REVIEWS

Phonon-assisted upconversion photoluminescence of quantum emitters

Yuanfei Gao1, §, Jia-Min Lai2, 3, § and Jun Zhang2, 3,

+ Author Affiliations

 Corresponding author: Jun Zhang, zhangjwill@semi.ac.cn

PDF

Turn off MathJax

Abstract: Quantum emitters are widely used in quantum networks, quantum information processing, and quantum sensing due to their excellent optical properties. Compared with Stokes excitation, quantum emitters under anti-Stokes excitation exhibit better performance. In addition to laser cooling and nanoscale thermometry, anti-Stokes excitation can improve the coherence of single-photon sources for advanced quantum technologies. In this review, we follow the recent advances in phonon-assisted upconversion photoluminescence of quantum emitters and discuss the upconversion mechanisms, applications, and prospects for quantum emitters with anti-Stokes excitation.

Key words: quantum emittersphonon-assisted upconversionelectron-phonon couplingsingle-photon source



[1]
Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10, 631 doi: 10.1038/nphoton.2016.186
[2]
Gao W B, Imamoglu A, Bernien H, et al. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat Photonics, 2015, 9, 363 doi: 10.1038/nphoton.2015.58
[3]
Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater, 2018, 3, 38 doi: 10.1038/s41578-018-0008-9
[4]
Awschalom D D, Hanson R, Wrachtrup J, et al. Quantum technologies with optically interfaced solid-state spins. Nat Photonics, 2018, 12, 516 doi: 10.1038/s41566-018-0232-2
[5]
Ren S L, Tan Q H, Zhang J. Review on the quantum emitters in two-dimensional materials. J Semicond, 2019, 40, 071903 doi: 10.1088/1674-4926/40/7/071903
[6]
Fan J W, Cojocaru I, Becker J, et al. Germanium-vacancy color center in diamond as a temperature sensor. ACS Photonics, 2018, 5, 765 doi: 10.1021/acsphotonics.7b01465
[7]
Gao Y F, Lai J M, Sun Y J, et al. Charge state manipulation of NV centers in diamond under phonon-assisted anti-stokes excitation of NV0. ACS Photonics, 2022, 9, 1605 doi: 10.1021/acsphotonics.1c01928
[8]
Xia X J, Pant A, Ganas A S, et al. Quantum point defects for solid-state laser refrigeration. Adv Mater, 2021, 33, e1905406 doi: 10.1002/adma.201905406
[9]
Empedocles S A, Bawendi M G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science, 1997, 278, 2114 doi: 10.1126/science.278.5346.2114
[10]
Tran T T, Regan B, Ekimov E A ,et al. Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry. Sci Adv, 2019, 5, eaav9180 doi: 10.1126/sciadv.aav9180
[11]
Mendelson N, Chugh D, Reimers J R, et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat Mater, 2021, 20, 321 doi: 10.1038/s41563-020-00850-y
[12]
Lai J M, Sun Y J, Tan Q H, et al. Laser cooling of a lattice vibration in van der waals semiconductor. Nano Lett, 2022, 22, 7129 doi: 10.1021/acs.nanolett.2c02240
[13]
Wang F, Deng R R, Wang J, et al. Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater, 2011, 10, 968 doi: 10.1038/nmat3149
[14]
Zhang J, Li D H, Chen R J, et al. Laser cooling of a semiconductor by 40 Kelvin. Nature, 2013, 493, 504 doi: 10.1038/nature11721
[15]
Gan Z X, Wu X L, Zhou G X, et al. Is there real upconversion photoluminescence from graphene quantum dots. Adv Opt Mater, 2013, 1, 554 doi: 10.1002/adom.201300152
[16]
Tetienne J P, Dontschuk N, Broadway D A, et al. Quantum imaging of current flow in graphene. Sci Adv, 2017, 3, e1602429 doi: 10.1126/sciadv.1602429
[17]
Rose B C, Huang D, Zhang Z H, et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science, 2018, 361, 60 doi: 10.1126/science.aao0290
[18]
Anderson C P, Bourassa A, Miao K C, et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science, 2019, 366, 1225 doi: 10.1126/science.aax9406
[19]
Michl J, Teraji T, Zaiser S, et al. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl Phys Lett, 2014, 104, 102407 doi: 10.1063/1.4868128
[20]
Bradley C E, Randall J, Abobeih M H, et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys Rev X, 2019, 9, 031045 doi: 10.1103/PhysRevX.9.031045
[21]
Koehl W F, Buckley B B, Heremans F J, et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 2011, 479, 84 doi: 10.1038/nature10562
[22]
Christle D J, Falk A L, Andrich P, et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat Mater, 2015, 14, 160 doi: 10.1038/nmat4144
[23]
Widmann M, Lee S Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 2015, 14, 164 doi: 10.1038/nmat4145
[24]
Kern M, Jeske J, Lau D W M, et al. Optical cryocooling of diamond. Phys Rev B, 2017, 95, 235306 doi: 10.1103/PhysRevB.95.235306
[25]
Gao Y F, Tan Q H, Liu X L, et al. Phonon-assisted photoluminescence up-conversion of silicon-vacancy centers in diamond. J Phys Chem Lett, 2018, 9, 6656 doi: 10.1021/acs.jpclett.8b02862
[26]
Tawfik S A, Ali S, Fronzi M, et al. First-principles investigation of quantum emission from hBN defects. Nanoscale, 2017, 9, 13575 doi: 10.1039/C7NR04270A
[27]
Nikolay N, Mendelson N, Özelci E, et al. Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride. OPTICA, 2019, 6, 1084 doi: 10.1364/OPTICA.6.001084
[28]
Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 2017, 8, 705 doi: 10.1038/s41467-017-00810-2
[29]
Exarhos A L, Hopper D A, Patel R N, et al. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun, 2019, 10, 222 doi: 10.1038/s41467-018-08185-8
[30]
Dietrich A, Bürk M, Steiger E S, et al. Reply to “Comment on ‘Observation of Fourier transform limited lines in hexagonal boron nitride’”. Phys Rev B, 2019, 100, 047402 doi: 10.1103/PhysRevB.100.047402
[31]
Noh G, Choi D, Kim J H, et al. Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett, 2018, 18, 4710 doi: 10.1021/acs.nanolett.8b01030
[32]
Tran T T, Bradac C, Solntsev A S, et al. Suppression of spectral diffusion by anti-Stokes excitation of quantum emitters in hexagonal boron nitride. Appl Phys Lett, 2019, 115, 071102 doi: 10.1063/1.5099631
[33]
Tomm N, Javadi A, Antoniadis N O, et al. A bright and fast source of coherent single photons. Nat Nanotechnol, 2021, 16, 399 doi: 10.1038/s41565-020-00831-x
[34]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026 doi: 10.1038/nnano.2017.218
[35]
Uppu R, Midolo L, Zhou X Y, et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology. Nat Nanotechnol, 2021, 16, 1308 doi: 10.1038/s41565-021-00965-6
[36]
Schulte C H H, Hansom J, Jones A E, et al. Quadrature squeezed photons from a two-level system. Nature, 2015, 525, 222 doi: 10.1038/nature14868
[37]
He Y, He Y M, Liu J, et al. Dynamically controlled resonance fluorescence spectra from a doubly dressed single InGaAs quantum dot. Phys Rev Lett, 2015, 114, 097402 doi: 10.1103/PhysRevLett.114.097402
[38]
Liu S F, Wei Y M, Li X S, et al. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light Sci Appl, 2021, 10, 158 doi: 10.1038/s41377-021-00604-8
[39]
Nemova G, Kashyap R. Laser cooling of solids. Rep Prog Phys, 2010, 73, 086501 doi: 10.1088/0034-4885/73/8/086501
[40]
Sheik-Bahae M, Epstein R I. Laser cooling of solids [Laser Photon. Rev. 3, No. 1-2, 67-84 (2009)]. Laser Photonics Rev, 2009, 3, 406 doi: 10.1002/lpor.200910509
[41]
Akizuki N, Shun A T, Mouri S, et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat Commun, 2015, 6, 8920 doi: 10.1038/ncomms9920
[42]
Jones A M, Yu H Y, Schaibley J R, et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat Phys, 2016, 12, 323 doi: 10.1038/nphys3604
[43]
Wang Q X, Zhang Q, Zhao X X, et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett, 2018, 18, 6898 doi: 10.1021/acs.nanolett.8b02804
[44]
Malein R N E, Khatri P, Ramsay A J, et al. Stimulated emission depletion spectroscopy of color centers in hexagonal boron nitride. ACS Photonics, 2021, 8, 1007 doi: 10.1021/acsphotonics.0c01917
[45]
Grosso G, Moon H, Ciccarino C J, et al. Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride. ACS Photonics, 2020, 7, 1410 doi: 10.1021/acsphotonics.9b01789
[46]
Hoese M, Reddy P, Dietrich A, et al. Mechanical decoupling of quantum emitters in hexagonal boron nitride from low-energy phonon modes. Sci Adv, 2020, 6, eaba6038 doi: 10.1126/sciadv.aba6038
[47]
Jadczak J, Bryja L, Kutrowska-Girzycka J, et al. Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS2. Nat Commun, 2019, 10, 107 doi: 10.1038/s41467-018-07994-1
[48]
Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science, 2019, 363, 728 doi: 10.1126/science.aav2789
[49]
Weber J R, Koehl W F, Varley J B, et al. Quantum computing with defects. Proc Natl Acad Sci USA, 2010, 107, 8513 doi: 10.1073/pnas.1003052107
[50]
Crane M J, Petrone A, Beck R A, et al. High-pressure, high-temperature molecular doping of nanodiamond. Sci Adv, 2019, 5, eaau6073 doi: 10.1126/sciadv.aau6073
[51]
Rahman A T M A, Barker P F. Laser refrigeration, alignment and rotation of levitated Yb3+: LF nanocrystals. Nat Photonics, 2017, 11, 634 doi: 10.1038/s41566-017-0005-3
[52]
Mohtashami A, Femius Koenderink A. Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments. New J Phys, 2013, 15, 043017 doi: 10.1088/1367-2630/15/4/043017
[53]
Sweeney T M, Carter S G, Bracker A S, et al. Cavity-stimulated Raman emission from a single quantum dot spin. Nat Photonics, 2014, 8, 442 doi: 10.1038/nphoton.2014.84
[54]
Epstein R I, Buchwald M I, Edwards B C, et al. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377, 500 doi: 10.1038/377500a0
[55]
Evans C L, Potma E O, Puoris'haag M, et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA, 2005, 102, 16807 doi: 10.1073/pnas.0508282102
[56]
Camp Jr C H, Cicerone M T. Chemically sensitive bioimaging with coherent Raman scattering. Nat Photonics, 2015, 9, 295 doi: 10.1038/nphoton.2015.60
[57]
Alkahtani M, Cojocaru I, Liu X H, et al. Tin-vacancy in diamonds for luminescent thermometry. Appl Phys Lett, 2018, 112, 241902 doi: 10.1063/1.5037053
[58]
Nguyen C T, Evans R E, Sipahigil A, et al. All-optical nanoscale thermometry with silicon-vacancy centers in diamond. Appl Phys Lett, 2018, 112, 203102 doi: 10.1063/1.5029904
[59]
Plakhotnik T, Aman H, Chang H C. All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz-1/2. Nanotechnology, 2015, 26, 245501 doi: 10.1088/0957-4484/26/24/245501
[60]
Maher R C, Cohen L F, Gallop J C, et al. Temperature-dependent anti-stokes/stokes ratios under surface-enhanced Raman scattering conditions. J Phys Chem B, 2006, 110, 6797 doi: 10.1021/jp056466r
[61]
Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 2010, 10, 3209 doi: 10.1021/nl1022139
[62]
Sallen G, Tribu A, Aichele T, et al. Subnanosecond spectral diffusion measurement using photon correlation. Nat Photonics, 2010, 4, 696 doi: 10.1038/nphoton.2010.174
[63]
Wigger D, Schmidt R, Del Pozo-Zamudio O, et al. Phonon-assisted emission and absorption of individual color centers in hexagonal boron nitride. 2D Mater, 2019, 6, 035006 doi: 10.1088/2053-1583/ab1188
[64]
Ye Z K, Lin X, Wang N, et al. Phonon-assisted up-conversion photoluminescence of quantum dots. Nat Commun, 2021, 12, 4283 doi: 10.1038/s41467-021-24560-4
[65]
Morozov Y V, Zhang S B, Pant A, et al. Can lasers really refrigerate CdS nanobelts. Nature, 2019, 570, E60 doi: 10.1038/s41586-019-1269-1
[66]
Jelezko F, Gaebel T, Popa I, et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett, 2004, 93, 130501 doi: 10.1103/PhysRevLett.93.130501
[67]
Li P B, Xiang Z L, Rabl P, et al. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys Rev Lett, 2016, 117, 015502 doi: 10.1103/PhysRevLett.117.015502
[68]
Lo Piparo N, Razavi M, Munro W J. Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond. Phys Rev A, 2017, 95, 022338 doi: 10.1103/PhysRevA.95.022338
[69]
Reineck P, Capelli M, Lau D M, et al. Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond. Nanoscale, 2017, 9, 497 doi: 10.1039/C6NR07834F
[70]
Acosta V M, Bauch E, Ledbetter M P, et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys Rev B, 2009, 80, 115202 doi: 10.1103/PhysRevB.80.115202
[71]
Beha K, Batalov A, Manson N B, et al. Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. Phys Rev Lett, 2012, 109, 097404 doi: 10.1103/PhysRevLett.109.097404
[72]
Wang J F, Yan F F, Li Q, et al. Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nat Commun, 2021, 12, 3223 doi: 10.1038/s41467-021-23471-8
[73]
Hensen B, Bernien H, Dréau A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015, 526, 682 doi: 10.1038/nature15759
[74]
Kalb N, Reiserer A A, Humphreys P C, et al. Entanglement distillation between solid-state quantum network nodes. Science, 2017, 356, 928 doi: 10.1126/science.aan0070
[75]
Humphreys P C, Kalb N, Morits J P J, et al. Deterministic delivery of remote entanglement on a quantum network. Nature, 2018, 558, 268 doi: 10.1038/s41586-018-0200-5
[76]
Soykal Ö O, Dev P, Economou S E. Silicon vacancy center in 4H-SiC: Electronic structure and spin-photon interfaces. Phys Rev B, 2016, 93, 081207 doi: 10.1103/PhysRevB.93.081207
[77]
Takahashi Y, Inui Y, Chihara M, et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature, 2013, 498, 470 doi: 10.1038/nature12237
[78]
Lu X Y, Moille G, Li Q, et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat Photonics, 2019, 13, 593 doi: 10.1038/s41566-019-0464-9
[79]
Marty G, Combrié S, Raineri F, et al. Photonic crystal optical parametric oscillator. Nat Photonics, 2021, 15, 53 doi: 10.1068/s41566-020-00737-z
[80]
Zhang J, Zhang Q, Wang X Z, et al. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat Photonics, 2016, 10, 600 doi: 10.1038/nphoton.2016.122
Fig. 1.  (Color online) The mechanism of phonon-assisted upconversion. (a) Stokes and anti-Stokes (AS) photoluminescence processes are represented by the energy structure of electronic and vibrational levels for color centers. (b) The Simplified Model of Optical Cooling. (a) Reproduced from Ref. [10], CC BY 4.0. (b) Reprinted with permission from Ref. [40]. Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

Fig. 2.  (Color online) Phonon-assisted upconversion photoluminescence in diamond. (a) Cooling of an NV-doped diamond suspended in vacuum. The cooling temperature as a function of quantum efficiency. Here it is assumed that non-radiative process heats the diamond. (b) The temperature dependence of intensity under Stokes and anti-Stokes excitation for SiV centers. (c) Anti-Stokes PLE spectra of SiV centers (ZPL: 738 nm) at room temperature. (d) Characterization of the anti-Stokes-based nanothermometer: the relative sensitivity versus temperature for several different systems. (a) Reprinted with permission from Ref. [24]. Copyright © 2017, American Physical Society. (b) and (c) Reprinted with permission from Ref. [25]. Copyright © 2018, American Chemical Society. (d) Reproduced from Ref. [10], CC BY 4.0.

Fig. 3.  (Color online) Photoluminescence upconversion in low dimensional materials. (a) The photoluminescence excitation spectrum of the integrated ZPL (565 nm). The green dots and red squares correspond to Stokes and anti-Stokes excitations, respectively. The suppression of spectral diffusion under anti-Stokes excitation: the PL time series of a single emitter under (b) Stokes excitation (532 nm) and (c) anti-Stokes excitation (637 nm), respectively. The optical cooling of QDs. (d) The temperature changes of the QD sample under different excitation wavelengths. (e) The upconversion photoluminescence mechanism of QDs. (a) Reproduced from Ref. [43]. Copyright © 2018, American Chemical Society. (b) and (c) Reprinted with permission from Ref. [32]. Copyright © 2019, AIP Publishing. (d) and (e) Reproduced from Ref. [64], CC BY 4.0.

Fig. 4.  (Color online) Quantum sensing under anti-Stokes excitation. (a) Charge state manipulation of NV centers: the charge state conversion process between NV0 and NV under different excitation wavelengths. (b) The decay process of NV centers at 4 K under anti-Stokes excitation. Robust coherent control of spin qubits using anti-Stokes excitation. (c) The excitation schemes of Vsi center under Stokes excitation and anti-Stokes excitation. (d) Stokes and anti-Stokes excited ODMR of Vsi centers for different external magnetic fields. (a) and (b) Reprinted with permission from Ref. [7]. Copyright © 2022, American Chemical Society. (c) and (d) Reproduced from Ref. [72], CC BY 4.0.

Fig. 5.  (Color online) The single-photon source under anti-Stokes excitation. (a) Dual-resonance enhanced X-CX transition for highly pure single-photon emission. Temperature-dependent PL mapping of a QD in cavity. (b) Hanbury Brown and Twiss (HBT) measurements of single-photon purity under the dual-resonance enhanced intra-dot excitation. (c) Dual resonances enhanced upconverted excitation. (a)–(c) Reproduced from Ref. [38], CC BY 4.0.

[1]
Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10, 631 doi: 10.1038/nphoton.2016.186
[2]
Gao W B, Imamoglu A, Bernien H, et al. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat Photonics, 2015, 9, 363 doi: 10.1038/nphoton.2015.58
[3]
Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater, 2018, 3, 38 doi: 10.1038/s41578-018-0008-9
[4]
Awschalom D D, Hanson R, Wrachtrup J, et al. Quantum technologies with optically interfaced solid-state spins. Nat Photonics, 2018, 12, 516 doi: 10.1038/s41566-018-0232-2
[5]
Ren S L, Tan Q H, Zhang J. Review on the quantum emitters in two-dimensional materials. J Semicond, 2019, 40, 071903 doi: 10.1088/1674-4926/40/7/071903
[6]
Fan J W, Cojocaru I, Becker J, et al. Germanium-vacancy color center in diamond as a temperature sensor. ACS Photonics, 2018, 5, 765 doi: 10.1021/acsphotonics.7b01465
[7]
Gao Y F, Lai J M, Sun Y J, et al. Charge state manipulation of NV centers in diamond under phonon-assisted anti-stokes excitation of NV0. ACS Photonics, 2022, 9, 1605 doi: 10.1021/acsphotonics.1c01928
[8]
Xia X J, Pant A, Ganas A S, et al. Quantum point defects for solid-state laser refrigeration. Adv Mater, 2021, 33, e1905406 doi: 10.1002/adma.201905406
[9]
Empedocles S A, Bawendi M G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science, 1997, 278, 2114 doi: 10.1126/science.278.5346.2114
[10]
Tran T T, Regan B, Ekimov E A ,et al. Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry. Sci Adv, 2019, 5, eaav9180 doi: 10.1126/sciadv.aav9180
[11]
Mendelson N, Chugh D, Reimers J R, et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat Mater, 2021, 20, 321 doi: 10.1038/s41563-020-00850-y
[12]
Lai J M, Sun Y J, Tan Q H, et al. Laser cooling of a lattice vibration in van der waals semiconductor. Nano Lett, 2022, 22, 7129 doi: 10.1021/acs.nanolett.2c02240
[13]
Wang F, Deng R R, Wang J, et al. Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater, 2011, 10, 968 doi: 10.1038/nmat3149
[14]
Zhang J, Li D H, Chen R J, et al. Laser cooling of a semiconductor by 40 Kelvin. Nature, 2013, 493, 504 doi: 10.1038/nature11721
[15]
Gan Z X, Wu X L, Zhou G X, et al. Is there real upconversion photoluminescence from graphene quantum dots. Adv Opt Mater, 2013, 1, 554 doi: 10.1002/adom.201300152
[16]
Tetienne J P, Dontschuk N, Broadway D A, et al. Quantum imaging of current flow in graphene. Sci Adv, 2017, 3, e1602429 doi: 10.1126/sciadv.1602429
[17]
Rose B C, Huang D, Zhang Z H, et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science, 2018, 361, 60 doi: 10.1126/science.aao0290
[18]
Anderson C P, Bourassa A, Miao K C, et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science, 2019, 366, 1225 doi: 10.1126/science.aax9406
[19]
Michl J, Teraji T, Zaiser S, et al. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl Phys Lett, 2014, 104, 102407 doi: 10.1063/1.4868128
[20]
Bradley C E, Randall J, Abobeih M H, et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys Rev X, 2019, 9, 031045 doi: 10.1103/PhysRevX.9.031045
[21]
Koehl W F, Buckley B B, Heremans F J, et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 2011, 479, 84 doi: 10.1038/nature10562
[22]
Christle D J, Falk A L, Andrich P, et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat Mater, 2015, 14, 160 doi: 10.1038/nmat4144
[23]
Widmann M, Lee S Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 2015, 14, 164 doi: 10.1038/nmat4145
[24]
Kern M, Jeske J, Lau D W M, et al. Optical cryocooling of diamond. Phys Rev B, 2017, 95, 235306 doi: 10.1103/PhysRevB.95.235306
[25]
Gao Y F, Tan Q H, Liu X L, et al. Phonon-assisted photoluminescence up-conversion of silicon-vacancy centers in diamond. J Phys Chem Lett, 2018, 9, 6656 doi: 10.1021/acs.jpclett.8b02862
[26]
Tawfik S A, Ali S, Fronzi M, et al. First-principles investigation of quantum emission from hBN defects. Nanoscale, 2017, 9, 13575 doi: 10.1039/C7NR04270A
[27]
Nikolay N, Mendelson N, Özelci E, et al. Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride. OPTICA, 2019, 6, 1084 doi: 10.1364/OPTICA.6.001084
[28]
Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 2017, 8, 705 doi: 10.1038/s41467-017-00810-2
[29]
Exarhos A L, Hopper D A, Patel R N, et al. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun, 2019, 10, 222 doi: 10.1038/s41467-018-08185-8
[30]
Dietrich A, Bürk M, Steiger E S, et al. Reply to “Comment on ‘Observation of Fourier transform limited lines in hexagonal boron nitride’”. Phys Rev B, 2019, 100, 047402 doi: 10.1103/PhysRevB.100.047402
[31]
Noh G, Choi D, Kim J H, et al. Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett, 2018, 18, 4710 doi: 10.1021/acs.nanolett.8b01030
[32]
Tran T T, Bradac C, Solntsev A S, et al. Suppression of spectral diffusion by anti-Stokes excitation of quantum emitters in hexagonal boron nitride. Appl Phys Lett, 2019, 115, 071102 doi: 10.1063/1.5099631
[33]
Tomm N, Javadi A, Antoniadis N O, et al. A bright and fast source of coherent single photons. Nat Nanotechnol, 2021, 16, 399 doi: 10.1038/s41565-020-00831-x
[34]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026 doi: 10.1038/nnano.2017.218
[35]
Uppu R, Midolo L, Zhou X Y, et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology. Nat Nanotechnol, 2021, 16, 1308 doi: 10.1038/s41565-021-00965-6
[36]
Schulte C H H, Hansom J, Jones A E, et al. Quadrature squeezed photons from a two-level system. Nature, 2015, 525, 222 doi: 10.1038/nature14868
[37]
He Y, He Y M, Liu J, et al. Dynamically controlled resonance fluorescence spectra from a doubly dressed single InGaAs quantum dot. Phys Rev Lett, 2015, 114, 097402 doi: 10.1103/PhysRevLett.114.097402
[38]
Liu S F, Wei Y M, Li X S, et al. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light Sci Appl, 2021, 10, 158 doi: 10.1038/s41377-021-00604-8
[39]
Nemova G, Kashyap R. Laser cooling of solids. Rep Prog Phys, 2010, 73, 086501 doi: 10.1088/0034-4885/73/8/086501
[40]
Sheik-Bahae M, Epstein R I. Laser cooling of solids [Laser Photon. Rev. 3, No. 1-2, 67-84 (2009)]. Laser Photonics Rev, 2009, 3, 406 doi: 10.1002/lpor.200910509
[41]
Akizuki N, Shun A T, Mouri S, et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat Commun, 2015, 6, 8920 doi: 10.1038/ncomms9920
[42]
Jones A M, Yu H Y, Schaibley J R, et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat Phys, 2016, 12, 323 doi: 10.1038/nphys3604
[43]
Wang Q X, Zhang Q, Zhao X X, et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett, 2018, 18, 6898 doi: 10.1021/acs.nanolett.8b02804
[44]
Malein R N E, Khatri P, Ramsay A J, et al. Stimulated emission depletion spectroscopy of color centers in hexagonal boron nitride. ACS Photonics, 2021, 8, 1007 doi: 10.1021/acsphotonics.0c01917
[45]
Grosso G, Moon H, Ciccarino C J, et al. Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride. ACS Photonics, 2020, 7, 1410 doi: 10.1021/acsphotonics.9b01789
[46]
Hoese M, Reddy P, Dietrich A, et al. Mechanical decoupling of quantum emitters in hexagonal boron nitride from low-energy phonon modes. Sci Adv, 2020, 6, eaba6038 doi: 10.1126/sciadv.aba6038
[47]
Jadczak J, Bryja L, Kutrowska-Girzycka J, et al. Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS2. Nat Commun, 2019, 10, 107 doi: 10.1038/s41467-018-07994-1
[48]
Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science, 2019, 363, 728 doi: 10.1126/science.aav2789
[49]
Weber J R, Koehl W F, Varley J B, et al. Quantum computing with defects. Proc Natl Acad Sci USA, 2010, 107, 8513 doi: 10.1073/pnas.1003052107
[50]
Crane M J, Petrone A, Beck R A, et al. High-pressure, high-temperature molecular doping of nanodiamond. Sci Adv, 2019, 5, eaau6073 doi: 10.1126/sciadv.aau6073
[51]
Rahman A T M A, Barker P F. Laser refrigeration, alignment and rotation of levitated Yb3+: LF nanocrystals. Nat Photonics, 2017, 11, 634 doi: 10.1038/s41566-017-0005-3
[52]
Mohtashami A, Femius Koenderink A. Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments. New J Phys, 2013, 15, 043017 doi: 10.1088/1367-2630/15/4/043017
[53]
Sweeney T M, Carter S G, Bracker A S, et al. Cavity-stimulated Raman emission from a single quantum dot spin. Nat Photonics, 2014, 8, 442 doi: 10.1038/nphoton.2014.84
[54]
Epstein R I, Buchwald M I, Edwards B C, et al. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377, 500 doi: 10.1038/377500a0
[55]
Evans C L, Potma E O, Puoris'haag M, et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA, 2005, 102, 16807 doi: 10.1073/pnas.0508282102
[56]
Camp Jr C H, Cicerone M T. Chemically sensitive bioimaging with coherent Raman scattering. Nat Photonics, 2015, 9, 295 doi: 10.1038/nphoton.2015.60
[57]
Alkahtani M, Cojocaru I, Liu X H, et al. Tin-vacancy in diamonds for luminescent thermometry. Appl Phys Lett, 2018, 112, 241902 doi: 10.1063/1.5037053
[58]
Nguyen C T, Evans R E, Sipahigil A, et al. All-optical nanoscale thermometry with silicon-vacancy centers in diamond. Appl Phys Lett, 2018, 112, 203102 doi: 10.1063/1.5029904
[59]
Plakhotnik T, Aman H, Chang H C. All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz-1/2. Nanotechnology, 2015, 26, 245501 doi: 10.1088/0957-4484/26/24/245501
[60]
Maher R C, Cohen L F, Gallop J C, et al. Temperature-dependent anti-stokes/stokes ratios under surface-enhanced Raman scattering conditions. J Phys Chem B, 2006, 110, 6797 doi: 10.1021/jp056466r
[61]
Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 2010, 10, 3209 doi: 10.1021/nl1022139
[62]
Sallen G, Tribu A, Aichele T, et al. Subnanosecond spectral diffusion measurement using photon correlation. Nat Photonics, 2010, 4, 696 doi: 10.1038/nphoton.2010.174
[63]
Wigger D, Schmidt R, Del Pozo-Zamudio O, et al. Phonon-assisted emission and absorption of individual color centers in hexagonal boron nitride. 2D Mater, 2019, 6, 035006 doi: 10.1088/2053-1583/ab1188
[64]
Ye Z K, Lin X, Wang N, et al. Phonon-assisted up-conversion photoluminescence of quantum dots. Nat Commun, 2021, 12, 4283 doi: 10.1038/s41467-021-24560-4
[65]
Morozov Y V, Zhang S B, Pant A, et al. Can lasers really refrigerate CdS nanobelts. Nature, 2019, 570, E60 doi: 10.1038/s41586-019-1269-1
[66]
Jelezko F, Gaebel T, Popa I, et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett, 2004, 93, 130501 doi: 10.1103/PhysRevLett.93.130501
[67]
Li P B, Xiang Z L, Rabl P, et al. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys Rev Lett, 2016, 117, 015502 doi: 10.1103/PhysRevLett.117.015502
[68]
Lo Piparo N, Razavi M, Munro W J. Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond. Phys Rev A, 2017, 95, 022338 doi: 10.1103/PhysRevA.95.022338
[69]
Reineck P, Capelli M, Lau D M, et al. Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond. Nanoscale, 2017, 9, 497 doi: 10.1039/C6NR07834F
[70]
Acosta V M, Bauch E, Ledbetter M P, et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys Rev B, 2009, 80, 115202 doi: 10.1103/PhysRevB.80.115202
[71]
Beha K, Batalov A, Manson N B, et al. Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. Phys Rev Lett, 2012, 109, 097404 doi: 10.1103/PhysRevLett.109.097404
[72]
Wang J F, Yan F F, Li Q, et al. Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nat Commun, 2021, 12, 3223 doi: 10.1038/s41467-021-23471-8
[73]
Hensen B, Bernien H, Dréau A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015, 526, 682 doi: 10.1038/nature15759
[74]
Kalb N, Reiserer A A, Humphreys P C, et al. Entanglement distillation between solid-state quantum network nodes. Science, 2017, 356, 928 doi: 10.1126/science.aan0070
[75]
Humphreys P C, Kalb N, Morits J P J, et al. Deterministic delivery of remote entanglement on a quantum network. Nature, 2018, 558, 268 doi: 10.1038/s41586-018-0200-5
[76]
Soykal Ö O, Dev P, Economou S E. Silicon vacancy center in 4H-SiC: Electronic structure and spin-photon interfaces. Phys Rev B, 2016, 93, 081207 doi: 10.1103/PhysRevB.93.081207
[77]
Takahashi Y, Inui Y, Chihara M, et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature, 2013, 498, 470 doi: 10.1038/nature12237
[78]
Lu X Y, Moille G, Li Q, et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat Photonics, 2019, 13, 593 doi: 10.1038/s41566-019-0464-9
[79]
Marty G, Combrié S, Raineri F, et al. Photonic crystal optical parametric oscillator. Nat Photonics, 2021, 15, 53 doi: 10.1068/s41566-020-00737-z
[80]
Zhang J, Zhang Q, Wang X Z, et al. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat Photonics, 2016, 10, 600 doi: 10.1038/nphoton.2016.122
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1063 Times PDF downloads: 112 Times Cited by: 0 Times

    History

    Received: 28 November 2022 Revised: 24 December 2022 Online: Accepted Manuscript: 31 January 2023Uncorrected proof: 03 February 2023Published: 10 April 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yuanfei Gao, Jia-Min Lai, Jun Zhang. Phonon-assisted upconversion photoluminescence of quantum emitters[J]. Journal of Semiconductors, 2023, 44(4): 041901. doi: 10.1088/1674-4926/44/4/041901 Y F Gao, J M Lai, J Zhang. Phonon-assisted upconversion photoluminescence of quantum emitters[J]. J. Semicond, 2023, 44(4): 041901. doi: 10.1088/1674-4926/44/4/041901Export: BibTex EndNote
      Citation:
      Yuanfei Gao, Jia-Min Lai, Jun Zhang. Phonon-assisted upconversion photoluminescence of quantum emitters[J]. Journal of Semiconductors, 2023, 44(4): 041901. doi: 10.1088/1674-4926/44/4/041901

      Y F Gao, J M Lai, J Zhang. Phonon-assisted upconversion photoluminescence of quantum emitters[J]. J. Semicond, 2023, 44(4): 041901. doi: 10.1088/1674-4926/44/4/041901
      Export: BibTex EndNote

      Phonon-assisted upconversion photoluminescence of quantum emitters

      doi: 10.1088/1674-4926/44/4/041901
      More Information
      • Author Bio:

        Yuanfei Gao received a bachelor's degree and a Ph.D. in optics from Zhengzhou University in China in 2013 and 2019. Then he works as an assistant research fellow at the Beijing Academy of Quantum Information Sciences in China. His research interest is on light-matter interactions in quantum optics

        Jia-Min Lai is now a Ph.D. student supervised by Prof. Jun Zhang in the State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences. She received her bachelor's degree from Northeastern University in China. Her current research interest focuses on electron-phonon coupling in semiconductors

        Jun Zhang received a bachelor's degree from Inner Mongolia University in China in 2004, and a Ph.D. from the Institute of Semiconductors, Chinese Academy of Sciences in 2010. Then he worked as a postdoctoral fellow at Nanyang Technological University in Singapore from 2010 to 2015 and joined the State Key laboratory of Superlattice for Semiconductors (CAS) as a professor in 2015. His current research focuses on light-matter interactions in novel low-dimensional semiconductor optoelectronic materials

      • Corresponding author: zhangjwill@semi.ac.cn
      • Received Date: 2022-11-28
      • Revised Date: 2022-12-24
      • Available Online: 2023-01-31

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return