, De Lorenzi E, et al. Leveraging on nanomechanical sensors to single out active small ligands for β2-microglobulin. Sens Actuat B, 2013, 176, 1026 doi: 10.1016/j.snb.2012.09.032
[8]
Huber F, Lang H P, Glatz K, et al. Fast diagnostics of BRAF mutations in biopsies from malignant melanoma. Nano Lett, 2016, 16, 5373 doi: 10.1021/acs.nanolett.6b01513
[9]
Maloney N, Lukacs G, Jensen J, et al. Nanomechanical sensors for single microbial cell growth monitoring. Nanoscale, 2014, 6, 8242 doi: 10.1039/C4NR01610F
[10]
Kim H H, Jeon H J, Cho H K, et al. Highly sensitive microcantilever sensors with enhanced sensitivity for detection of human papilloma virus infection. Sens Actuat B, 2015, 221, 1372 doi: 10.1016/j.snb.2015.08.014
[11]
Rabe U, Janser K, Arnold W. Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev Sci Instrum, 1996, 67, 3281 doi: 10.1063/1.1147409
[12]
Hwang K S, Eom K, Lee J H, et al. Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers. Appl Phys Lett, 2006, 89, 173905 doi: 10.1063/1.2372700
[13]
Dammer U, Hegner M, Anselmetti D, et al. Specific antigen/antibody interactions measured by force microscopy. Biophys J, 1996, 70, 2437 doi: 10.1016/S0006-3495(96)79814-4
[14]
Fritz J, Baller M K, Lang H P, et al. Translating biomolecular recognition into nanomechanics. Science, 2000, 288, 316 doi: 10.1126/science.288.5464.316
[15]
Wang D F, Du X, Wang X, et al. Improving picogram mass sensitivity via frequency doubling in coupled silicon micro-cantilevers. J Micromech Microeng, 2016, 26, 015006 doi: 10.1088/0960-1317/26/1/015006
[16]
Thundat T, Wachter E A, Sharp S L, et al. Detection of mercury vapor using resonating microcantilevers. Appl Phys Lett, 1995, 66, 1695 doi: 10.1063/1.113896
[17]
Ramos D, Tamayo J, Mertens J, et al. Origin of the response of nanomechanical resonators to bacteria adsorption. J Appl Phys, 2006, 100, 106105 doi: 10.1063/1.2370507
[18]
Nugaeva N, Gfeller K Y, Backmann N, et al. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron, 2005, 21, 849 doi: 10.1016/j.bios.2005.02.004
[19]
von Muhlen M G, Brault N D, Knudsen S M, et al. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem, 2010, 82, 1905 doi: 10.1021/ac9027356
[20]
Seena V, Fernandes A, Pant P, et al. Polymer nanocomposite nanomechanical cantilever sensors: Material characterization, device development and application in explosive vapour detection. Nanotechnology, 2011, 22, 295501 doi: 10.1088/0957-4484/22/29/295501
[21]
Pinnaduwage L A, Hawk J E, Boiadjiev V, et al. Use of microcantilevers for the monitoring of molecular binding to self-assembled monolayers. Langmuir, 2003, 19, 7841 doi: 10.1021/la034969n
[22]
Senesac L, Thundat T G. Nanosensors for trace explosive detection. Mater Today, 2008, 11, 28 doi: 10.1016/S1369-7021(08)70017-8
[23]
Hwang K S, Lee S M, Kim S K, et al. Micro- and nanocantilever devices and systems for biomolecule detection. Annu Rev Anal Chem, 2009, 2, 77 doi: 10.1146/annurev-anchem-060908-155232
[24]
Chen Y, Xu P C, Li X X. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives. Nanotechnology, 2010, 21, 265501 doi: 10.1088/0957-4484/21/26/265501
[25]
Zhou J, Li P, Zhang S, et al. Zeolite-modified microcantilever gas sensor for indoor air quality control. Sens Actuat B, 2003, 94, 337 doi: 10.1016/S0925-4005(03)00369-1
[26]
Kooser A, Gunter R L, Delinger W D, et al. Gas sensing using embedded piezoresistive microcantilever sensors. Sens Actuat B, 2004, 99, 474 doi: 10.1016/j.snb.2003.12.057
[27]
Porter T L, Vail T L, Eastman M P, et al. A solid-state sensor platform for the detection of hydrogen cyanide gas. Sens Actuat B, 2007, 123, 313 doi: 10.1016/j.snb.2006.08.025
[28]
Pinnaduwage L A, Thundat T, Hawk J E, et al. Detection of 2, 4-dinitrotoluene using microcantilever sensors. Sens Actuat B, 2004, 99, 223 doi: 10.1016/j.snb.2003.11.011
[29]
Kong J, Chapline M G, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater, 2001, 13, 1384 doi: 10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
[30]
Kim T H, Lee B Y, Jaworski J, et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano, 2011, 5, 2824 doi: 10.1021/nn103324p
[31]
Kuang Z F, Kim S N, Crookes-Goodson W J, et al. Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano, 2010, 4, 452 doi: 10.1021/nn901365g
[32]
Ruan W Z, Li Y C, Tan Z M, et al. In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens Actuat B, 2013, 176, 141 doi: 10.1016/j.snb.2012.10.026
[33]
Rahimi M, Chae I, Hawk E J, et al. Methane sensing at room temperature using photothermal cantilever deflection spectroscopy. Sens Actuat B, 2015, 221, 564 doi: 10.1016/j.snb.2015.07.006
[34]
Longo G, Alonso-Sarduy L, Rio L M, et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol, 2013, 8, 522 doi: 10.1038/nnano.2013.120
[35]
Etayash H, Khan M F, Kaur K, et al. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun, 2016, 7, 12947 doi: 10.1038/ncomms12947
[36]
Shekhawat G, Tark S H, Dravid V P. MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science, 2006, 311, 1592 doi: 10.1126/science.1122588
[37]
Timurdogan E, Alaca B E, Kavakli I H, et al. MEMS biosensor for detection of hepatitis A and C viruses in serum. Biosens Bioelectron, 2011, 28, 189 doi: 10.1016/j.bios.2011.07.014
[38]
Liu X C, Wang L H, Zhao J Y, et al. Enhanced binding efficiency of microcantilever biosensor for the detection of yersinia. Sensors, 2019, 19, 3326 doi: 10.3390/s19153326
[39]
Wang S P, Wang J J, Zhu Y F, et al. A new device for liver cancer biomarker detection with high accuracy. Sens Bio Sens Res, 2015, 4, 40 doi: 10.1016/j.sbsr.2014.10.002
[40]
Wang J J, Wang S P, Wang X, et al. Cantilever array sensor for multiple liver cancer biomarkers detection. 2014 IEEE SENSORS, 2014, 343 doi: 10.1109/ICSENS.2014.6985004
[41]
Zhang J, Lang H P, Huber F, et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol, 2006, 1, 214 doi: 10.1038/nnano.2006.134
[42]
Mertens J, Rogero C, Calleja M, et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol, 2008, 3, 301 doi: 10.1038/nnano.2008.91
[43]
Ansari M Z, Cho C. A study on increasing sensitivity of rectangular microcantilevers used in biosensors. Sensors, 2008, 8, 7530 doi: 10.3390/s8117530
[44]
Ansari M Z, Cho C. Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors, 2009, 9, 6046 doi: 10.3390/s90806046
[45]
Ansari M Z, Cho C, Kim J, et al. Comparison between deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Sensors, 2009, 9, 2706 doi: 10.3390/s90402706
[46]
Liu Y, Wang H, Qin H, et al. Geometry and profile modification of microcantilevers for sensitivity enhancement in sensing applications. Sens Mater, 2017, 29(6), 689 doi: 10.18494/SAM.2017.1465
[47]
Hawari H F, Wahab Y, Azmi M T, et al. Design and analysis of various microcantilever shapes for MEMS based sensing. J Phys: Conf Ser, 2014, 495, 012045 doi: 10.1088/1742-6596/495/1/012045
[48]
Lim Y C, Kouzani A Z, Duan W, et al. Effects of design parameters on sensitivity of microcantilever biosensors. IEEE/ICME International Conference on Complex Medical Engineering, 2010, 177 doi: 10.1109/ICCME.2010.5558847
[49]
Zhao R, Ma W, Wen Y, et al. Trace level detections of abrin with high SNR piezoresistive cantilever biosensor. Sens Actuat B, 2015, 212, 112 doi: 10.1016/j.snb.2015.02.002
[50]
Kim D S, Jeong Y J, Lee B K, et al. Piezoresistive sensor-integrated PDMS cantilever: A new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes. Sens Actuat B, 2017, 240, 566 doi: 10.1016/j.snb.2016.08.167
[51]
Zhao R, Sun Y. Polymeric flexible immunosensor based on piezoresistive micro-cantilever with PEDOT/PSS conductive layer. Sensors, 2018, 18, 451 doi: 10.3390/s18020451
[52]
Li K W,Yen Y K. Gentamicin drug monitoring for peritonitis patients by using a CMOS-BioMEMS-based microcantilever sensor. Biosens Bioelectron, 2019, 130, 420 doi: 10.1016/j.bios.2018.09.014
[53]
Zheng F J, Wang P X, Du Q F, et al. Simultaneous and ultrasensitive detection of foodborne bacteria by gold nanoparticles-amplified microcantilever array biosensor. Front Chem, 2019, 7, 232 doi: 10.3389/fchem.2019.00232
[54]
Wang L H, Fu D Y, Liu X C, et al. Highly sensitive biosensor based on a microcantilever and alternating current electrothermal technology. J Micromech Microeng, 2021, 31, 015009 doi: 10.1088/1361-6439/abcae6
[55]
Leahy S, Lai Y. A cantilever biosensor exploiting electrokinetic capture to detect Escherichia coli in real time. Sens Actuat B, 2017, 238, 292 doi: 10.1016/j.snb.2016.07.069
[56]
Boisen A, Thundat T. Design & fabrication of cantilever array biosensors. Mater Today, 2009, 12, 32 doi: 10.1016/S1369-7021(09)70249-4
[57]
Feng X L, White C J, Hajimiri A, et al. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat Nanotechnol, 2008, 3, 342 doi: 10.1038/nnano.2008.125
[58]
Ekinci K L, Yang Y T, Roukes M L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys, 2004, 95, 2682 doi: 10.1063/1.1642738
[59]
Vig J R, Kim Y. Noise in microelectromechanical system resonators. IEEE Trans Ultrason Ferroelectr Freq Control, 1999, 46, 1558 doi: 10.1109/58.808881
[60]
Meng J W, Tang S J, Sun, J L, et al. Dissipative acousto-optic interactions in optical microcavities. Phys Rev Lett, 2022, 9, 7 doi: 10.1103/PhysRevLett.129.073901
[61]
Kim W, Kouh T. Simple optical knife-edge effect based motion detection approach for a microcantilever. Appl Phys Lett, 2020, 116, 163104 doi: 10.1063/5.0005924
Fig. 1.  (Color online) (a) Schematic diagram of EPM sensor and (b) EPM sensor response to CO.

Fig. 2.  (Color online) Schematic diagram of the sensor structure and operating principle. (a) Explosive vapor adsorbed on a carbon nanotube sensor. (b) Heating the explosive vapor to make it micro-detonate.

Fig. 3.  (Color online) Schematic diagram of the PCDS experimental gas sensing device. (a) Controlled vapor generation device. (b) Sensing section.

Fig. 4.  (Color online) Schematic diagram of the setup and floating cantilever. (a) Top: attached live bacteria. bottom: optical image of the cantilever. (b) Top indicates the acquisition chamber. Bottom: AFM illumination detection system. (c) Description of fluctuations generated by B adsorption on its surface.

Fig. 5.  (Color online)Schematic diagram of the BMC and its multiple modes of operation. (a) BMC filled with bacteria on a silicon substrate. (b) Scanning electron microscope (SEM) image located at the bottom of the chip. (c) Cross-section of a cantilevered 32 mm wide microchannel. (d) Fluorescence image of the top of the BMC. (e) SEM image of the BMC tip. (f) Nanomechanical deflection of the BMC when the bacteria inside the BMC absorb infrared light. (g) The resonance frequency is sensitive to the mass increase caused by bacterial adsorption inside the BMC. (h) Nanomechanical deflection map of BMC when irradiated by a range of infrared light shows the wavelengths at which the bacteria absorb infrared light. This can provide excellent selectivity in complex mixtures.

Fig. 6.  (Color online) (a) Schematic diagram of the interaction between the probe and target molecules in the embedded MOSFET cantilever system. (b) Schematic diagram of MOSFET drain current variation during probe-target bonding. (c) Variation of drain current with time.

Fig. 7.  (Color online) (a) Schematic diagram of the flow cell. (b) Schematic diagram of the closed-loop control system.

Fig. 8.  (Color online) (a) Schematic diagram of the micro-cantilever sensor and (b) scanning electron microscope (SEM) image of the cantilever.

Fig. 9.  (Color online) Illustration of the cantilever arrays (top) and enlarged view of the cantilever (bottom).

Fig. 10.  (Color online) Setup showing sensor and reference cantilevers and the biofunctionalized cantilever array.

Fig. 11.  (Color online) (a) Shift of resonant frequency and sensitivity versus w, (b) position dependence of the rectangular cantilever sensitivity and (c) novel stepped microcantilever.

Fig. 12.  (Color online) (a) The SEM top view of the MCL. (b) The SEM side view of MCL. (c) The schematic of immobilizing the modification process. (d) The entity experiment diagram.

Fig. 13.  (Color online) (a) Schematic diagram of reaction module. (b) Schematic diagram of electrode and cantilever chip position. (c) Partial enlarged view of ACET electrode. (d) PDMS microfluidic channel chip.

[1]
Mouro J, Pinto R, Paoletti P, et al. Microcantilever: Dynamical response for mass sensing and fluid characterization. Sensors, 2020, 21, 115 doi: 10.3390/s21010115
[2]
Peng R P, Chen B, Ji H F, et al. Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. Analyst, 2012, 137, 1220 doi: 10.1039/c2an15950c
[3]
Ricciardi C, Ferrante I, Castagna R, et al. Immunodetection of 17β-estradiol in serum at ppt level by microcantilever resonators. Biosens Bioelectron, 2013, 40, 407 doi: 10.1016/j.bios.2012.08.043
[4]
Xue C G, Zhao H W, Liu H, et al. Development of sulfhydrylated antibody functionalized microcantilever immunosensor for taxol. Sens Actuat B, 2011, 156, 863 doi: 10.1016/j.snb.2011.02.055
[5]
Biavardi E, Federici S, Tudisco C, et al. Cavitand-grafted silicon microcantilevers as a universal probe for illicit and designer drugs in water. Angew Chem Int Ed, 2014, 53, 9183 doi: 10.1002/anie.201404774
[6]
Ricciardi C, Fiorilli S, Bianco S, et al. Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis. Biosens Bioelectron, 2010, 25, 1193 doi: 10.1016/j.bios.2009.10.006
[7]
Oliviero G, Chiari M, De Lorenzi E, et al. Leveraging on nanomechanical sensors to single out active small ligands for β2-microglobulin. Sens Actuat B, 2013, 176, 1026 doi: 10.1016/j.snb.2012.09.032
[8]
Huber F, Lang H P, Glatz K, et al. Fast diagnostics of BRAF mutations in biopsies from malignant melanoma. Nano Lett, 2016, 16, 5373 doi: 10.1021/acs.nanolett.6b01513
[9]
Maloney N, Lukacs G, Jensen J, et al. Nanomechanical sensors for single microbial cell growth monitoring. Nanoscale, 2014, 6, 8242 doi: 10.1039/C4NR01610F
[10]
Kim H H, Jeon H J, Cho H K, et al. Highly sensitive microcantilever sensors with enhanced sensitivity for detection of human papilloma virus infection. Sens Actuat B, 2015, 221, 1372 doi: 10.1016/j.snb.2015.08.014
[11]
Rabe U, Janser K, Arnold W. Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev Sci Instrum, 1996, 67, 3281 doi: 10.1063/1.1147409
[12]
Hwang K S, Eom K, Lee J H, et al. Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers. Appl Phys Lett, 2006, 89, 173905 doi: 10.1063/1.2372700
[13]
Dammer U, Hegner M, Anselmetti D, et al. Specific antigen/antibody interactions measured by force microscopy. Biophys J, 1996, 70, 2437 doi: 10.1016/S0006-3495(96)79814-4
[14]
Fritz J, Baller M K, Lang H P, et al. Translating biomolecular recognition into nanomechanics. Science, 2000, 288, 316 doi: 10.1126/science.288.5464.316
[15]
Wang D F, Du X, Wang X, et al. Improving picogram mass sensitivity via frequency doubling in coupled silicon micro-cantilevers. J Micromech Microeng, 2016, 26, 015006 doi: 10.1088/0960-1317/26/1/015006
[16]
Thundat T, Wachter E A, Sharp S L, et al. Detection of mercury vapor using resonating microcantilevers. Appl Phys Lett, 1995, 66, 1695 doi: 10.1063/1.113896
[17]
Ramos D, Tamayo J, Mertens J, et al. Origin of the response of nanomechanical resonators to bacteria adsorption. J Appl Phys, 2006, 100, 106105 doi: 10.1063/1.2370507
[18]
Nugaeva N, Gfeller K Y, Backmann N, et al. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron, 2005, 21, 849 doi: 10.1016/j.bios.2005.02.004
[19]
von Muhlen M G, Brault N D, Knudsen S M, et al. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem, 2010, 82, 1905 doi: 10.1021/ac9027356
[20]
Seena V, Fernandes A, Pant P, et al. Polymer nanocomposite nanomechanical cantilever sensors: Material characterization, device development and application in explosive vapour detection. Nanotechnology, 2011, 22, 295501 doi: 10.1088/0957-4484/22/29/295501
[21]
Pinnaduwage L A, Hawk J E, Boiadjiev V, et al. Use of microcantilevers for the monitoring of molecular binding to self-assembled monolayers. Langmuir, 2003, 19, 7841 doi: 10.1021/la034969n
[22]
Senesac L, Thundat T G. Nanosensors for trace explosive detection. Mater Today, 2008, 11, 28 doi: 10.1016/S1369-7021(08)70017-8
[23]
Hwang K S, Lee S M, Kim S K, et al. Micro- and nanocantilever devices and systems for biomolecule detection. Annu Rev Anal Chem, 2009, 2, 77 doi: 10.1146/annurev-anchem-060908-155232
[24]
Chen Y, Xu P C, Li X X. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives. Nanotechnology, 2010, 21, 265501 doi: 10.1088/0957-4484/21/26/265501
[25]
Zhou J, Li P, Zhang S, et al. Zeolite-modified microcantilever gas sensor for indoor air quality control. Sens Actuat B, 2003, 94, 337 doi: 10.1016/S0925-4005(03)00369-1
[26]
Kooser A, Gunter R L, Delinger W D, et al. Gas sensing using embedded piezoresistive microcantilever sensors. Sens Actuat B, 2004, 99, 474 doi: 10.1016/j.snb.2003.12.057
[27]
Porter T L, Vail T L, Eastman M P, et al. A solid-state sensor platform for the detection of hydrogen cyanide gas. Sens Actuat B, 2007, 123, 313 doi: 10.1016/j.snb.2006.08.025
[28]
Pinnaduwage L A, Thundat T, Hawk J E, et al. Detection of 2, 4-dinitrotoluene using microcantilever sensors. Sens Actuat B, 2004, 99, 223 doi: 10.1016/j.snb.2003.11.011
[29]
Kong J, Chapline M G, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater, 2001, 13, 1384 doi: 10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
[30]
Kim T H, Lee B Y, Jaworski J, et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano, 2011, 5, 2824 doi: 10.1021/nn103324p
[31]
Kuang Z F, Kim S N, Crookes-Goodson W J, et al. Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano, 2010, 4, 452 doi: 10.1021/nn901365g
[32]
Ruan W Z, Li Y C, Tan Z M, et al. In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens Actuat B, 2013, 176, 141 doi: 10.1016/j.snb.2012.10.026
[33]
Rahimi M, Chae I, Hawk E J, et al. Methane sensing at room temperature using photothermal cantilever deflection spectroscopy. Sens Actuat B, 2015, 221, 564 doi: 10.1016/j.snb.2015.07.006
[34]
Longo G, Alonso-Sarduy L, Rio L M, et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol, 2013, 8, 522 doi: 10.1038/nnano.2013.120
[35]
Etayash H, Khan M F, Kaur K, et al. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun, 2016, 7, 12947 doi: 10.1038/ncomms12947
[36]
Shekhawat G, Tark S H, Dravid V P. MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science, 2006, 311, 1592 doi: 10.1126/science.1122588
[37]
Timurdogan E, Alaca B E, Kavakli I H, et al. MEMS biosensor for detection of hepatitis A and C viruses in serum. Biosens Bioelectron, 2011, 28, 189 doi: 10.1016/j.bios.2011.07.014
[38]
Liu X C, Wang L H, Zhao J Y, et al. Enhanced binding efficiency of microcantilever biosensor for the detection of yersinia. Sensors, 2019, 19, 3326 doi: 10.3390/s19153326
[39]
Wang S P, Wang J J, Zhu Y F, et al. A new device for liver cancer biomarker detection with high accuracy. Sens Bio Sens Res, 2015, 4, 40 doi: 10.1016/j.sbsr.2014.10.002
[40]
Wang J J, Wang S P, Wang X, et al. Cantilever array sensor for multiple liver cancer biomarkers detection. 2014 IEEE SENSORS, 2014, 343 doi: 10.1109/ICSENS.2014.6985004
[41]
Zhang J, Lang H P, Huber F, et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol, 2006, 1, 214 doi: 10.1038/nnano.2006.134
[42]
Mertens J, Rogero C, Calleja M, et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol, 2008, 3, 301 doi: 10.1038/nnano.2008.91
[43]
Ansari M Z, Cho C. A study on increasing sensitivity of rectangular microcantilevers used in biosensors. Sensors, 2008, 8, 7530 doi: 10.3390/s8117530
[44]
Ansari M Z, Cho C. Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors, 2009, 9, 6046 doi: 10.3390/s90806046
[45]
Ansari M Z, Cho C, Kim J, et al. Comparison between deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Sensors, 2009, 9, 2706 doi: 10.3390/s90402706
[46]
Liu Y, Wang H, Qin H, et al. Geometry and profile modification of microcantilevers for sensitivity enhancement in sensing applications. Sens Mater, 2017, 29(6), 689 doi: 10.18494/SAM.2017.1465
[47]
Hawari H F, Wahab Y, Azmi M T, et al. Design and analysis of various microcantilever shapes for MEMS based sensing. J Phys: Conf Ser, 2014, 495, 012045 doi: 10.1088/1742-6596/495/1/012045
[48]
Lim Y C, Kouzani A Z, Duan W, et al. Effects of design parameters on sensitivity of microcantilever biosensors. IEEE/ICME International Conference on Complex Medical Engineering, 2010, 177 doi: 10.1109/ICCME.2010.5558847
[49]
Zhao R, Ma W, Wen Y, et al. Trace level detections of abrin with high SNR piezoresistive cantilever biosensor. Sens Actuat B, 2015, 212, 112 doi: 10.1016/j.snb.2015.02.002
[50]
Kim D S, Jeong Y J, Lee B K, et al. Piezoresistive sensor-integrated PDMS cantilever: A new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes. Sens Actuat B, 2017, 240, 566 doi: 10.1016/j.snb.2016.08.167
[51]
Zhao R, Sun Y. Polymeric flexible immunosensor based on piezoresistive micro-cantilever with PEDOT/PSS conductive layer. Sensors, 2018, 18, 451 doi: 10.3390/s18020451
[52]
Li K W,Yen Y K. Gentamicin drug monitoring for peritonitis patients by using a CMOS-BioMEMS-based microcantilever sensor. Biosens Bioelectron, 2019, 130, 420 doi: 10.1016/j.bios.2018.09.014
[53]
Zheng F J, Wang P X, Du Q F, et al. Simultaneous and ultrasensitive detection of foodborne bacteria by gold nanoparticles-amplified microcantilever array biosensor. Front Chem, 2019, 7, 232 doi: 10.3389/fchem.2019.00232
[54]
Wang L H, Fu D Y, Liu X C, et al. Highly sensitive biosensor based on a microcantilever and alternating current electrothermal technology. J Micromech Microeng, 2021, 31, 015009 doi: 10.1088/1361-6439/abcae6
[55]
Leahy S, Lai Y. A cantilever biosensor exploiting electrokinetic capture to detect Escherichia coli in real time. Sens Actuat B, 2017, 238, 292 doi: 10.1016/j.snb.2016.07.069
[56]
Boisen A, Thundat T. Design & fabrication of cantilever array biosensors. Mater Today, 2009, 12, 32 doi: 10.1016/S1369-7021(09)70249-4
[57]
Feng X L, White C J, Hajimiri A, et al. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat Nanotechnol, 2008, 3, 342 doi: 10.1038/nnano.2008.125
[58]
Ekinci K L, Yang Y T, Roukes M L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys, 2004, 95, 2682 doi: 10.1063/1.1642738
[59]
Vig J R, Kim Y. Noise in microelectromechanical system resonators. IEEE Trans Ultrason Ferroelectr Freq Control, 1999, 46, 1558 doi: 10.1109/58.808881
[60]
Meng J W, Tang S J, Sun, J L, et al. Dissipative acousto-optic interactions in optical microcavities. Phys Rev Lett, 2022, 9, 7 doi: 10.1103/PhysRevLett.129.073901
[61]
Kim W, Kouh T. Simple optical knife-edge effect based motion detection approach for a microcantilever. Appl Phys Lett, 2020, 116, 163104 doi: 10.1063/5.0005924
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 865 Times PDF downloads: 102 Times Cited by: 0 Times

    History

    Received: 22 November 2022 Revised: 19 December 2022 Online: Accepted Manuscript: 23 December 2022Uncorrected proof: 27 December 2022Corrected proof: 30 January 2023Published: 10 February 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jingjing Wang, Baozheng Xu, Yinfang Zhu, Junyuan Zhao. Microcantilever sensors for biochemical detection[J]. Journal of Semiconductors, 2023, 44(2): 023105. doi: 10.1088/1674-4926/44/2/023105 J J Wang, B Z Xu, Y F Zhu, J Y Zhao. Microcantilever sensors for biochemical detection[J]. J. Semicond, 2023, 44(2): 023105. doi: 10.1088/1674-4926/44/2/023105Export: BibTex EndNote
      Citation:
      Jingjing Wang, Baozheng Xu, Yinfang Zhu, Junyuan Zhao. Microcantilever sensors for biochemical detection[J]. Journal of Semiconductors, 2023, 44(2): 023105. doi: 10.1088/1674-4926/44/2/023105

      J J Wang, B Z Xu, Y F Zhu, J Y Zhao. Microcantilever sensors for biochemical detection[J]. J. Semicond, 2023, 44(2): 023105. doi: 10.1088/1674-4926/44/2/023105
      Export: BibTex EndNote

      Microcantilever sensors for biochemical detection

      doi: 10.1088/1674-4926/44/2/023105
      More Information
      • Author Bio:

        Jingjing Wang received the B.S. degree in electronics science and technology from Tianjin University, P. R. China, in 2011 and the Ph.D. degree in Microelectronics and Solid-State Electronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, P. R. China, in 2016. She is currently a lecture with the School of Electronics and Information Engineering, Tiangong University. She is working on MEMS resonators and sensors. Her research interests include micro-electro-mechanical systems, biological/biomedical sensors, fabrication of micro- or nanostructured surfaces on silicon, and the interface circuit of the cantilever-based sensor

        Baozheng Xu is currently working toward the master's degree at Tiangong University. He is currently working on MEMS microcantilever sensors. His research focuses on microelectromechanical systems, biological/biomedical sensors, micro-jet printing, and interface circuits for cantilever-based sensors

        Yinfang Zhu received the B.S. degree in microelectronics from Sichuan University, Chengdu, P. R. China, in 2007 and the Ph.D. degree in electrical engineering at State Key Laboratory of Transducer Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, in 2012. Since 2012, she has been a Research Assistant with the Research Center of Engineering for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences. She is the author of 12 articles and 8 inventions. Her research interests include RF MEMS switch, cantilever-based resonators, the reliability of MEMS devices and MEMS sensors

        Junyuan Zhao received the B.S. degree in school of physics and electronics, Hunan university, P. R. China, in 2016 and the Ph.D. degree in electrical engineering at the State Key Laboratory of Transducer Technology, Institute of Semiconductors, CAS, P. R. China, in 2022. He is currently working on MEMS resonators. His research interests include micro-electro-mechanical systems, MEMS biosensors and cancer diagnosis

      • Corresponding author: yfzhu@semi.ac.cnjunyuanzhao@semi.ac.cn
      • Received Date: 2022-11-22
      • Revised Date: 2022-12-19
      • Available Online: 2022-12-23

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return