ARTICLES

Bilayer MSe2 (M = Zr, Hf, Mo, W) performance as a hopeful thermoelectric materials

Mahmood Radhi Jobayr1, and Ebtisam M-T. Salman2

+ Author Affiliations

 Corresponding author: Mahmood Radhi Jobayr, dr.mahmood-radhi@mtu.edu.iq

PDF

Turn off MathJax

Abstract: Significant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the critical factor in the trade-off between thermoelectric materials. Based on the Boltzmann transport equation (BTE) and Barden-Shockley deformation potential (DP) theory, we carried out a series of investigative calculations related to the thermoelectric properties and characterization of these materials. The calculated dimensionless figure of merit (ZT) values of 2DBL-MSe2 (M = Zr, Hf, Mo, W) at room temperature were 3.007, 3.611, 1.287, and 1.353, respectively, with convenient electronic densities. In addition, the power factor is not critical in the trade-off between thermoelectric materials but it can indicate a good thermoelectric performance. Thus, the overall thermal conductivity and power factor must be considered to determine the preference of thermoelectric materials.

Key words: ZTthermoelectric property2D-bilayerBoltzmann-transport equationTE power factor



[1]
Heremans J P. Introduction to cryogenic solid state cooling. Tri-Technology Device Refrigeration (TTDR), 2016, 9821, 95 doi: 10.1117/12.2228756
[2]
Finefrock S W, Yang H R, Fang H Y, et al. Thermoelectric properties of solution synthesized nanostructured materials. Annu Rev Chem Biomol Eng, 2015, 6, 247 doi: 10.1146/annurev-chembioeng-061114-123348
[3]
Wang X, Shi Y Q, Ding L M. To enhance the performance of n-type organic thermoelectric materials. J Semicond, 2022, 43, 020202 doi: 10.1088/1674-4926/43/2/020202
[4]
He J, Tritt T M. Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357, eaak9997 doi: 10.1126/science.aak9997
[5]
Özbal G, Senger T, Sevik C, et al. Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides. Phys Rev B, 2019, 100, 084515 doi: 10.1103/PhysRevB.100.085415
[6]
Esfarjani K, Zebarjadi M, Kawazoe Y. Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys Rev B, 2006, 73, 085406 doi: 10.1103/PhysRevB.73.085406
[7]
Farhangfar S. Size-dependent thermoelectricity in nanowires. J Phys D, 2011, 44, 125403 doi: 10.1088/0022-3727/44/12/125403
[8]
Hung N T, Nugraha A R T, Saito R. Two-dimensional InSe as a potential thermoelectric material. Appl Phys Lett, 2017, 111, 092107 doi: 10.1063/1.5001184
[9]
Zhu X L, Liu P F, Zhang J R, et al. Monolayer SnP3: An excellent p-type thermoelectric material. Nanoscale, 2019, 11, 19923 doi: 10.1039/C9NR04726C
[10]
Skelton J M, Parker S C, Togo A, et al. Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Phys Rev B, 2014, 89, 205203 doi: 10.1103/PhysRevB.89.205203
[11]
Gao Z B, Wang J S. Thermoelectric penta-silicene with a high room-temperature figure of merit. ACS Appl Mater Interfaces, 2020, 12, 14298 doi: 10.1021/acsami.9b21076
[12]
Ceyda Yelgel Ö, Srivastava G P. Thermoelectric properties of p-type (Bi2Te3) x(Sb2Te3)1− x single crystals doped with 3 wt.% Te. J Appl Phys, 2013, 113, 073709 doi: 10.1063/1.4792653
[13]
Heremans J P, Wiendlocha B, Chamoire A M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ Sci, 2012, 5, 5510 doi: 10.1039/C1EE02612G
[14]
Zhu T J, Liu Y T, Fu C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 2017, 29, 1605884 doi: 10.1002/adma.201605884
[15]
Fang T, Zheng S Q, Zhou T, et al. Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass. Phys Chem Chem Phys, 2017, 19, 4411 doi: 10.1039/C6CP07897D
[16]
Wang R Y, Feser J P, Lee J S, et al. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett, 2008, 8, 2283 doi: 10.1021/nl8009704
[17]
Yan P, Gao G Y, Ding G Q, et al. Bilayer MSe2 (M = Zr, Hf) as promising two-dimensional thermoelectric materials: A first-principles study. RSC Adv, 2019, 9, 12394 doi: 10.1039/C9RA00586B
[18]
Li S, Wang Y M, Chen C, et al. Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe. Adv Sci, 2018, 5, 1800598 doi: 10.1002/advs.201800598
[19]
Kim S, Lee C, Lim Y S, et al. Investigation for thermoelectric properties of the MoS2 monolayer-graphene heterostructure: Density functional theory calculations and electrical transport measurements. ACS Omega, 2020, 6, 278 doi: 10.1021/acsomega.0c04488
[20]
Kara H, Upadhyay Kahaly M, Özdoğan K. Thermoelectric response of quaternary Heusler compound CrVNbZn. J Alloys Compd, 2018, 735, 950 doi: 10.1016/j.jallcom.2017.11.022
[21]
Wu X M, Ke X X, Sui M L. Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors. J Semicond, 2022, 43, 041106 doi: 10.1088/1674-4926/43/4/041106
[22]
Jobayr M R, Salman E M T. Investigation of the thermoelectric properties of one-layer transition metal dichalcogenides. Chin J Phys, 2021, 74, 270 doi: 10.1016/j.cjph.2021.07.041
[23]
Wu D, Huang L, Jia P Z, et al. Tunable spin electronic and thermoelectric properties in twisted triangulene π-dimer junctions. Appl Phys Lett, 2021, 119, 063503 doi: 10.1063/5.0056393
[24]
Chen X K, Hu X Y, Jia P, et al. Tunable anisotropic thermal transport in porous carbon foams: The role of phonon coupling. Int J Mech Sci, 2021, 206, 106576 doi: 10.1016/j.ijmecsci.2021.106576
[25]
Zhao Q Y, Guo Y H, Si K Y, et al. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys Status Solidi B, 2017, 254, 1700033 doi: 10.1002/pssb.201700033
[26]
Qin D, Ge X J, Ding G Q, et al. Strain-induced thermoelectric performance enhancement of monolayer ZrSe2. RSC Adv, 2017, 7, 47243 doi: 10.1039/C7RA08828K
[27]
Yao Q R, Zhang L J, Bampoulis P, et al. Nanoscale investigation of defects and oxidation of HfSe2. J Phys Chem C, 2018, 122, 25498 doi: 10.1021/acs.jpcc.8b08713
[28]
Ju L, Bie M, Shang J, et al. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J Phys Mater, 2020, 3, 022004 doi: 10.1088/2515-7639/ab7c57
[29]
Guo R Q, Wang X J, Kuang Y D, et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys Rev B, 2015, 92, 115202 doi: 10.1103/PhysRevB.92.115202
[30]
Wickramaratne D, Zahid F, Lake R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J Chem Phys, 2014, 140, 124710 doi: 10.1063/1.4869142
[31]
Witkoske E, Wang X, Maassen J, et al. Universal behavior of the thermoelectric figure of merit, zT, vs. quality factor. Mater Today Phys, 2019, 8, 43 doi: 10.1016/j.mtphys.2018.12.005
[32]
Koroleva O N, Mazhukin A V, Mazhukin V I, et al. Approximation of Fermi-Dirac integrals of different orders used to determine the thermal properties of metals and semiconductors. Mathematica Montisnigri, 2016, 35, 37
[33]
Hernandez J A, Ruiz A, Fonseca L F, et al. Thermoelectric properties of SnSe nanowires with different diameters. Sci Rep, 2018, 8, 11966 doi: 10.1038/s41598-018-30450-5
[34]
Qin D, Yan P, Ding G Q, et al. Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci Rep, 2018, 8, 2764 doi: 10.1038/s41598-018-20918-9
[35]
Wang X F, Askarpour V, Maassen J, et al. On the calculation of Lorenz numbers for complex thermoelectric materials. J Appl Phys, 2018, 123, 055104 doi: 10.1063/1.5009939
[36]
Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, et al. Transport coefficients from first-principles calculations. Phys Rev B, 2003, 68, 125210 doi: 10.1103/PhysRevB.68.125210
[37]
Neophytou N, Kosina H. Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires. Phys Rev B, 2011, 83, 245305 doi: 10.1103/PhysRevB.83.245305
[38]
Chen J M, Wang D, Shuai Z G. First-principles predictions of thermoelectric figure of merit for organic materials: Deformation potential approximation. J Chem Theory Comput, 2012, 8, 3338 doi: 10.1021/ct3004436
[39]
Wu C W, Ren X, Xie G F, et al. Enhanced high-temperature thermoelectric performance by strain engineering in BiOCl. Phys Rev Appl, 2022, 18, 014053 doi: 10.1103/PhysRevApplied.18.014053
[40]
Jia P Z, Xie Z X, Deng Y X, et al. High thermoelectric performance induced by strong anharmonic effects in monolayer (PbX)2 (X = S, Se, Te). Appl Phys Lett, 2022, 121, 043901 doi: 10.1063/5.0097064
[41]
Ganose A M, Park J, Faghaninia A, et al. Efficient calculation of carrier scattering rates from first principles. Nat Commun, 2021, 12, 2222 doi: 10.1038/s41467-021-22440-5
[42]
Zhang W X, Huang Z S, Zhang W L, et al. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res, 2014, 7, 1731 doi: 10.1007/s12274-014-0532-x
[43]
Tang L, Long M Q, Wang D, et al. The role of acoustic phonon scattering in charge transport in organic semiconductors: A first-principles deformation-potential study. Sci China Ser B, 2009, 52, 1646 doi: 10.1007/s11426-009-0244-3
[44]
Yadav A, Deshmukh P C, Roberts K, et al. An analytic study of the Wiedemann-Franz law and the thermoelectric figure of merit. J Phys Commun, 2019, 3, 105001 doi: 10.1088/2399-6528/ab444a
[45]
Chen C L, Wang H, Chen Y Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A, 2014, 2, 11171 doi: 10.1039/C4TA01643B
[46]
Jia T T, Feng Z Z, Guo S P, et al. Screening promising thermoelectric materials in binary chalcogenides through high-throughput computations. ACS Appl Mater Interfaces, 2020, 12, 11852 doi: 10.1021/acsami.9b23297
[47]
Yumnam G, Pandey T, Singh A K. High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: A first principles study. J Chem Phys, 2015, 143, 234704 doi: 10.1063/1.4937774
[48]
Bittner M, Kanas N, Hinterding R, et al. A comprehensive study on improved power materials for high-temperature thermoelectric generators. J Power Sources, 2019, 410/411, 143 doi: 10.1016/j.jpowsour.2018.10.076
[49]
Pei Y Z, Shi X Y, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473, 66 doi: 10.1038/nature09996
[50]
Wolf M, Hinterding R, Feldhoff A. High power factor vs. high zT—A review of thermoelectric materials for high-temperature application. Entropy, 2019, 21, 1058 doi: 10.3390/e21111058
[51]
Liu X, Zhang D B, Wang H, et al. Ultralow lattice thermal conductivity and high thermoelectric performance of penta-Sb2C monolayer: A first principles study. J Appl Phys, 2021, 130, 185104 doi: 10.1063/5.0065330
[52]
Zhen Y X, Yang M, Zhang H, et al. Ultrahigh power factors in P-type 1T-ZrX2 (X = S, Se) single layers. Sci Bull, 2017, 62, 1530 doi: 10.1016/j.scib.2017.10.022
[53]
Huang Z S, Zhang W X, Zhang W L. Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials, 2016, 9, 716 doi: 10.3390/ma9090716
[54]
Qian X, Yang R G. Temperature effect on the phonon dispersion stability of zirconium by machine learning driven atomistic simulations. Phys Rev B, 2018, 98, 224108 doi: 10.1103/PhysRevB.98.224108
Fig. 1.  (Color online) Reduced chemical potential versus carrier density for 2DBL MSe2 (M = Zr, Hf, Mo, W) (solid line) and bulk (dotted line).

Fig. 2.  (Color online) Thermoelectric power factor, PF, versus carrier density for 2DBL MSe2 (M = Zr, Hf, Mo, W) (solid line) and bulk (dashed dot line). The square points represent the optimal values for obtaining ZTmax (the inset PF as a function of the reduced chemical potential).

Fig. 3.  (Color online) Seebeck coefficient versus electrical conductivity at T = 300 K for 2DBL MSe2 (M = Zr, Hf, Mo, W) (solid line) and their bulk counterparts.

Fig. 4.  (Color online) Carrier density dependence of absolute values of the Seebeck coefficient (Pisarenko relation) and the squared points represent the optimal values for obtaining (a) ZTmax, and (b) Seebeck coefficient squared for 2DBL MSe2 (M = Zr, Hf, Mo, W) and bulk.

Fig. 5.  (Color online) Mobility versus carrier density for 2DBL MSe2 (M = Zr, Hf, Mo, W). The squared points represent the optimal values for obtaining ZTmax (the inset mobility as a function of the reduced chemical potential).

Fig. 6.  (Color online) Electrical conductivity versus carrier density for 2DBL MSe2 (M = Zr, Hf, Mo, W) (solid line) and bulk (dotted line. The squared points represent the optimal values for obtaining ZTmax (the inset σ as a function of the reduced chemical potential).

Fig. 7.  (Color online) Electronic thermal conductivity versus carrier density for 2DBL MSe2 (M = Zr, Hf, Mo, W) (solid line) and bulk (dotted line). The squared points represent the optimal values for obtaining ZTmax (the inset κe as a function of the reduced chemical potential).

Fig. 8.  (Color online) Phonon dispersions of bilayer. (a) ZrSe2. (b) HfSe2. (c) MoSe2. (d) WSe2.

Fig. 9.  (Color online) Figure of merit and carrier density of 2DBL-MSe2 (M = Mo, W, Hf, Zr) (solid line) and bulk (dotted line) (inset ZT as a function of reduced chemical potential).

Table 1.   The theoretical and experimental reported values of 2DBL-MSe2 (M = Hf, Zr, Mo, W) that were used to evaluate the thermoelectric properties.

2DBL MX2ZrSe2HfSe2MoSe2WSe2
mx /mo2.88[17]2.81[17]0.539[30]0.411[30]
my/mo0.66[17]0.55[17]0.539[30]0.412[30]
C2D (GPa)318 [42]337[42]494[42]566 [42]
Df (eV)1.25[42]1.08[42]3.65[42]3.78[42]
(mx/mo), (my/mo) (Bulk)0.48[47]0.42[47]0.521[30]0.489[30]
(mz/mo) (Bulk)1.86[47]2.17[47]0.776[30]0.643[30]
kph 2DBL (W/(m·K))0.54[5]0.51[5]0.72[5]0.66[5]
kph (Bulk) (W/(m·K))9.9[17]7.7[17]52[30]52[30]
DownLoad: CSV

Table 2.   Calculated values to obtain the maximum values of power factor for the 2DBL MSe2 (M = Zr, Hf, Mo, W).

Materialmd/moτ (10−13 s)µ (cm2/(V·s))PFmax (10−2)
ZrSe21.263.120.03975.2357
HfSe21.138.200.11587.6179
MoSe20.4911.090.36145.0970
WSe20.3716.940.72307.1409
DownLoad: CSV

Table 3.   Calculated properties of 2DBL-MSe2 (M = Zr, Hf, Mo, W) and their bulk counterparts.

MaterialZrSe2HfSe2MoSe2WSe2
2DBLBulk2DBLBulk2DBLBulk2DBLBulk
nopt (1017 cm−3)204641043823250.7278
µopt (cm2/(V·s))2652116[54]4519102[54]10609269[54]223041083[54]
Sopt (μV/K)–433.54–145.64–475.87–145.64–518.5–145.64–561.3–145.64
σopt (104 Ω−1m−1)8.4358.60907.5147.15453.06713.99652.61648.144
PFopt (10−2 W/(K2·m))1.58540.182611.70161.51760.82460.29690.82421.0212
$ {K}_{\mathrm{e}} $ (W/(K·m))1.0420.39680.9040.33541.2020.97981.1683.2370
$ {K}_{\mathrm{t}\mathrm{o}\mathrm{t}} $ (W/(K·m))1.58210.29681.4148.03541.92252.97981.82855.2370
ZT (dimensionless)3.010.05323.610.05671.290.01681.350.0555
DownLoad: CSV
[1]
Heremans J P. Introduction to cryogenic solid state cooling. Tri-Technology Device Refrigeration (TTDR), 2016, 9821, 95 doi: 10.1117/12.2228756
[2]
Finefrock S W, Yang H R, Fang H Y, et al. Thermoelectric properties of solution synthesized nanostructured materials. Annu Rev Chem Biomol Eng, 2015, 6, 247 doi: 10.1146/annurev-chembioeng-061114-123348
[3]
Wang X, Shi Y Q, Ding L M. To enhance the performance of n-type organic thermoelectric materials. J Semicond, 2022, 43, 020202 doi: 10.1088/1674-4926/43/2/020202
[4]
He J, Tritt T M. Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357, eaak9997 doi: 10.1126/science.aak9997
[5]
Özbal G, Senger T, Sevik C, et al. Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides. Phys Rev B, 2019, 100, 084515 doi: 10.1103/PhysRevB.100.085415
[6]
Esfarjani K, Zebarjadi M, Kawazoe Y. Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys Rev B, 2006, 73, 085406 doi: 10.1103/PhysRevB.73.085406
[7]
Farhangfar S. Size-dependent thermoelectricity in nanowires. J Phys D, 2011, 44, 125403 doi: 10.1088/0022-3727/44/12/125403
[8]
Hung N T, Nugraha A R T, Saito R. Two-dimensional InSe as a potential thermoelectric material. Appl Phys Lett, 2017, 111, 092107 doi: 10.1063/1.5001184
[9]
Zhu X L, Liu P F, Zhang J R, et al. Monolayer SnP3: An excellent p-type thermoelectric material. Nanoscale, 2019, 11, 19923 doi: 10.1039/C9NR04726C
[10]
Skelton J M, Parker S C, Togo A, et al. Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Phys Rev B, 2014, 89, 205203 doi: 10.1103/PhysRevB.89.205203
[11]
Gao Z B, Wang J S. Thermoelectric penta-silicene with a high room-temperature figure of merit. ACS Appl Mater Interfaces, 2020, 12, 14298 doi: 10.1021/acsami.9b21076
[12]
Ceyda Yelgel Ö, Srivastava G P. Thermoelectric properties of p-type (Bi2Te3) x(Sb2Te3)1− x single crystals doped with 3 wt.% Te. J Appl Phys, 2013, 113, 073709 doi: 10.1063/1.4792653
[13]
Heremans J P, Wiendlocha B, Chamoire A M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ Sci, 2012, 5, 5510 doi: 10.1039/C1EE02612G
[14]
Zhu T J, Liu Y T, Fu C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 2017, 29, 1605884 doi: 10.1002/adma.201605884
[15]
Fang T, Zheng S Q, Zhou T, et al. Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass. Phys Chem Chem Phys, 2017, 19, 4411 doi: 10.1039/C6CP07897D
[16]
Wang R Y, Feser J P, Lee J S, et al. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett, 2008, 8, 2283 doi: 10.1021/nl8009704
[17]
Yan P, Gao G Y, Ding G Q, et al. Bilayer MSe2 (M = Zr, Hf) as promising two-dimensional thermoelectric materials: A first-principles study. RSC Adv, 2019, 9, 12394 doi: 10.1039/C9RA00586B
[18]
Li S, Wang Y M, Chen C, et al. Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe. Adv Sci, 2018, 5, 1800598 doi: 10.1002/advs.201800598
[19]
Kim S, Lee C, Lim Y S, et al. Investigation for thermoelectric properties of the MoS2 monolayer-graphene heterostructure: Density functional theory calculations and electrical transport measurements. ACS Omega, 2020, 6, 278 doi: 10.1021/acsomega.0c04488
[20]
Kara H, Upadhyay Kahaly M, Özdoğan K. Thermoelectric response of quaternary Heusler compound CrVNbZn. J Alloys Compd, 2018, 735, 950 doi: 10.1016/j.jallcom.2017.11.022
[21]
Wu X M, Ke X X, Sui M L. Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors. J Semicond, 2022, 43, 041106 doi: 10.1088/1674-4926/43/4/041106
[22]
Jobayr M R, Salman E M T. Investigation of the thermoelectric properties of one-layer transition metal dichalcogenides. Chin J Phys, 2021, 74, 270 doi: 10.1016/j.cjph.2021.07.041
[23]
Wu D, Huang L, Jia P Z, et al. Tunable spin electronic and thermoelectric properties in twisted triangulene π-dimer junctions. Appl Phys Lett, 2021, 119, 063503 doi: 10.1063/5.0056393
[24]
Chen X K, Hu X Y, Jia P, et al. Tunable anisotropic thermal transport in porous carbon foams: The role of phonon coupling. Int J Mech Sci, 2021, 206, 106576 doi: 10.1016/j.ijmecsci.2021.106576
[25]
Zhao Q Y, Guo Y H, Si K Y, et al. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys Status Solidi B, 2017, 254, 1700033 doi: 10.1002/pssb.201700033
[26]
Qin D, Ge X J, Ding G Q, et al. Strain-induced thermoelectric performance enhancement of monolayer ZrSe2. RSC Adv, 2017, 7, 47243 doi: 10.1039/C7RA08828K
[27]
Yao Q R, Zhang L J, Bampoulis P, et al. Nanoscale investigation of defects and oxidation of HfSe2. J Phys Chem C, 2018, 122, 25498 doi: 10.1021/acs.jpcc.8b08713
[28]
Ju L, Bie M, Shang J, et al. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J Phys Mater, 2020, 3, 022004 doi: 10.1088/2515-7639/ab7c57
[29]
Guo R Q, Wang X J, Kuang Y D, et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys Rev B, 2015, 92, 115202 doi: 10.1103/PhysRevB.92.115202
[30]
Wickramaratne D, Zahid F, Lake R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J Chem Phys, 2014, 140, 124710 doi: 10.1063/1.4869142
[31]
Witkoske E, Wang X, Maassen J, et al. Universal behavior of the thermoelectric figure of merit, zT, vs. quality factor. Mater Today Phys, 2019, 8, 43 doi: 10.1016/j.mtphys.2018.12.005
[32]
Koroleva O N, Mazhukin A V, Mazhukin V I, et al. Approximation of Fermi-Dirac integrals of different orders used to determine the thermal properties of metals and semiconductors. Mathematica Montisnigri, 2016, 35, 37
[33]
Hernandez J A, Ruiz A, Fonseca L F, et al. Thermoelectric properties of SnSe nanowires with different diameters. Sci Rep, 2018, 8, 11966 doi: 10.1038/s41598-018-30450-5
[34]
Qin D, Yan P, Ding G Q, et al. Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci Rep, 2018, 8, 2764 doi: 10.1038/s41598-018-20918-9
[35]
Wang X F, Askarpour V, Maassen J, et al. On the calculation of Lorenz numbers for complex thermoelectric materials. J Appl Phys, 2018, 123, 055104 doi: 10.1063/1.5009939
[36]
Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, et al. Transport coefficients from first-principles calculations. Phys Rev B, 2003, 68, 125210 doi: 10.1103/PhysRevB.68.125210
[37]
Neophytou N, Kosina H. Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires. Phys Rev B, 2011, 83, 245305 doi: 10.1103/PhysRevB.83.245305
[38]
Chen J M, Wang D, Shuai Z G. First-principles predictions of thermoelectric figure of merit for organic materials: Deformation potential approximation. J Chem Theory Comput, 2012, 8, 3338 doi: 10.1021/ct3004436
[39]
Wu C W, Ren X, Xie G F, et al. Enhanced high-temperature thermoelectric performance by strain engineering in BiOCl. Phys Rev Appl, 2022, 18, 014053 doi: 10.1103/PhysRevApplied.18.014053
[40]
Jia P Z, Xie Z X, Deng Y X, et al. High thermoelectric performance induced by strong anharmonic effects in monolayer (PbX)2 (X = S, Se, Te). Appl Phys Lett, 2022, 121, 043901 doi: 10.1063/5.0097064
[41]
Ganose A M, Park J, Faghaninia A, et al. Efficient calculation of carrier scattering rates from first principles. Nat Commun, 2021, 12, 2222 doi: 10.1038/s41467-021-22440-5
[42]
Zhang W X, Huang Z S, Zhang W L, et al. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res, 2014, 7, 1731 doi: 10.1007/s12274-014-0532-x
[43]
Tang L, Long M Q, Wang D, et al. The role of acoustic phonon scattering in charge transport in organic semiconductors: A first-principles deformation-potential study. Sci China Ser B, 2009, 52, 1646 doi: 10.1007/s11426-009-0244-3
[44]
Yadav A, Deshmukh P C, Roberts K, et al. An analytic study of the Wiedemann-Franz law and the thermoelectric figure of merit. J Phys Commun, 2019, 3, 105001 doi: 10.1088/2399-6528/ab444a
[45]
Chen C L, Wang H, Chen Y Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A, 2014, 2, 11171 doi: 10.1039/C4TA01643B
[46]
Jia T T, Feng Z Z, Guo S P, et al. Screening promising thermoelectric materials in binary chalcogenides through high-throughput computations. ACS Appl Mater Interfaces, 2020, 12, 11852 doi: 10.1021/acsami.9b23297
[47]
Yumnam G, Pandey T, Singh A K. High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: A first principles study. J Chem Phys, 2015, 143, 234704 doi: 10.1063/1.4937774
[48]
Bittner M, Kanas N, Hinterding R, et al. A comprehensive study on improved power materials for high-temperature thermoelectric generators. J Power Sources, 2019, 410/411, 143 doi: 10.1016/j.jpowsour.2018.10.076
[49]
Pei Y Z, Shi X Y, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473, 66 doi: 10.1038/nature09996
[50]
Wolf M, Hinterding R, Feldhoff A. High power factor vs. high zT—A review of thermoelectric materials for high-temperature application. Entropy, 2019, 21, 1058 doi: 10.3390/e21111058
[51]
Liu X, Zhang D B, Wang H, et al. Ultralow lattice thermal conductivity and high thermoelectric performance of penta-Sb2C monolayer: A first principles study. J Appl Phys, 2021, 130, 185104 doi: 10.1063/5.0065330
[52]
Zhen Y X, Yang M, Zhang H, et al. Ultrahigh power factors in P-type 1T-ZrX2 (X = S, Se) single layers. Sci Bull, 2017, 62, 1530 doi: 10.1016/j.scib.2017.10.022
[53]
Huang Z S, Zhang W X, Zhang W L. Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials, 2016, 9, 716 doi: 10.3390/ma9090716
[54]
Qian X, Yang R G. Temperature effect on the phonon dispersion stability of zirconium by machine learning driven atomistic simulations. Phys Rev B, 2018, 98, 224108 doi: 10.1103/PhysRevB.98.224108
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 876 Times PDF downloads: 91 Times Cited by: 0 Times

    History

    Received: 28 July 2022 Revised: 17 September 2022 Online: Uncorrected proof: 28 October 2022Published: 10 March 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Mahmood Radhi Jobayr, Ebtisam M-T. Salman. Bilayer MSe2 (M = Zr, Hf, Mo, W) performance as a hopeful thermoelectric materials[J]. Journal of Semiconductors, 2023, 44(3): 032001. doi: 10.1088/1674-4926/44/3/032001 M R Jobayr, E M T Salman. Bilayer MSe2 (M = Zr, Hf, Mo, W) performance as a hopeful thermoelectric materials[J]. J. Semicond, 2023, 44(3): 032001. doi: 10.1088/1674-4926/44/3/032001Export: BibTex EndNote
      Citation:
      Mahmood Radhi Jobayr, Ebtisam M-T. Salman. Bilayer MSe2 (M = Zr, Hf, Mo, W) performance as a hopeful thermoelectric materials[J]. Journal of Semiconductors, 2023, 44(3): 032001. doi: 10.1088/1674-4926/44/3/032001

      M R Jobayr, E M T Salman. Bilayer MSe2 (M = Zr, Hf, Mo, W) performance as a hopeful thermoelectric materials[J]. J. Semicond, 2023, 44(3): 032001. doi: 10.1088/1674-4926/44/3/032001
      Export: BibTex EndNote

      Bilayer MSe2 (M = Zr, Hf, Mo, W) performance as a hopeful thermoelectric materials

      doi: 10.1088/1674-4926/44/3/032001
      More Information
      • Author Bio:

        Mahmood Radhi Jobayr is an Assistant Professor of Physics at the Middle Technical University in Baghdad. His research focuses on the physics of materials, semiconductors, and narrow-gap metals. He is interested in theoretical solid state physics, focusing on calculations of electronic structure, superconducting andthermoelectric properties

        Ebtisam M-T. Salman is an Assistant Professor of Physics at the University of Baghdad. She is currently a researcher and lecturer in the physics department. Her research focuses on the physics of semiconductors and lasers, particularly on semiconductor laser, optical, thermal, electronic, and thermoelectric transport properties

      • Corresponding author: dr.mahmood-radhi@mtu.edu.iq
      • Received Date: 2022-07-28
      • Revised Date: 2022-09-17
      • Available Online: 2022-10-28

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return