RESEARCH HIGHLIGHTS

Single-component organic solar cells

Shijie Liang1, Weiwei Li1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Weiwei Li, liweiwei@iccas.ac.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Du X, Li N, Ding L. Solution-processed tandem organic solar cells. J Semicond, 2021, 42, 110201 doi: 10.1088/1674-4926/42/11/110201
[2]
Wu B, Yin B, Duan C, et al. All-polymer solar cells. J Semicond, 2021, 42, 080301 doi: 10.1088/1674-4926/42/8/080301
[3]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[4]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[5]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[6]
Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301
[7]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[8]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[9]
Li M, Wang J, Ding L, et al. Large-area organic solar cells. J Semicond, 2022, 43, 060201 doi: 10.1088/1674-4926/43/6/060201
[10]
Feng E, Han Y, Chang J, et al. 26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%. J Semicond, 2022, 43, 100501 doi: 10.1088/1674-4926/43/10/100501
[11]
Tang Z, Ding L. The voltage loss in organic solar cells. J Semicond, 2023, 44, 010202 doi: 10.1088/1674-4926/44/1/010202
[12]
Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 2021, 33, 2102420 doi: 10.1002/adma.202102420
[13]
Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater, 2022, 21, 656 doi: 10.1038/s41563-022-01244-y
[14]
Liang S, Jiang X, Xiao C, et al. Double-cable conjugated polymers with pendant rylene diimides for single-component organic solar cells. Acc Chem Res, 2021, 54, 2227 doi: 10.1021/acs.accounts.1c00070
[15]
Roncali J, Grosu I. The dawn of single material organic solar cells. Adv Sci, 2019, 6, 1801026 doi: 10.1002/advs.201801026
[16]
He Y, Li N, Brabec C J. Single-component organic solar cells with competitive performance. Org Mater, 2021, 03, 228 doi: 10.1055/s-0041-1727234
[17]
He Y, Heumüller T, Lai W, et al. Evidencing excellent thermal- and photostability for single-component organic solar cells with inherently built-in microstructure. Adv Energy Mater, 2019, 9, 1900409 doi: 10.1002/aenm.201900409
[18]
Ramos A M, Rispens M T, van Duren J K J, et al. Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes. J Am Chem Soc, 2001, 123, 6714 doi: 10.1021/ja015614y
[19]
Zhang F, Svensson M, Andersson M R, et al. Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Adv Mater, 2001, 13, 1871 doi: 10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3
[20]
Tan Z, Hou J, He Y, et al. Synthesis and photovoltaic properties of a donor−acceptor double-cable polythiophene with high content of C60 pendant. Macromolecules, 2007, 40, 1868 doi: 10.1021/ma070052+
[21]
Miyanishi S, Zhang Y, Hashimoto K, et al. Controlled synthesis of fullerene-attached poly(3-alkylthiophene)-based copolymers for rational morphological design in polymer photovoltaic devices. Macromolecules, 2012, 45, 6424 doi: 10.1021/ma300376m
[22]
Pierini F, Lanzi M, Nakielski P, et al. Single-material organic solar cells based on electrospun fullerene-grafted polythiophene nanofibers. Macromolecules, 2017, 50, 4972 doi: 10.1021/acs.macromol.7b00857
[23]
Liu B, Xu Y, Liu F, et al. Double-cable conjugated polymers with fullerene pendant for single-component organic solar cells. Chin J Polym Sci, 2022, 40, 898 doi: 10.1007/s10118-022-2732-2
[24]
Lai W, Li C, Zhang J, et al. Diketopyrrolopyrrole-based conjugated polymers with perylene bisimide side chains for single-component organic solar cells. Chem Mater, 2017, 29, 7073 doi: 10.1021/acs.chemmater.7b02534
[25]
Feng G, Li, J, Colberts F J M, et al. "Double-cable" conjugated polymers with linear backbone toward high quantum efficiencies in single-component polymer solar cells. J Am Chem Soc, 2017, 139, 18647 doi: 10.1021/jacs.7b10499
[26]
Li C, Wu X, Sui X, et al. Crystalline cooperativity of donor and acceptor segments in double-cable conjugated polymers toward efficient single-component organic solar cells. Angew Chem Int Ed, 2019, 58, 15532 doi: 10.1002/anie.201910489
[27]
Feng G, Li J, He Y, et al. Thermal-driven phase separation of double-cable polymers enables efficient single-component organic solar cells. Joule, 2019, 3, 1765 doi: 10.1016/j.joule.2019.05.008
[28]
Jiang X, Yang J, Karuthedath S, et al. Miscibility-controlled phase separation in double-cable conjugated polymers for single-component organic solar cells with efficiencies over 8%. Angew Chem Int Ed, 2020, 59, 21683 doi: 10.1002/anie.202009272
[29]
Liang S, Liu B, Karuthedath S, et al. Double-cable conjugated polymers with pendent near-infrared electron acceptors for single-component organic solar Cells. Angew Chem Int Ed, 2022, 134, e202209316 doi: 10.1002/anie.202209316
[30]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
Fig. 1.  Chemical structures for representative double-cable conjugated polymers.

[1]
Du X, Li N, Ding L. Solution-processed tandem organic solar cells. J Semicond, 2021, 42, 110201 doi: 10.1088/1674-4926/42/11/110201
[2]
Wu B, Yin B, Duan C, et al. All-polymer solar cells. J Semicond, 2021, 42, 080301 doi: 10.1088/1674-4926/42/8/080301
[3]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[4]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[5]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[6]
Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301
[7]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[8]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[9]
Li M, Wang J, Ding L, et al. Large-area organic solar cells. J Semicond, 2022, 43, 060201 doi: 10.1088/1674-4926/43/6/060201
[10]
Feng E, Han Y, Chang J, et al. 26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%. J Semicond, 2022, 43, 100501 doi: 10.1088/1674-4926/43/10/100501
[11]
Tang Z, Ding L. The voltage loss in organic solar cells. J Semicond, 2023, 44, 010202 doi: 10.1088/1674-4926/44/1/010202
[12]
Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 2021, 33, 2102420 doi: 10.1002/adma.202102420
[13]
Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater, 2022, 21, 656 doi: 10.1038/s41563-022-01244-y
[14]
Liang S, Jiang X, Xiao C, et al. Double-cable conjugated polymers with pendant rylene diimides for single-component organic solar cells. Acc Chem Res, 2021, 54, 2227 doi: 10.1021/acs.accounts.1c00070
[15]
Roncali J, Grosu I. The dawn of single material organic solar cells. Adv Sci, 2019, 6, 1801026 doi: 10.1002/advs.201801026
[16]
He Y, Li N, Brabec C J. Single-component organic solar cells with competitive performance. Org Mater, 2021, 03, 228 doi: 10.1055/s-0041-1727234
[17]
He Y, Heumüller T, Lai W, et al. Evidencing excellent thermal- and photostability for single-component organic solar cells with inherently built-in microstructure. Adv Energy Mater, 2019, 9, 1900409 doi: 10.1002/aenm.201900409
[18]
Ramos A M, Rispens M T, van Duren J K J, et al. Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes. J Am Chem Soc, 2001, 123, 6714 doi: 10.1021/ja015614y
[19]
Zhang F, Svensson M, Andersson M R, et al. Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Adv Mater, 2001, 13, 1871 doi: 10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3
[20]
Tan Z, Hou J, He Y, et al. Synthesis and photovoltaic properties of a donor−acceptor double-cable polythiophene with high content of C60 pendant. Macromolecules, 2007, 40, 1868 doi: 10.1021/ma070052+
[21]
Miyanishi S, Zhang Y, Hashimoto K, et al. Controlled synthesis of fullerene-attached poly(3-alkylthiophene)-based copolymers for rational morphological design in polymer photovoltaic devices. Macromolecules, 2012, 45, 6424 doi: 10.1021/ma300376m
[22]
Pierini F, Lanzi M, Nakielski P, et al. Single-material organic solar cells based on electrospun fullerene-grafted polythiophene nanofibers. Macromolecules, 2017, 50, 4972 doi: 10.1021/acs.macromol.7b00857
[23]
Liu B, Xu Y, Liu F, et al. Double-cable conjugated polymers with fullerene pendant for single-component organic solar cells. Chin J Polym Sci, 2022, 40, 898 doi: 10.1007/s10118-022-2732-2
[24]
Lai W, Li C, Zhang J, et al. Diketopyrrolopyrrole-based conjugated polymers with perylene bisimide side chains for single-component organic solar cells. Chem Mater, 2017, 29, 7073 doi: 10.1021/acs.chemmater.7b02534
[25]
Feng G, Li, J, Colberts F J M, et al. "Double-cable" conjugated polymers with linear backbone toward high quantum efficiencies in single-component polymer solar cells. J Am Chem Soc, 2017, 139, 18647 doi: 10.1021/jacs.7b10499
[26]
Li C, Wu X, Sui X, et al. Crystalline cooperativity of donor and acceptor segments in double-cable conjugated polymers toward efficient single-component organic solar cells. Angew Chem Int Ed, 2019, 58, 15532 doi: 10.1002/anie.201910489
[27]
Feng G, Li J, He Y, et al. Thermal-driven phase separation of double-cable polymers enables efficient single-component organic solar cells. Joule, 2019, 3, 1765 doi: 10.1016/j.joule.2019.05.008
[28]
Jiang X, Yang J, Karuthedath S, et al. Miscibility-controlled phase separation in double-cable conjugated polymers for single-component organic solar cells with efficiencies over 8%. Angew Chem Int Ed, 2020, 59, 21683 doi: 10.1002/anie.202009272
[29]
Liang S, Liu B, Karuthedath S, et al. Double-cable conjugated polymers with pendent near-infrared electron acceptors for single-component organic solar Cells. Angew Chem Int Ed, 2022, 134, e202209316 doi: 10.1002/anie.202209316
[30]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 831 Times PDF downloads: 125 Times Cited by: 0 Times

    History

    Received: 19 December 2022 Revised: Online: Accepted Manuscript: 21 December 2022Uncorrected proof: 22 December 2022Published: 10 March 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shijie Liang, Weiwei Li, Liming Ding. Single-component organic solar cells[J]. Journal of Semiconductors, 2023, 44(3): 030201. doi: 10.1088/1674-4926/44/3/030201 S J Liang, W W Li, L M Ding. Single-component organic solar cells[J]. J. Semicond, 2023, 44(3): 030201. doi: 10.1088/1674-4926/44/3/030201Export: BibTex EndNote
      Citation:
      Shijie Liang, Weiwei Li, Liming Ding. Single-component organic solar cells[J]. Journal of Semiconductors, 2023, 44(3): 030201. doi: 10.1088/1674-4926/44/3/030201

      S J Liang, W W Li, L M Ding. Single-component organic solar cells[J]. J. Semicond, 2023, 44(3): 030201. doi: 10.1088/1674-4926/44/3/030201
      Export: BibTex EndNote

      Single-component organic solar cells

      doi: 10.1088/1674-4926/44/3/030201
      More Information
      • Author Bio:

        Shijie Liang received his ME from Beijing Jiaotong University in 2020. Currently, he is a PhD student in Beijing University of Chemical Technology under the supervision of Prof. Weiwei Li. His research focuses on organic solar cells

        Weiwei Li received his PhD from ICCAS in 2010. He then worked as a postdoc at the University of Alberta and Eindhoven University of Technology in 2010–2014. He has been a full professor at ICCAS since 2014 and joined BUCT in 2019. His research interest focuses on flexible organic solar cells

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, and the Associate Editor for Journal of Semiconductors

      • Corresponding author: liweiwei@iccas.ac.cnding@nanoctr.cn
      • Received Date: 2022-12-19
        Available Online: 2022-12-21

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return