RESEARCH HIGHLIGHTS

Digital-intensive RFIC design techniques for transmitters in ISSCC 2023

Yun Yin and Hongtao Xu

+ Author Affiliations

 Corresponding author: Yun Yin, yiny@fudan.edu.cn; Hongtao Xu, hongtao@fudan.edu.cn

PDF

Turn off MathJax



[1]
Chan C H, Cheng L, Deng W, et al. Trending IC design directions in 2022. J Semicond, 2022, 43, 071401 doi: 10.1088/1674-4926/43/7/071401
[2]
Yin Y, Zhu Y T, Xiong L, et al. A compact transformer-combined polar/quadrature reconfigurable digital power amplifier in 28-nm logic LP CMOS. IEEE J Solid State Circuits, 2019, 54, 709 doi: 10.1109/JSSC.2018.2878831
[3]
Hu C X, Yin Y, Li T, et al. A fully-integrated wideband digital polar transmitter with 11-bit digital-to-phase converter in 40nm CMOS. IEEE J Solid State Circuits, 2023, 58, 462 doi: 10.1109/JSSC.2022.3192281
[4]
Palaskas Y, Madoglio P, Angel J, et al. A cellular multiband DTC-based digital polar transmitter with −153-dBc/Hz noise in 14-nm FinFET. IEEE J Solid-State Circuits, 2020, 55, 1830 doi: 10.1109/JSSC.2020.2987698
[5]
Hu C, Zheng D, Yin Y, et al. A 0.7-2.5GHz sliding digital-IF quadrature digital transmitter achieving >40% system efficiency for multi-mode NB-IoT/BLE applications. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 472
[6]
Yang B Z, Qian H J, Wang T Y, et al. A CMOS wideband watt-level 4096-QAM digital power amplifier using reconfigurable power-combining transformer. IEEE J Solid State Circuits, 2022, 58, 357 doi: 10.1109/JSSC.2022.3191975
[7]
Li J, Yin Y, Chen H, et al. A 4.1W quadrature doherty digital power amplifier with 33.6% peak pae in 28nm bulk CMOS. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 370
[8]
Bai Z D, Yuan W, Azam A, et al. 4.3 A multiphase interpolating digital power amplifier for TX beamforming in 65nm CMOS. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 78 doi: 10.1109/ISSCC.2019.8662430
[9]
Zheng D Y, Yin Y, Zhu Y T, et al. 24.5 A 15b quadrature digital power amplifier with transformer-based complex-domain power-efficiency enhancement. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 370 doi: 10.1109/ISSCC19947.2020.9062959
[10]
Yoo S W, Hung S C, Yoo S M. 24.4 A watt-level multimode multi-efficiency-peak digital polar power amplifier with linear single-supply class-G technique. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 368 doi: 10.1109/ISSCC19947.2020.9063069
[11]
Xiong L, Li T, Yin Y, et al. A broadband switched-transformer digital power amplifier for deep back-off efficiency enhancement. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 76 doi: 10.1109/JSSC.2020.3005798
[12]
Zhang A Y, Chen M S W. A subharmonic switching digital power amplifier for power back-off efficiency enhancement. IEEE J Solid State Circuits, 2019, 54, 1017 doi: 10.1109/JSSC.2019.2893534
[13]
Yoo S W, Hung S C, Yoo S M. A watt-level quadrature class-G switched-capacitor power amplifier with linearization techniques. IEEE J Solid State Circuits, 2019, 54, 1274 doi: 10.1109/JSSC.2019.2904209
[14]
Bechthum E, El Soussi M, Dijkhuis J F, et al. A CMOS polar class-G switched-capacitor PA with a single high-current supply, for LTE NB-IoT and eMTC. IEEE J Solid State Circuits, 2019, 54, 1941 doi: 10.1109/JSSC.2019.2910407
[15]
Jung D, Li S S, Park J S, et al. A CMOS 1.2-V hybrid current- and voltage-mode three-way digital Doherty PA with built-In phase nonlinearity compensation. IEEE J Solid State Circuits, 2020, 55, 525 doi: 10.1109/JSSC.2019.2953832
[16]
Qian H J, Yang B Z, Zhou J, et al. A quadrature digital power amplifier with hybrid Doherty and impedance boosting for complex domain power back-off efficiency enhancement. IEEE J Solid State Circuits, 2021, 56, 1487 doi: 10.1109/JSSC.2021.3059113
[17]
Yang B Z, Qian H J, Luo X. Quadrature switched/floated capacitor power amplifier with reconfigurable self-coupling canceling transformer for deep back-off efficiency enhancement. IEEE J Solid State Circuits, 2021, 56, 3715 doi: 10.1109/JSSC.2021.3113511
[18]
Hung S C, Yoo S W, Yoo S M. A quadrature class-G complex-domain Doherty digital power amplifier. IEEE J Solid State Circuits, 2021, 56, 2029 doi: 10.1109/JSSC.2020.3040973
[19]
Yoo S W, Hung S C, Walling J S, et al. A 0.26mm2 DPD-less quadrature digital transmitter with <–40dB EVM over >30dB Pout range in 65nm CMOS. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2020, 184 doi: 10.1109/ISSCC19947.2020.9063070
[20]
Babamir S M, Razavi B. A digital RF transmitter with background nonlinearity correction. IEEE J Solid State Circuits, 2020, 55, 1502 doi: 10.1109/JSSC.2020.2968796
[21]
Lemberg J, Martelius M, Roverato E, et al. A 1.5–1.9-GHz all-digital tri-phasing transmitter with an integrated multilevel class-D power amplifier achieving 100-MHz RF bandwidth. IEEE J Solid State Circuits, 2019, 54, 1517 doi: 10.1109/JSSC.2019.2902753
[22]
Yin Y, Xiong L, Zhu Y T, et al. A compact dual-band digital polar Doherty power amplifier using parallel-combining transformer. IEEE J Solid State Circuits, 2019, 54, 1575 doi: 10.1109/JSSC.2019.2896407
[23]
Khamaisi B, Ben-Haim D, Nazimov A, et al. A 16nm, 28dBm dual-band all-digital polar transmitter based on 4-core digital PA for wi-Fi6E applications. 2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022, 324 doi: 10.1109/ISSCC42614.2022.9731624
[24]
Nguyen H M, Walling J S, Zhu A D, et al. A mm-wave switched-capacitor RFDAC. IEEE J Solid State Circuits, 2022, 57, 1224 doi: 10.1109/JSSC.2022.3142718
[25]
Qian H J, Shu Y Y, Zhou J, et al. A 20–32-GHz quadrature digital transmitter using synthesized impedance variation compensation. IEEE J Solid State Circuits, 2020, 55, 1297 doi: 10.1109/JSSC.2020.2964411
[26]
Yang B, Z. Deng Z, Qian H J, et al. 71-89GHz 12Gb/s double-edge-triggered quadrature power-DAC with LO leakage suppression achieving 20.5dBm peak output power and 20.4% system efficiency. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 286
[27]
Sireesh S K, Abkenar S H, Christoffers N, et al. A 4b RFDAC at 8GS/s for FMCW chirps with 4GHz bandwidth in 10 μs. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 376
[28]
Guo Y, Li Y, Huang W, et al. A polar-modulation-based cryogenic qubit state controller in 28nm bulk CMOS. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 508

Table 1.   Performance metrics of DTX/DPAs at sub-6 GHz and mm-wave bands (2019–2023).

Performance metricSystem effectArchitecture/design technique
Multi-mode
Multi-band
Flexibility and low costQuadrature/polar dual-mode reconfigurable[2]; wideband DTC/DPC-based phase modulation[3, 4]; sliding digital-IF quadrature DTX[5]
Output powerCommunication rangePower combining with stacked device[6, 7]; multiphase beamforming[8]; IQ cell-sharing[9]
Power efficiencyBattery lifeTime-interleaving Doherty class-G[10]; switched transformer[11]; multi-subharmonic switching[12]; class-G[13, 14]; Doherty[15]; complex-domain Doherty [9]; hybrid Doherty and impedance boosting[16, 17]; class-G Doherty[18]
LinearityData error rate and modulation typePhase nonlinearity compensation[15]; switch impedance linearization and code mapping[19]; ADC background correction[20]; tri-phasing modulation[21]
Signal bandwidthData rate and license costDual-band matching[22, 23]; edge combining class-D[24]; mm-wave power-DAC [25]; doubled-edge- triggered RFDAC[26]
DownLoad: CSV
[1]
Chan C H, Cheng L, Deng W, et al. Trending IC design directions in 2022. J Semicond, 2022, 43, 071401 doi: 10.1088/1674-4926/43/7/071401
[2]
Yin Y, Zhu Y T, Xiong L, et al. A compact transformer-combined polar/quadrature reconfigurable digital power amplifier in 28-nm logic LP CMOS. IEEE J Solid State Circuits, 2019, 54, 709 doi: 10.1109/JSSC.2018.2878831
[3]
Hu C X, Yin Y, Li T, et al. A fully-integrated wideband digital polar transmitter with 11-bit digital-to-phase converter in 40nm CMOS. IEEE J Solid State Circuits, 2023, 58, 462 doi: 10.1109/JSSC.2022.3192281
[4]
Palaskas Y, Madoglio P, Angel J, et al. A cellular multiband DTC-based digital polar transmitter with −153-dBc/Hz noise in 14-nm FinFET. IEEE J Solid-State Circuits, 2020, 55, 1830 doi: 10.1109/JSSC.2020.2987698
[5]
Hu C, Zheng D, Yin Y, et al. A 0.7-2.5GHz sliding digital-IF quadrature digital transmitter achieving >40% system efficiency for multi-mode NB-IoT/BLE applications. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 472
[6]
Yang B Z, Qian H J, Wang T Y, et al. A CMOS wideband watt-level 4096-QAM digital power amplifier using reconfigurable power-combining transformer. IEEE J Solid State Circuits, 2022, 58, 357 doi: 10.1109/JSSC.2022.3191975
[7]
Li J, Yin Y, Chen H, et al. A 4.1W quadrature doherty digital power amplifier with 33.6% peak pae in 28nm bulk CMOS. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 370
[8]
Bai Z D, Yuan W, Azam A, et al. 4.3 A multiphase interpolating digital power amplifier for TX beamforming in 65nm CMOS. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 78 doi: 10.1109/ISSCC.2019.8662430
[9]
Zheng D Y, Yin Y, Zhu Y T, et al. 24.5 A 15b quadrature digital power amplifier with transformer-based complex-domain power-efficiency enhancement. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 370 doi: 10.1109/ISSCC19947.2020.9062959
[10]
Yoo S W, Hung S C, Yoo S M. 24.4 A watt-level multimode multi-efficiency-peak digital polar power amplifier with linear single-supply class-G technique. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 368 doi: 10.1109/ISSCC19947.2020.9063069
[11]
Xiong L, Li T, Yin Y, et al. A broadband switched-transformer digital power amplifier for deep back-off efficiency enhancement. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 76 doi: 10.1109/JSSC.2020.3005798
[12]
Zhang A Y, Chen M S W. A subharmonic switching digital power amplifier for power back-off efficiency enhancement. IEEE J Solid State Circuits, 2019, 54, 1017 doi: 10.1109/JSSC.2019.2893534
[13]
Yoo S W, Hung S C, Yoo S M. A watt-level quadrature class-G switched-capacitor power amplifier with linearization techniques. IEEE J Solid State Circuits, 2019, 54, 1274 doi: 10.1109/JSSC.2019.2904209
[14]
Bechthum E, El Soussi M, Dijkhuis J F, et al. A CMOS polar class-G switched-capacitor PA with a single high-current supply, for LTE NB-IoT and eMTC. IEEE J Solid State Circuits, 2019, 54, 1941 doi: 10.1109/JSSC.2019.2910407
[15]
Jung D, Li S S, Park J S, et al. A CMOS 1.2-V hybrid current- and voltage-mode three-way digital Doherty PA with built-In phase nonlinearity compensation. IEEE J Solid State Circuits, 2020, 55, 525 doi: 10.1109/JSSC.2019.2953832
[16]
Qian H J, Yang B Z, Zhou J, et al. A quadrature digital power amplifier with hybrid Doherty and impedance boosting for complex domain power back-off efficiency enhancement. IEEE J Solid State Circuits, 2021, 56, 1487 doi: 10.1109/JSSC.2021.3059113
[17]
Yang B Z, Qian H J, Luo X. Quadrature switched/floated capacitor power amplifier with reconfigurable self-coupling canceling transformer for deep back-off efficiency enhancement. IEEE J Solid State Circuits, 2021, 56, 3715 doi: 10.1109/JSSC.2021.3113511
[18]
Hung S C, Yoo S W, Yoo S M. A quadrature class-G complex-domain Doherty digital power amplifier. IEEE J Solid State Circuits, 2021, 56, 2029 doi: 10.1109/JSSC.2020.3040973
[19]
Yoo S W, Hung S C, Walling J S, et al. A 0.26mm2 DPD-less quadrature digital transmitter with <–40dB EVM over >30dB Pout range in 65nm CMOS. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2020, 184 doi: 10.1109/ISSCC19947.2020.9063070
[20]
Babamir S M, Razavi B. A digital RF transmitter with background nonlinearity correction. IEEE J Solid State Circuits, 2020, 55, 1502 doi: 10.1109/JSSC.2020.2968796
[21]
Lemberg J, Martelius M, Roverato E, et al. A 1.5–1.9-GHz all-digital tri-phasing transmitter with an integrated multilevel class-D power amplifier achieving 100-MHz RF bandwidth. IEEE J Solid State Circuits, 2019, 54, 1517 doi: 10.1109/JSSC.2019.2902753
[22]
Yin Y, Xiong L, Zhu Y T, et al. A compact dual-band digital polar Doherty power amplifier using parallel-combining transformer. IEEE J Solid State Circuits, 2019, 54, 1575 doi: 10.1109/JSSC.2019.2896407
[23]
Khamaisi B, Ben-Haim D, Nazimov A, et al. A 16nm, 28dBm dual-band all-digital polar transmitter based on 4-core digital PA for wi-Fi6E applications. 2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022, 324 doi: 10.1109/ISSCC42614.2022.9731624
[24]
Nguyen H M, Walling J S, Zhu A D, et al. A mm-wave switched-capacitor RFDAC. IEEE J Solid State Circuits, 2022, 57, 1224 doi: 10.1109/JSSC.2022.3142718
[25]
Qian H J, Shu Y Y, Zhou J, et al. A 20–32-GHz quadrature digital transmitter using synthesized impedance variation compensation. IEEE J Solid State Circuits, 2020, 55, 1297 doi: 10.1109/JSSC.2020.2964411
[26]
Yang B, Z. Deng Z, Qian H J, et al. 71-89GHz 12Gb/s double-edge-triggered quadrature power-DAC with LO leakage suppression achieving 20.5dBm peak output power and 20.4% system efficiency. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 286
[27]
Sireesh S K, Abkenar S H, Christoffers N, et al. A 4b RFDAC at 8GS/s for FMCW chirps with 4GHz bandwidth in 10 μs. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 376
[28]
Guo Y, Li Y, Huang W, et al. A polar-modulation-based cryogenic qubit state controller in 28nm bulk CMOS. Proc IEEE Int Solid-State Circuits Conf (ISSCC), 2023, 508
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 884 Times PDF downloads: 160 Times Cited by: 0 Times

    History

    Received: 13 March 2023 Revised: Online: Accepted Manuscript: 17 March 2023Uncorrected proof: 17 March 2023Published: 10 April 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yun Yin, Hongtao Xu. Digital-intensive RFIC design techniques for transmitters in ISSCC 2023[J]. Journal of Semiconductors, 2023, 44(4): 040203. doi: 10.1088/1674-4926/44/4/040203 Y Yin, H T Xu. Digital-intensive RFIC design techniques for transmitters in ISSCC 2023[J]. J. Semicond, 2023, 44(4): 040203. doi: 10.1088/1674-4926/44/4/040203Export: BibTex EndNote
      Citation:
      Yun Yin, Hongtao Xu. Digital-intensive RFIC design techniques for transmitters in ISSCC 2023[J]. Journal of Semiconductors, 2023, 44(4): 040203. doi: 10.1088/1674-4926/44/4/040203

      Y Yin, H T Xu. Digital-intensive RFIC design techniques for transmitters in ISSCC 2023[J]. J. Semicond, 2023, 44(4): 040203. doi: 10.1088/1674-4926/44/4/040203
      Export: BibTex EndNote

      Digital-intensive RFIC design techniques for transmitters in ISSCC 2023

      doi: 10.1088/1674-4926/44/4/040203
      More Information
      • Author Bio:

        Yun Yin received the B.S. degree in microelectromechanical systems and the Ph.D. degree in microelectronics from Tsinghua University, Beijing, China, in 2010 and 2015, respectively. She joined the School of Microelectronics, Fudan University, Shanghai, China, where she is currently an Associate Professor. Her research interest focuses on analog/RF integrated circuit design, including multimode multiband software defined radio (SDR) transceiver, CMOS analog power amplifier (PA) and all-digital transmitter for cellular, Wi-Fi, and low-power internet of things (IoT) applications

        Hongtao Xu received the B.S. degree in electronic engineering from Fudan University, Shanghai, China, in 1997, and the M.A. degree in economics and the Ph.D. degree in electrical and computer engineering from the University of California at Santa Barbara, Santa Barbara, CA, USA, in 2003 and 2005, respectively. In 2015, he joined the School of Microelectronics, Fudan University, as a Full Professor. He has authored or coauthored more than 70 journal articles and conference papers. He holds 16 patents in the areas of RF transceiver and front-end module. His technical interests include innovative analog/RF/millimeter-wave circuits and wireless system for communication and sensing

      • Corresponding author: yiny@fudan.edu.cnhongtao@fudan.edu.cn
      • Received Date: 2023-03-13
        Available Online: 2023-03-17

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return