ARTICLES

Wavelength-tunable organic semiconductor lasers based on elastic distributed feedback gratings

Chengfang LiuC, He LinC, Dongzhou Ji, Qun Yu, Shuoguo Chen, Ziming Guo, Qian Luo, Xu Liu and Wenyong Lai

+ Author Affiliations

 Corresponding author: Wenyong Lai, iamwylai@njupt.edu.cn

PDF

Turn off MathJax

Abstract: Wavelength-tunable organic semiconductor lasers based on mechanically stretchable polydimethylsiloxane (PDMS) gratings were developed. The intrinsic stretchability of PDMS was explored to modulate the period of the distributed feedback gratings for fine tuning the lasing wavelength. Notably, elastic lasers based on three typical light-emitting molecules show comparable lasing threshold values analogous to rigid devices and a continuous wavelength tunability of about 10 nm by mechanical stretching. In addition, the stretchability provides a simple solution for dynamically tuning the lasing wavelength in a spectral range that is challenging to achieve for inorganic counterparts. Our work has provided a simple and efficient method of fabricating tunable organic lasers that depend on stretchable distributed feedback gratings, demonstrating a significant step in the advancement of flexible organic optoelectronic devices.

Key words: stretchable electronicsorganic semiconductor laserselastic lasersdistributed feedback (DFB) gratingswavelength tunability



[1]
Jiang Y, Liu Y Y, Liu X, et al. Organic solid-state lasers: a materials view and future development. Chem Soc Rev, 2020, 49, 5885 doi: 10.1039/D0CS00037J
[2]
Samuel I D W, Turnbull G A. Organic semiconductor lasers. Chem Rev, 2007, 107, 1272 doi: 10.1021/cr050152i
[3]
Chenais S, Forget S. Recent advances in solid-state organic lasers. Polym Int, 2012, 61, 390 doi: 10.1002/pi.3173
[4]
Wei G Q, Wang X D, Liao L S. Recent advances in 1D organic solid-state lasers. Adv Funct Mater, 2019, 29, 1902981 doi: 10.1002/adfm.201902981
[5]
Kuehne A J C, Gather M C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem Rev, 2016, 116, 12823 doi: 10.1021/acs.chemrev.6b00172
[6]
Xu J, Ma L, Guo P, et al. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J Am Chem Soc, 2012, 134, 12394 doi: 10.1021/ja3050458
[7]
Liu Z, Yin L, Ning H, et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett, 2013, 13, 4945 doi: 10.1021/nl4029686
[8]
Yang A, Hoang T B, Dridi M, et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nat Commun, 2015, 6, 6939 doi: 10.1038/ncomms7939
[9]
Ta V D, Yang S, Wang Y, et al. Multicolor lasing prints. Appl Phys Lett, 2015, 107, 221103 doi: 10.1063/1.4936628
[10]
Dong H Y, Zhang C H, Liu Y, et al. Organic microcrystal vibronic lasers with full-spectrum tunable output beyond the Franck-Condon principle. Angew Chem Int Ed, 2018, 57, 3108 doi: 10.1002/anie.201712524
[11]
Dong H Y, Zhang C H, Zhao Y S. Controlling the output of organic micro/nanolasers. Adv Optical Mater, 2019, 7, 1900037 doi: 10.1002/adom.201900037
[12]
Wang X D, Li Z Z, Zhuo M P, et al. Tunable near-infrared organic nanowire nanolasers. Adv Funct Mater, 2017, 27, 1703470 doi: 10.1002/adfm.201703470
[13]
Dong H Y, Zhang C H, Lin X Q, et al. Dual-wavelength switchable vibronic lasing in single-crystal organic microdisks. Nano Lett, 2017, 17, 91 doi: 10.1021/acs.nanolett.6b03499
[14]
Qiao C, Zhang C H, Zhou Z H, et al. Optically reconfigurable FRET process for broadband switchable organic single-mode microlasers. CCS Chem, 2022, 4, 250 doi: 10.31635/ccschem.021.202000768
[15]
Qiao C, Zhang C H, Zhou Z H, et al. Photoisomerization activated intramolecular charge-transfer process for broadband tunable single-mode microlasers. Angew Chem Int Ed, 2020, 59, 15992 doi: 10.1002/anie.202007361
[16]
Bianco A, Perissinotto S, Garbugli M, et al. Control of optical properties through photochromism: a promising approach to photonics. Laser Photonics Rev, 2011, 5, 711 doi: 10.1002/lpor.201000033
[17]
Zhang W, Yao J N, Zhao Y S. Organic micro/nanoscale lasers. Acc Chem Res, 2016, 49, 1691 doi: 10.1021/acs.accounts.6b00209
[18]
Lai W Y, Xia R, He Q Y, et al. Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials. Adv Mater, 2009, 21, 355 doi: 10.1002/adma.200800748
[19]
Xu W D, Yi J P, Lai W Y, et al. Pyrene-capped conjugated amorphous starbursts: synthesis, characterization, and stable lasing properties in ambient atmosphere. Adv Funct Mater, 2015, 25, 4617 doi: 10.1002/adfm.201501337
[20]
Liu C F, Sang M, Lai W Y, et al. Design and synthesis of monodisperse macromolecular starbursts based on a triazine center with multibranched oligofluorenes as efficient gain media for organic lasers. Macromolecules, 2018, 51, 1325 doi: 10.1021/acs.macromol.7b02204
[21]
Liu C F, Lu T T, Wang J B, et al. Low threshold amplified spontaneous emission from efficient energy transfer in blends of conjugated polymers. J Phys Chem C, 2020, 124, 8576 doi: 10.1021/acs.jpcc.0c00588
[22]
Fang M, Huang J, Zhang Y, et al. Pyrene-centered cyanophenyl end-capped starbursts: design, synthesis, stabilized blue electroluminescence and lasing properties. Mater Chem Front, 2017, 1, 668 doi: 10.1039/C6QM00133E
[23]
Wallikewitz B H, Nikiforov G O, Sirringhaus H, et al. A nanoimprinted, optically tuneable organic laser. Appl Phys Lett, 2012, 100, 10 doi: 10.1063/1.4705303
[24]
Kjellberg T, Nilsson S, Klinga T J, et al. Investigation on the spectral characteristics of DFB Lasers with different grating configurations made by electron-beam lithography. Lightwave Technol, 1993, 11, 1405 doi: 10.1109/50.241930
[25]
Pisignano D, Persano L, Visconti P, et al. Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Appl Phys Lett, 2003, 83, 2545 doi: 10.1063/1.1613362
[26]
Kallinger C, Hilmer M, Haugeneder A, et al. A flexible conjugated polymer laser. Adv Mater, 1998, 21, 920 doi: 10.1002/(SICI)1521-4095(199808)10:12<920::AID-ADMA920>3.0.CO;2-7
[27]
Weinberger M R, Langer G, Pogantsch A, et al. Continuously color-tunable rubber laser. Adv Mater, 2004, 16, 130 doi: 10.1002/adma.200305681
[28]
Suzuki K, Takahashi K, Seida Y, et al. A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator. Jpn J Appl Phys, 2003, 42, L249 doi: 10.1143/JJAP.42.L249
[29]
Wenger B, Tetreault N, Welland M E, et al. Mechanically tunable conjugated polymer distributed feedback lasers. Appl Phys Lett, 2010, 97, 193303 doi: 10.1063/1.3509405
[30]
Herrnsdorf J, Guilhabert B, Chen Y, et al. Flexible blue-emitting encapsulated organic semiconductor DFB laser. Opt Express, 2010, 18, 25535 doi: 10.1364/OE.18.025535
[31]
Görrn P, Lehnhardt M, Kowalsky W, et al. Elastically tunable self-organized organic lasers. Adv Mater, 2011, 23, 869 doi: 10.1002/adma.201003108
[32]
Fang H H, Ding R, Lu S Y, et al. Flexible lasers based on the microstructured single-crystalline ultrathin films. J Mater Chem, 2012, 22, 24139 doi: 10.1039/c2jm35394f
[33]
Foucher C, Guilhabert B, Kanibolotsky A L, et al. Highly-photostable and mechanically flexible all-organic semiconductor lasers. Opt Mater Express, 2013, 3, 584 doi: 10.1364/OME.3.000584
[34]
Klinkhammer S, Heussner N, Huska K, et al. Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals. Appl Phys Lett, 2011, 99, 023307 doi: 10.1063/1.3610473
[35]
Xu Y, Hai G, Xu HW, et al. Efficient optical gain from near-infrared polymer lasers based on Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]. Adv Optical Mater, 2018, 6, 1800263 doi: 10.1002/adom.201800263
[36]
Dong H Y, Zhang C H, Zhou W, et al. Differential polymer chain scission enables free-standing microcavity laser arrays. Adv Mater, 2022, 34, 2107611 doi: 10.1002/adma.202107611
[37]
Zhang C H, Dong H Y, Zhang C, et al. Photonic skins based on flexible organic microlaser arrays. Sci Adv, 2021, 7, eahh3530 doi: 10.1126/sciadv.abh3530
[38]
Fan Y Q, Zhang C H, Du Y X, et al. A universal in situ cross-linking strategy enables orthogonal processing of full-color organic microlaser arrays. Adv Funct Mater, 2021, 31, 2103031 doi: 10.1002/adfm.202103031
Fig. 1.  (Color online) (a) Device structure of wavelength-tunable organic semiconductor lasers. (b) Graphical illustration of the stretching setup.

Fig. 2.  (Color online) (a) Fabrication process. (b) AFM images of the PDMS gratings. The period is 280, 320, and 360 nm from left-hand to right-hand, respectively, and the groove depth are both ~60 nm.

Fig. 3.  (Color online) Chemical structures of (a) T-m, (b) SPL(2)-1, (c) F8BT from top to bottom. (d) Absorption, PL and ASE spectra for a thin film of T-m (blue), SPL(2)-1 (green), F8BT (yellow).

Fig. 4.  (Color online) Lasing characteristics of elastic organic DFB lasers. (a) Spectra of elastic DFB lasers based on active films of T-m, SPL(2)-1 and F8BT, respectively. (b) Chromaticity coordinates of the elastic lasers in (a) on the CIE 1931 chromaticity diagram.

Fig. 5.  (Color online) (a–c) Output intensity as a function of the pump fluence and (d–f) emission spectra with pump pulse energy slightly above the lasing threshold for the three devices.

Fig. 6.  (Color online) Lasing spectra measured by straining the elastic DFB lasers based on (a) T-m, (b) SPL(2)-1, and (c) F8BT.

Fig. 7.  (Color online) The dependence of lasing wavelength of the elastic DFB lasers based on (a) T-m, (b) SPL(2)-1, and (c) F8BT. (d) The dependence of threshold variations of these elastic DFB lasers on the applied strain.

Fig. 8.  (Color online) Chromaticity coordinates of the varied lasing wavelength for T-m, SPL(2)-1, and F8BT on the CIE 1931 chromaticity diagram (the red arrows indicate the direction of spectral shift).

Fig. 9.  (Color online) Emission spectra with pump pulse energy slightly above the lasing threshold for the organic laser based on F8BT, and output intensity as a function of the pump fluence (a, b) after the first stretch, (c, d) after the second stretch and (e, f) after the third stretch, respectively.

[1]
Jiang Y, Liu Y Y, Liu X, et al. Organic solid-state lasers: a materials view and future development. Chem Soc Rev, 2020, 49, 5885 doi: 10.1039/D0CS00037J
[2]
Samuel I D W, Turnbull G A. Organic semiconductor lasers. Chem Rev, 2007, 107, 1272 doi: 10.1021/cr050152i
[3]
Chenais S, Forget S. Recent advances in solid-state organic lasers. Polym Int, 2012, 61, 390 doi: 10.1002/pi.3173
[4]
Wei G Q, Wang X D, Liao L S. Recent advances in 1D organic solid-state lasers. Adv Funct Mater, 2019, 29, 1902981 doi: 10.1002/adfm.201902981
[5]
Kuehne A J C, Gather M C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem Rev, 2016, 116, 12823 doi: 10.1021/acs.chemrev.6b00172
[6]
Xu J, Ma L, Guo P, et al. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J Am Chem Soc, 2012, 134, 12394 doi: 10.1021/ja3050458
[7]
Liu Z, Yin L, Ning H, et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett, 2013, 13, 4945 doi: 10.1021/nl4029686
[8]
Yang A, Hoang T B, Dridi M, et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nat Commun, 2015, 6, 6939 doi: 10.1038/ncomms7939
[9]
Ta V D, Yang S, Wang Y, et al. Multicolor lasing prints. Appl Phys Lett, 2015, 107, 221103 doi: 10.1063/1.4936628
[10]
Dong H Y, Zhang C H, Liu Y, et al. Organic microcrystal vibronic lasers with full-spectrum tunable output beyond the Franck-Condon principle. Angew Chem Int Ed, 2018, 57, 3108 doi: 10.1002/anie.201712524
[11]
Dong H Y, Zhang C H, Zhao Y S. Controlling the output of organic micro/nanolasers. Adv Optical Mater, 2019, 7, 1900037 doi: 10.1002/adom.201900037
[12]
Wang X D, Li Z Z, Zhuo M P, et al. Tunable near-infrared organic nanowire nanolasers. Adv Funct Mater, 2017, 27, 1703470 doi: 10.1002/adfm.201703470
[13]
Dong H Y, Zhang C H, Lin X Q, et al. Dual-wavelength switchable vibronic lasing in single-crystal organic microdisks. Nano Lett, 2017, 17, 91 doi: 10.1021/acs.nanolett.6b03499
[14]
Qiao C, Zhang C H, Zhou Z H, et al. Optically reconfigurable FRET process for broadband switchable organic single-mode microlasers. CCS Chem, 2022, 4, 250 doi: 10.31635/ccschem.021.202000768
[15]
Qiao C, Zhang C H, Zhou Z H, et al. Photoisomerization activated intramolecular charge-transfer process for broadband tunable single-mode microlasers. Angew Chem Int Ed, 2020, 59, 15992 doi: 10.1002/anie.202007361
[16]
Bianco A, Perissinotto S, Garbugli M, et al. Control of optical properties through photochromism: a promising approach to photonics. Laser Photonics Rev, 2011, 5, 711 doi: 10.1002/lpor.201000033
[17]
Zhang W, Yao J N, Zhao Y S. Organic micro/nanoscale lasers. Acc Chem Res, 2016, 49, 1691 doi: 10.1021/acs.accounts.6b00209
[18]
Lai W Y, Xia R, He Q Y, et al. Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials. Adv Mater, 2009, 21, 355 doi: 10.1002/adma.200800748
[19]
Xu W D, Yi J P, Lai W Y, et al. Pyrene-capped conjugated amorphous starbursts: synthesis, characterization, and stable lasing properties in ambient atmosphere. Adv Funct Mater, 2015, 25, 4617 doi: 10.1002/adfm.201501337
[20]
Liu C F, Sang M, Lai W Y, et al. Design and synthesis of monodisperse macromolecular starbursts based on a triazine center with multibranched oligofluorenes as efficient gain media for organic lasers. Macromolecules, 2018, 51, 1325 doi: 10.1021/acs.macromol.7b02204
[21]
Liu C F, Lu T T, Wang J B, et al. Low threshold amplified spontaneous emission from efficient energy transfer in blends of conjugated polymers. J Phys Chem C, 2020, 124, 8576 doi: 10.1021/acs.jpcc.0c00588
[22]
Fang M, Huang J, Zhang Y, et al. Pyrene-centered cyanophenyl end-capped starbursts: design, synthesis, stabilized blue electroluminescence and lasing properties. Mater Chem Front, 2017, 1, 668 doi: 10.1039/C6QM00133E
[23]
Wallikewitz B H, Nikiforov G O, Sirringhaus H, et al. A nanoimprinted, optically tuneable organic laser. Appl Phys Lett, 2012, 100, 10 doi: 10.1063/1.4705303
[24]
Kjellberg T, Nilsson S, Klinga T J, et al. Investigation on the spectral characteristics of DFB Lasers with different grating configurations made by electron-beam lithography. Lightwave Technol, 1993, 11, 1405 doi: 10.1109/50.241930
[25]
Pisignano D, Persano L, Visconti P, et al. Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Appl Phys Lett, 2003, 83, 2545 doi: 10.1063/1.1613362
[26]
Kallinger C, Hilmer M, Haugeneder A, et al. A flexible conjugated polymer laser. Adv Mater, 1998, 21, 920 doi: 10.1002/(SICI)1521-4095(199808)10:12<920::AID-ADMA920>3.0.CO;2-7
[27]
Weinberger M R, Langer G, Pogantsch A, et al. Continuously color-tunable rubber laser. Adv Mater, 2004, 16, 130 doi: 10.1002/adma.200305681
[28]
Suzuki K, Takahashi K, Seida Y, et al. A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator. Jpn J Appl Phys, 2003, 42, L249 doi: 10.1143/JJAP.42.L249
[29]
Wenger B, Tetreault N, Welland M E, et al. Mechanically tunable conjugated polymer distributed feedback lasers. Appl Phys Lett, 2010, 97, 193303 doi: 10.1063/1.3509405
[30]
Herrnsdorf J, Guilhabert B, Chen Y, et al. Flexible blue-emitting encapsulated organic semiconductor DFB laser. Opt Express, 2010, 18, 25535 doi: 10.1364/OE.18.025535
[31]
Görrn P, Lehnhardt M, Kowalsky W, et al. Elastically tunable self-organized organic lasers. Adv Mater, 2011, 23, 869 doi: 10.1002/adma.201003108
[32]
Fang H H, Ding R, Lu S Y, et al. Flexible lasers based on the microstructured single-crystalline ultrathin films. J Mater Chem, 2012, 22, 24139 doi: 10.1039/c2jm35394f
[33]
Foucher C, Guilhabert B, Kanibolotsky A L, et al. Highly-photostable and mechanically flexible all-organic semiconductor lasers. Opt Mater Express, 2013, 3, 584 doi: 10.1364/OME.3.000584
[34]
Klinkhammer S, Heussner N, Huska K, et al. Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals. Appl Phys Lett, 2011, 99, 023307 doi: 10.1063/1.3610473
[35]
Xu Y, Hai G, Xu HW, et al. Efficient optical gain from near-infrared polymer lasers based on Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]. Adv Optical Mater, 2018, 6, 1800263 doi: 10.1002/adom.201800263
[36]
Dong H Y, Zhang C H, Zhou W, et al. Differential polymer chain scission enables free-standing microcavity laser arrays. Adv Mater, 2022, 34, 2107611 doi: 10.1002/adma.202107611
[37]
Zhang C H, Dong H Y, Zhang C, et al. Photonic skins based on flexible organic microlaser arrays. Sci Adv, 2021, 7, eahh3530 doi: 10.1126/sciadv.abh3530
[38]
Fan Y Q, Zhang C H, Du Y X, et al. A universal in situ cross-linking strategy enables orthogonal processing of full-color organic microlaser arrays. Adv Funct Mater, 2021, 31, 2103031 doi: 10.1002/adfm.202103031
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 954 Times PDF downloads: 99 Times Cited by: 0 Times

    History

    Received: 05 July 2022 Revised: 28 September 2022 Online: Accepted Manuscript: 26 October 2022Uncorrected proof: 31 October 2022Published: 10 March 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chengfang Liu, He Lin, Dongzhou Ji, Qun Yu, Shuoguo Chen, Ziming Guo, Qian Luo, Xu Liu, Wenyong Lai. Wavelength-tunable organic semiconductor lasers based on elastic distributed feedback gratings[J]. Journal of Semiconductors, 2023, 44(3): 032601. doi: 10.1088/1674-4926/44/3/032601 C F Liu, H Lin, D Z Ji, Q Yu, S G Chen, Z M Guo, Q Luo, X Liu, W Y Lai. Wavelength-tunable organic semiconductor lasers based on elastic distributed feedback gratings[J]. J. Semicond, 2023, 44(3): 032601. doi: 10.1088/1674-4926/44/3/032601Export: BibTex EndNote
      Citation:
      Chengfang Liu, He Lin, Dongzhou Ji, Qun Yu, Shuoguo Chen, Ziming Guo, Qian Luo, Xu Liu, Wenyong Lai. Wavelength-tunable organic semiconductor lasers based on elastic distributed feedback gratings[J]. Journal of Semiconductors, 2023, 44(3): 032601. doi: 10.1088/1674-4926/44/3/032601

      C F Liu, H Lin, D Z Ji, Q Yu, S G Chen, Z M Guo, Q Luo, X Liu, W Y Lai. Wavelength-tunable organic semiconductor lasers based on elastic distributed feedback gratings[J]. J. Semicond, 2023, 44(3): 032601. doi: 10.1088/1674-4926/44/3/032601
      Export: BibTex EndNote

      Wavelength-tunable organic semiconductor lasers based on elastic distributed feedback gratings

      doi: 10.1088/1674-4926/44/3/032601
      More Information
      • Author Bio:

        Chengfang Liu is an associate professor at Nanjing University of Posts and Telecommunications. She obtained her Ph.D. from the Changchun Institute of Applied Chemistry Chinese Academy of Sciences in 2013. She then joined the Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications. Her current research interests focus on organic devices and thin film growth

        Wenyong Lai is a full professor at Nanjing University of Posts and Telecommunications. He received his Ph.D. from Fudan University in 2007. He then joined the State Key Laboratory ofOrganic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications. His research mainly focuses on the design, synthesis, and application of organic and 22 polymer optoelectronic materials for organic/plastic electronics, as well as theexploration of novel materials and processes for printed electronics and flexible electronics

      • Corresponding author: iamwylai@njupt.edu.cn
      • Received Date: 2022-07-05
      • Revised Date: 2022-09-28
      • Available Online: 2022-10-26

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return