REVIEWS

Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications

Wanwang Yang1, 2, Chenxi Yu1, 2, Haolin Li1, 2, Mengqi Fan1, 2, Xujin Song1, 2, Haili Ma1, 2, Zheng Zhou1, 2, Pengying Chang1, 3, Peng Huang1, 2, Fei Liu1, 2, Xiaoyan Liu1, 2 and Jinfeng Kang1, 2,

+ Author Affiliations

 Corresponding author: Jinfeng Kang, kangjf@pku.edu.cn

PDF

Turn off MathJax

Abstract: The finding of the robust ferroelectricity in HfO2-based thin films is fantastic from the view point of both the fundamentals and the applications. In this review article, the current research status of the future prospects for the ferroelectric HfO2-based thin films and devices are presented from fundamentals to applications. The related issues are discussed, which include: 1) The ferroelectric characteristics observed in HfO2-based films and devices associated with the factors of dopant, strain, interface, thickness, defect, fabrication condition, and more; 2) physical understanding on the observed ferroelectric behaviors by the density functional theory (DFT)-based theory calculations; 3) the characterizations of microscopic and macroscopic features by transmission electron microscopes-based and electrical properties-based techniques; 4) modeling and simulations, 5) the performance optimizations, and 6) the applications of some ferroelectric-based devices such as ferroelectric random access memory, ferroelectric-based field effect transistors, and the ferroelectric tunnel junction for the novel information processing systems.

Key words: ferroelectricityHfO2-based thin filmsphysical mechanismcharacterizationmodeling and simulationapplications



[1]
Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett, 2011, 99, 102903 doi: 10.1063/1.3634052
[2]
Cheema S S, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 2020, 580, 478 doi: 10.1038/s41586-020-2208-x
[3]
Schroeder U, Park M H, Mikolajick T, et al. The fundamentals and applications of ferroelectric HfO2. Nat Rev Mater, 2022, 7, 653 doi: 10.1038/s41578-022-00431-2
[4]
Valasek J. Piezo-electric and allied phenomena in rochelle salt. Phys Rev, 1921, 17, 475 doi: 10.1103/PhysRev.17.475
[5]
Haertling G H. Ferroelectric ceramics: History and technology. J Am Ceram Soc, 1999, 82, 797 doi: 10.1111/j.1151-2916.1999.tb01840.x
[6]
Mikolajick T, Slesazeck S, Mulaosmanovic H, et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J Appl Phys, 2021, 129, 100901 doi: 10.1063/5.0037617
[7]
Slater J C. Theory of the transition in KH2PO4. J Chem Phys, 1941, 9, 16 doi: 10.1063/1.1750821
[8]
Cowley R A. Structural phase transitions I. Landau theory. Adv Phys, 1980, 29, 1 doi: 10.1080/00018738000101346
[9]
Vugmeister B E, Glinchuk M D. Dipole glass and ferroelectricity in random-site electric dipole systems. Rev Mod Phys, 1990, 62, 993 doi: 10.1103/RevModPhys.62.993
[10]
Sicron N, Ravel B, Yacoby Y, et al. Nature of the ferroelectric phase transition in PbTiO3. Phys Rev B Condens Matter, 1994, 50, 13168 doi: 10.1103/PhysRevB.50.13168
[11]
Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358, 136 doi: 10.1038/358136a0
[12]
Dawber M, Rabe K M, Scott J F. Physics of thin-film ferroelectric oxides. Rev Mod Phys, 2005, 77, 1083 doi: 10.1103/RevModPhys.77.1083
[13]
Martin L W, Rappe A M. Thin-film ferroelectric materials and their applications. Nat Rev Mater, 2017, 2, 16087 doi: 10.1038/natrevmats.2016.87
[14]
Doan Huan T, Sharma V, Rossetti G A, et al. Pathways towards ferroelectricity in hafnia. Phys Rev B, 2014, 90, 064111 doi: 10.1103/PhysRevB.90.064111
[15]
Materlik R, Künneth C, Kersch A. The origin of ferroelectricity in Hf1− xZr xO2: A computational investigation and a surface energy model. J Appl Phys, 2015, 117, 134109 doi: 10.1063/1.4916707
[16]
Sang X H, Grimley E D, Schenk T, et al. On the structural origins of ferroelectricity in HfO2 thin films. Appl Phys Lett, 2015, 106, 162905 doi: 10.1063/1.4919135
[17]
Rushchanskii K Z, Blügel S, Ležaić M. Ordering of oxygen vacancies and related ferroelectric properties in HfO2-δ. Phys Rev Lett, 2021, 127, 087602 doi: 10.1103/PhysRevLett.127.087602
[18]
Hoffmann M, Schroeder U, Schenk T, et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J Appl Phys, 2015, 118, 072006 doi: 10.1063/1.4927805
[19]
Lee H J, Lee M, Lee K, et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science, 2020, 369, 1343 doi: 10.1126/science.aba0067
[20]
Müller J, Böscke T S, Schröder U, et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett, 2012, 12, 4318 doi: 10.1021/nl302049k
[21]
Mueller S, Mueller J, Singh A, et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv Funct Mater, 2012, 22, 2412 doi: 10.1002/adfm.201103119
[22]
Xu X H, Huang F T, Qi Y B, et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat Mater, 2021, 20, 826 doi: 10.1038/s41563-020-00897-x
[23]
Mimura T, Shimizu T, Sakata O, et al. Large thermal hysteresis of ferroelectric transition in HfO2-based ferroelectric films. Appl Phys Lett, 2021, 118, 112903 doi: 10.1063/5.0040934
[24]
Schenk T, Fancher C M, Park M H, et al. On the origin of the large remanent polarization in La:HfO 2. Adv Electron Mater, 2019, 5, 1900303 doi: 10.1002/aelm.201900303
[25]
Schroeder U, Yurchuk E, Müller J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn J Appl Phys, 2014, 53, 08LE02 doi: 10.7567/JJAP.53.08LE02
[26]
Grimley E D, Schenk T, Mikolajick T, et al. Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv Mater Interfaces, 2018, 5, 1701258 doi: 10.1002/admi.201701258
[27]
Park M H, Lee Y H, Kim H J, et al. Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: A comparison of model and experiment. Nanoscale, 2017, 9, 9973 doi: 10.1039/C7NR02121F
[28]
Park M H, Kim H J, Kim Y J, et al. The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl Phys Lett, 2014, 104, 072901 doi: 10.1063/1.4866008
[29]
Cao R R, Wang Y, Zhao S J, et al. Effects of capping electrode on ferroelectric properties of Hf0.5Zr0.5O2 thin films. IEEE Electron Device Lett, 2018, 39, 1207 doi: 10.1109/LED.2018.2846570
[30]
Hamouda W, Pancotti A, Lubin C, et al. Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface. J Appl Phys, 2020, 127, 064105 doi: 10.1063/1.5128502
[31]
Starschich S, Menzel S, Böttger U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl Phys Lett, 2016, 108, 032903 doi: 10.1063/1.4940370
[32]
Liao P J, Chang Y K, Lee Y H, et al. Characterization of fatigue and its recovery behavior in ferroelectric HfZrO. 2021 Symposium on VLSI Technology, 2021, 1
[33]
Glinchuk M D, Morozovska A N, Lukowiak A, et al. Possible electrochemical origin of ferroelectricity in HfO2 thin films. J Alloys Compd, 2020, 830, 153628 doi: 10.1016/j.jallcom.2019.153628
[34]
Nukala P, Ahmadi M, Wei Y F, et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science, 2021, 372, 630 doi: 10.1126/science.abf3789
[35]
Kang S, Jang W S, Morozovska A N, et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment. Science, 2022, 376, 731 doi: 10.1126/science.abk3195
[36]
Liu C, Liu F, Luo Q, et al. Role of oxygen vacancies in electric field cycling behaviors of ferroelectric hafnium oxide. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 16.4.1 doi: 10.1109/IEDM.2018.8614540
[37]
Park M H, Kim H J, Kim Y J, et al. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl Phys Lett, 2013, 102, 242905 doi: 10.1063/1.4811483
[38]
Mimura T, Shimizu T, Uchida H, et al. Thickness-dependent crystal structure and electric properties of epitaxial ferroelectric Y2O3-HfO2 films. Appl Phys Lett, 2018, 113, 102901 doi: 10.1063/1.5040018
[39]
Park M H, Lee Y H, Kim H J, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater, 2015, 27, 1811 doi: 10.1002/adma.201404531
[40]
Chernikova A, Kozodaev M, Markeev A, et al. Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si. ACS Appl Mater Interfaces, 2016, 8, 7232 doi: 10.1021/acsami.5b11653
[41]
Luo Q, Gong T C, Cheng Y, et al. Hybrid 1T e-DRAM and e-NVM Realized in One 10 nm node Ferro FinFET device with Charge Trapping and Domain Switching Effects. 2018 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, 2019, 2.6.1 doi: 10.1109/IEDM.2018.8614650
[42]
Tomida K, Kita K, Toriumi A. Dielectric constant enhancement due to Si incorporation into HfO2. Appl Phys Lett, 2006, 89, 142902 doi: 10.1063/1.2355471
[43]
Mueller S, Summerfelt S R, Muller J, et al. Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors. IEEE Electron Device Lett, 2012, 33, 1300 doi: 10.1109/LED.2012.2204856
[44]
Mart C, Kühnel K, Kämpfe T, et al. Doping ferroelectric hafnium oxide by in situ precursor mixing. ACS Appl Electron Mater, 2019, 1, 2612 doi: 10.1021/acsaelm.9b00591
[45]
Grenouillet L, Francois T, Coignus J, et al. Nanosecond laser anneal (NLA) for Si-implanted HfO2 ferroelectric memories integrated in back-end of line (BEOL). 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265061
[46]
Francois T, Coignus J, Makosiej A, et al. 16kbit HfO2: Si-based 1T-1C FeRAM arrays demonstrating high performance operation and solder reflow compatibility. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 33.1.1 doi: 10.1109/IEDM19574.2021.9720640
[47]
Müller J, Böscke T S, Bräuhaus D, et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl Phys Lett, 2011, 99, 112901 doi: 10.1063/1.3636417
[48]
Kim S J, Mohan J, Lee J, et al. Effect of film thickness on the ferroelectric and dielectric properties of low-temperature (400 °C) Hf0.5Zr0.5O2 films. Appl Phys Lett, 2018, 112, 172902 doi: 10.1063/1.5026715
[49]
Park M H, Chung C C, Schenk T, et al. Effect of annealing ferroelectric HfO2 thin films: in situ, high temperature X-ray diffraction. Adv Electron Mater, 2018, 4, 1800091 doi: 10.1002/aelm.201800091
[50]
Chernikova A G, Kuzmichev D S, Negrov D V, et al. Ferroelectric properties of full plasma-enhanced ALD TiN/La: HfO2/TiN stacks. Appl Phys Lett, 2016, 108, 242905 doi: 10.1063/1.4953787
[51]
Kozodaev M G, Chernikova A G, Korostylev E V, et al. Ferroelectric properties of lightly doped La:HfO2 thin films grown by plasma-assisted atomic layer deposition. Appl Phys Lett, 2017, 111, 132903 doi: 10.1063/1.4999291
[52]
Perevalov T V, Gutakovskii A K, Kruchinin V N, et al. Atomic and electronic structure of ferroelectric La-doped HfO2 films. Mater Res Express, 2018, 6, 036403 doi: 10.1088/2053-1591/aaf436
[53]
Schroeder U, Richter C, Park M H, et al. Lanthanum-doped hafnium oxide: A robust ferroelectric material. Inorg Chem, 2018, 57, 2752 doi: 10.1021/acs.inorgchem.7b03149
[54]
Mart C, Kühnel K, Kämpfe T, et al. Ferroelectric and pyroelectric properties of polycrystalline La-doped HfO2 thin films. Appl Phys Lett, 2019, 114, 102903 doi: 10.1063/1.5089821
[55]
Boncheol, Ku. Improved ferroelectric characteristics of ALD lanthanum-doped hafnium oxide thin film by controlling post-cooling time. Appl Surf Sci, 2022, 599, 153905 doi: 10.1016/j.apsusc.2022.153905
[56]
Song T F, Bachelet R, Saint-Girons G, et al. Thickness effect on the ferroelectric properties of La-doped HfO2 epitaxial films down to 4.5 nm. J Mater Chem C, 2021, 9, 12224 doi: 10.1039/D1TC02512K
[57]
Song T F, Tan H, Bachelet R, et al. Impact of La concentration on ferroelectricity of La-doped HfO2 epitaxial thin films. ACS Appl Electron Mater, 2021, 3, 4809 doi: 10.1021/acsaelm.1c00672
[58]
Müller J, Schröder U, Böscke T S, et al. Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys, 2011, 110, 114113 doi: 10.1063/1.3667205
[59]
Olsen T, Schröder U, Müller S, et al. Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Appl Phys Lett, 2012, 101, 082905 doi: 10.1063/1.4747209
[60]
Starschich S, Griesche D, Schneller T, et al. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes. Appl Phys Lett, 2014, 104, 202903 doi: 10.1063/1.4879283
[61]
Shibayama S, Xu L, Migita S, et al. Study of wake-up and fatigue properties in doped and undoped ferroelectric HfO2 in conjunction with piezo-response force microscopy analysis. 2016 IEEE Symposium on VLSI Technology, 2016, 1 doi: 10.1109/VLSIT.2016.7573415
[62]
Mueller S, Adelmann C, Singh A, et al. Ferroelectricity in Gd-doped HfO2Thin films. ECS J Solid State Sci Technol, 2012, 1, N123 doi: 10.1149/2.002301jss
[63]
Yao Y F, Zhou D Y, Li S D, et al. Experimental evidence of ferroelectricity in calcium doped hafnium oxide thin films. J Appl Phys, 2019, 126, 154103 doi: 10.1063/1.5117358
[64]
Starschich S, Boettger U. An extensive study of the influence of dopants on the ferroelectric properties of HfO2. J Mater Chem C, 2017, 5, 333 doi: 10.1039/C6TC04807B
[65]
Shiraishi T, Choi S, Kiguchi T, et al. Fabrication of ferroelectric Fe doped HfO2 epitaxial thin films by ion-beam sputtering method and their characterization. Jpn J Appl Phys, 2018, 57, 11UF02 doi: 10.7567/JJAP.57.11UF02
[66]
Xu L, Shibayama S, Izukashi K, et al. General relationship for cation and anion doping effects on ferroelectric HfO2 formation. 2016 IEEE International Electron Devices Meeting (IEDM), 2017, 25.2.1 doi: 10.1109/IEDM.2016.7838477
[67]
Nishimura T, Xu L, Shibayama S, et al. Ferroelectricity of nondoped thin HfO2 films in TiN/HfO2/TiN stacks. Jpn J Appl Phys, 2016, 55, 08PB01 doi: 10.7567/JJAP.55.08PB01
[68]
Chen H Y, Chen Y H, Tang L, et al. Obvious ferroelectricity in undoped HfO2 films by chemical solution deposition. J Mater Chem C, 2020, 8, 2820 doi: 10.1039/C9TC06400A
[69]
Batra R, Doan Huan T, Rossetti G A Jr, et al. Dopants promoting ferroelectricity in hafnia: Insights from a comprehensive chemical space exploration. Chem Mater, 2017, 29, 9102 doi: 10.1021/acs.chemmater.7b02835
[70]
Xu L, Nishimura T, Shibayama S, et al. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films. J Appl Phys, 2017, 122, 124104 doi: 10.1063/1.5003918
[71]
Park M H, Schroeder U. Ferroelectricity in doped hafnium oxide: Materials, properties and devices. Amsterdam: Elsevier, 2019, 47
[72]
Alexandra Hsain H, Lee Y, Materano M, et al. Many routes to ferroelectric HfO2: A review of current deposition methods. J Vac Sci Technol A, 2022, 40, 010803 doi: 10.1116/6.0001317
[73]
Kang C Y, Kirsch P D, Lee B H, et al. Reliability of La-doped Hf-based dielectrics nMOSFETs. IEEE Trans Device Mater Relib, 2009, 9, 171 doi: 10.1109/TDMR.2009.2020741
[74]
An C H, Lee M S, Choi J Y, et al. Change of the trap energy levels of the atomic layer deposited HfLaOx films with different La concentration. Appl Phys Lett, 2009, 94, 262901 doi: 10.1063/1.3159625
[75]
Ali T, Polakowski P, Riedel S, et al. Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics. Appl Phys Lett, 2018, 112, 222903 doi: 10.1063/1.5029324
[76]
Fujii S, Kamimuta Y, Ino T, et al. First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property. 2016 IEEE Symposium on VLSI Technology, 2016, 1 doi: 10.1109/VLSIT.2016.7573413
[77]
Yoon S J, Moon S E, Yoon S M. Implementation of an electrically modifiable artificial synapse based on ferroelectric field-effect transistors using Al-doped HfO2 thin films. Nanoscale, 2020, 12, 13421 doi: 10.1039/D0NR02401E
[78]
Chen H Y, Zhou X F, Tang L, et al. HfO2-based ferroelectrics: From enhancing performance, material design, to applications. Appl Phys Rev, 2022, 9, 011307 doi: 10.1063/5.0066607
[79]
Park M H, Kim H J, Kim Y J, et al. Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl Phys Lett, 2013, 102, 112914 doi: 10.1063/1.4798265
[80]
Patrick D. Lomenzo, Qanit Takmeel, Saeed Moghaddam Annealing behavior of ferroelectric Si-doped HfO2 thin films. Thin Solid Films, 2016, 615, 139 doi: 10.1016/j.tsf.2016.07.009
[81]
Kim T, Park J, Cheong B H, et al. Effects of high pressure nitrogen annealing on ferroelectric Hf0.5Zr0.5O2 films. Appl Phys Lett, 2018, 112, 092906 doi: 10.1063/1.5003369
[82]
Böscke T S, Teichert S, Bräuhaus D, et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl Phys Lett, 2011, 99, 112904 doi: 10.1063/1.3636434
[83]
Park M H, Lee Y H, Hwang C S. Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory. Nanoscale, 2019, 11, 19477 doi: 10.1039/C9NR05768D
[84]
Toriumi A, Xu L, Mori Y, et al. Material perspectives of HfO2-based ferroelectric films for device applications. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 15.1.1 doi: 10.1109/IEDM19573.2019.8993464
[85]
Park M H, Lee Y H, Kim H J, et al. Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. Nanoscale, 2018, 10, 716 doi: 10.1039/C7NR06342C
[86]
Materano M, Lomenzo P D, Kersch A, et al. Interplay between oxygen defects and dopants: Effect on structure and performance of HfO2-based ferroelectrics. Inorg Chem Front, 2021, 8, 2650 doi: 10.1039/D1QI00167A
[87]
Mittmann T, Materano M, Lomenzo P D, et al. Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering. Adv Mater Interfaces, 2019, 6, 1900042 doi: 10.1002/admi.201900042
[88]
Suzuki T, Shimizu T, Mimura T, et al. Epitaxial ferroelectric Y-doped HfO2 film grown by the RF magnetron sputtering. Jpn J Appl Phys, 2018, 57, 11UF15 doi: 10.7567/JJAP.57.11UF15
[89]
Mittmann T, Szyjka T, Alex H, et al. Impact of iridium oxide electrodes on the ferroelectric phase of thin Hf0.5Zr0.5O2 films. Phys Rap Rese Lett, 2021, 15, 2100012 doi: 10.1002/pssr.202100012
[90]
Lomenzo P D, Takmeel Q, Zhou C Z, et al. TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J Appl Phys, 2015, 117, 134105 doi: 10.1063/1.4916715
[91]
Goh Y, Hwang J, Kim M, et al. High performance and self-rectifying hafnia-based ferroelectric tunnel junction for neuromorphic computing and TCAM applications. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 17.2.1 doi: 10.1109/IEDM19574.2021.9720610
[92]
Oh S, Song J, Yoo I K, et al. Improved endurance of HfO2-based metal- ferroelectric-insulator-silicon structure by high-pressure hydrogen annealing. IEEE Electron Device Lett, 2019, 40, 1092 doi: 10.1109/LED.2019.2914700
[93]
Ryu H, Xu K, Kim J, et al. Exploring new metal electrodes for ferroelectric aluminum-doped hafnium oxide. IEEE Trans Electron Devices, 2019, 66, 2359 doi: 10.1109/TED.2019.2907070
[94]
Lomenzo P D, Zhao P, Takmeel Q, et al. Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom, 2014, 32, 03D123 doi: 10.1116/1.4873323
[95]
Park M H, Kim H J, Kim Y J, et al. Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes. Appl Phys Lett, 2014, 105, 072902 doi: 10.1063/1.4893376
[96]
Zhang X, Chen L, Sun Q Q, et al. Inductive crystallization effect of atomic-layer-deposited Hf0.5Zr0.5O2 films for ferroelectric application. Nanoscale Res Lett, 2015, 10, 25 doi: 10.1186/s11671-014-0711-4
[97]
Hwang J, Goh Y, Jeon S. Effect of forming gas high-pressure annealing on metal-ferroelectric-semiconductor hafnia ferroelectric tunnel junction. IEEE Electron Device Lett, 2020, 41, 1193 doi: 10.1109/LED.2020.3001639
[98]
Yao L L, Liu X, Cheng Y H, et al. A synergistic interplay between dopant ALD cycles and film thickness on the improvement of the ferroelectricity of uncapped Al:HfO2 nanofilms. Nanotechnology, 2021, 32, 32, 2110.1088/1361 doi: 10.1088/1361-6528/abe785
[99]
Batra R, Doan Tran H, Ramprasad R. Stabilization of metastable phases in hafnia owing to surface energy effects. Appl Phys Lett, 2016, 108, 172902 doi: 10.1063/1.4947490
[100]
Chouprik A, Negrov D, Tsymbal E Y, et al. Defects in ferroelectric HfO2. Nanoscale, 2021, 13, 11635 doi: 10.1039/D1NR01260F
[101]
Pal A, Narasimhan V K, Weeks S, et al. Enhancing ferroelectricity in dopant-free hafnium oxide. Appl Phys Lett, 2017, 110, 022903 doi: 10.1063/1.4973928
[102]
Alcala R, Richter C, Materano M, et al. Influence of oxygen source on the ferroelectric properties of ALD grown Hf1– xZr xO2 films. J Phys D, 2021, 54, 035102 doi: 10.1088/1361-6463/abbc98
[103]
Mittmann T, Materano M, Chang S C, et al. Impact of oxygen vacancy content in ferroelectric HZO films on the device performance. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 18.4.1 doi: 10.1109/IEDM13553.2020.9372097
[104]
Pešić M, Fengler F P G, Larcher L, et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv Funct Mater, 2016, 26, 4601 doi: 10.1002/adfm.201600590
[105]
Zhou Y, Zhang Y K, Yang Q, et al. The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Comput Mater Sci, 2019, 167, 143 doi: 10.1016/j.commatsci.2019.05.041
[106]
Islamov D R, Zalyalov T M, Orlov O M, et al. Impact of oxygen vacancy on the ferroelectric properties of lanthanum-doped hafnium oxide. Appl Phys Lett, 2020, 117, 162901 doi: 10.1063/5.0023554
[107]
Kashir A, Oh S, Hwang H. Defect engineering to achieve wake-up free HfO2-based ferroelectrics. Adv Eng Mater, 2021, 23, 2000791 doi: 10.1002/adem.202000791
[108]
Materano M, Mittmann T, Lomenzo P D, et al. Influence of oxygen content on the structure and reliability of ferroelectric Hf xZr1– xO2 layers. ACS Appl Electron Mater, 2020, 2, 3618 doi: 10.1021/acsaelm.0c00680
[109]
Lee T Y, Lee K, Lim H H, et al. Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2. ACS Appl Mater Interfaces, 2019, 11, 3142 doi: 10.1021/acsami.8b11681
[110]
Buragohain P, Erickson A, Kariuki P, et al. Fluid imprint and inertial switching in ferroelectric La: HfO2 capacitors. ACS Appl Mater Interfaces, 2019, 11, 35115 doi: 10.1021/acsami.9b11146
[111]
Jung T, Shin J, Shin C. Impact of depolarization electric-field and charge trapping on the coercive voltage of an Si: HfO2-based ferroelectric capacitor. Semicond Sci Technol, 2020, 36, 015005 doi: 10.1088/1361-6641/abbf0f
[112]
Baumgarten L, Szyjka T, Mittmann T, et al. Impact of vacancies and impurities on ferroelectricity in PVD- and ALD-grown HfO2 films. Appl Phys Lett, 2021, 118, 032903 doi: 10.1063/5.0035686
[113]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, B864 doi: 10.1103/PhysRev.136.B864
[114]
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, A1133 doi: 10.1103/PhysRev.140.A1133
[115]
Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can J Phys, 1980, 58, 1200 doi: 10.1139/p80-159
[116]
Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B, 1981, 23, 5048 doi: 10.1103/PhysRevB.23.5048
[117]
Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45, 13244 doi: 10.1103/PhysRevB.45.13244
[118]
Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys, 1988, 38, 3098 doi: 10.1103/PhysRevA.38.3098
[119]
Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37, 785 doi: 10.1103/PhysRevB.37.785
[120]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[121]
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118, 8207 doi: 10.1063/1.1564060
[122]
Perdew J P, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations. J Chem Phys, 1996, 105, 9982 doi: 10.1063/1.472933
[123]
Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys, 1999, 110, 6158 doi: 10.1063/1.478522
[124]
Ohtaka O, Fukui H, Kunisada T, et al. Phase relations and volume changes of hafnia under high pressure and high temperature. J Am Ceram Soc, 2004, 84, 1369 doi: 10.1111/j.1151-2916.2001.tb00843.x
[125]
Clima S, Wouters D J, Adelmann C, et al. Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight. Appl Phys Lett, 2014, 104, 092906 doi: 10.1063/1.4867975
[126]
Lowther J E, Dewhurst J K, Leger J M, et al. Relative stability of ZrO2 and HfO2 structural phases. Phys Rev B, 1999, 60, 14485 doi: 10.1103/PhysRevB.60.14485
[127]
Barabash S V. Prediction of new metastable HfO2 phases: Toward understanding Ferro- and antiferroelectric films. J Comput Electron, 2017, 16, 1227 doi: 10.1007/s10825-017-1077-5
[128]
Shuvalov L. Symmetry aspects of ferroelectricity. J Phys Soc Jpn, 1970, 28, 38
[129]
Wei Y, Nukala P, Salverda M, et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat Mater, 2018, 17, 1095 doi: 10.1038/s41563-018-0196-0
[130]
Künneth C, Materlik R, Kersch A. Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1– xZr xO2 grains. J Appl Phys, 2017, 121, 205304 doi: 10.1063/1.4983811
[131]
Dogan M, Gong N, Ma T P, et al. Causes of ferroelectricity in HfO2-based thin films: An ab initio perspective. Phys Chem Chem Phys, 2019, 21, 12150 doi: 10.1039/C9CP01880H
[132]
Batra R, Doan Huan T, Jones J L, et al. Factors favoring ferroelectricity in hafnia: A first-principles computational study. J Phys Chem C, 2017, 121, 4139 doi: 10.1021/acs.jpcc.6b11972
[133]
Garvie R C. The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem, 1965, 69, 1238 doi: 10.1021/j100888a024
[134]
Chen Q, Zhang Y K, Liu W Y, et al. Ferroelectric switching behavior of nanoscale Hf0.5Zr0.5O2 grains. Int J Mech Sci, 2021, 212, 106828 doi: 10.1016/j.ijmecsci.2021.106828
[135]
Wu J X, Mo F, Saraya T, et al. A first-principles study on ferroelectric phase formation of Si-doped HfO2 through nucleation and phase transition in thermal process. Appl Phys Lett, 2020, 117, 252904 doi: 10.1063/5.0035139
[136]
Lee H, Choe D H, Jo S, et al. Unveiling the origin of robust ferroelectricity in sub-2 nm hafnium zirconium oxide films. ACS Appl Mater Interfaces, 2021, 13, 36499 doi: 10.1021/acsami.1c08718
[137]
Liu S, Hanrahan B M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films. Phys Rev Materials, 2019, 3, 054404 doi: 10.1103/PhysRevMaterials.3.054404
[138]
Zhang Y K, Yang Q, Tao L L, et al. Effects of strain and film thickness on the stability of the rhombohedral phase of HfO2. Phys Rev Applied, 2020, 14, 014068 doi: 10.1103/PhysRevApplied.14.014068
[139]
Qi Y B, Singh S, Lau C, et al. Stabilization of competing ferroelectric phases of HfO2 under epitaxial strain. Phys Rev Lett, 2020, 125, 257603 doi: 10.1103/PhysRevLett.125.257603
[140]
Delodovici F, Barone P, Picozzi S. Trilinear-coupling-driven ferroelectricity in HfO2. Phys Rev Materials, 2021, 5, 064405 doi: 10.1103/PhysRevMaterials.5.064405
[141]
Qi Y, Rabe K M. Phase competition in HfO2 with applied electric field from first principles. Phys Rev B, 2020, 102, 214108 doi: 10.1103/PhysRevB.102.214108
[142]
Fan P, Zhang Y K, Yang Q, et al. Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics. J Phys Chem C, 2019, 123, 21743 doi: 10.1021/acs.jpcc.9b04106
[143]
Huang F, Chen X, Liang X, et al. Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition. Phys Chem Chem Phys, 2017, 19, 3486 doi: 10.1039/C6CP07501K
[144]
Yuan P, Mao G Q, Cheng Y, et al. Microscopic mechanism of imprint in hafnium oxide-based ferroelectrics. Nano Res, 2022, 15, 3667 doi: 10.1007/s12274-021-4047-y
[145]
Fengler F P G, Hoffmann M, Slesazeck S, et al. On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2. J Appl Phys, 2018, 123, 204101 doi: 10.1063/1.5026424
[146]
Dan D C, Magyari-Köpe B, Nishi Y. Properties of dopants in HfOx for improving the performance of nonvolatile memory. Phys Rev Appl, 2017, 7, 034020 doi: 10.1103/PhysRevApplied.7.034020
[147]
Falkowski M, Kersch A. Optimizing the piezoelectric strain in ZrO2- and HfO2-based incipient ferroelectrics for thin-film applications: An ab initio dopant screening study. ACS Appl Mater Interfaces, 2020, 12, 32915 doi: 10.1021/acsami.0c08310
[148]
Lee C K, Cho E, Lee H S, et al. First-principles study on doping and phase stability of HfO2. Phys Rev B, 2008, 78, 012102 doi: 10.1103/PhysRevB.78.012102
[149]
Künneth C, Materlik R, Falkowski M, et al. Impact of four-valent doping on the crystallographic phase formation for ferroelectric HfO2 from first-principles: Implications for ferroelectric memory and energy-related applications. ACS Appl Nano Mater, 2018, 1, 254 doi: 10.1021/acsanm.7b00124
[150]
Materlik R, Künneth C, Falkowski M, et al. Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: A first principles study. J Appl Phys, 2018, 123, 164101 doi: 10.1063/1.5021746
[151]
Materlik R. Stabilization of ferroelectricity in Hafnia, zirconia and their mixtures by dopants and interface energy: First principles calculations and a phenomenological model. Technische Universit ä t Dresden, 2019
[152]
Fischer D, Kersch A. The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles. Appl Phys Lett, 2008, 92, 012908 doi: 10.1063/1.2828696
[153]
Yang H, Lee H J, Jo J, et al. Role of Si doping in reducing coercive fields for ferroelectric switching in HfO2. Phys Rev Appl, 2020, 14, 064012 doi: 10.1103/PhysRevApplied.14.064012
[154]
Falkowski M, Künneth C, Materlik R, et al. Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations. Npj Comput Mater, 2018, 4, 73 doi: 10.1038/s41524-018-0133-4
[155]
Materlik R, Künneth C, Mikolajick T, et al. The impact of charge compensated and uncompensated strontium defects on the stabilization of the ferroelectric phase in HfO2. Appl Phys Lett, 2017, 111, 082902 doi: 10.1063/1.4993110
[156]
Foster A S, Sulimov V B, Lopez Gejo F, et al. Structure and electrical levels of point defects in monoclinic zirconia. Phys Rev B, 2001, 64, 224108 doi: 10.1103/PhysRevB.64.224108
[157]
Foster A S, Lopez Gejo F, Shluger A L, et al. Vacancy and interstitial defects in hafnia. Phys Rev B, 2002, 65, 174117 doi: 10.1103/PhysRevB.65.174117
[158]
Zheng J X, Ceder G, Maxisch T, et al. First-principles study of native point defects in hafnia and zirconia. Phys Rev B, 2007, 75, 104112 doi: 10.1103/PhysRevB.75.104112
[159]
Zhang H W, Gao B, Yu S M, et al. Effects of ionic doping on the behaviors of oxygen vacancies in HfO2 and ZrO2: A first principles study. 2009 International Conference on Simulation of Semiconductor Processes and Devices, 2009, 1 doi: 10.1109/SISPAD.2009.5290225
[160]
Hao Zhou, Xiaodi Wei, Wei Wei. On the origin of enhanced resistive switching behaviors of Ti-doped HfO2 film with nitrogen annealing atmosphere. Surf Coat Technol, 2019, 359, 150 doi: 10.1016/j.surfcoat.2018.12.042
[161]
He R, Wu H Y, Liu S, et al. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. Phys Rev B, 2021, 104, L180102 doi: 10.1103/PhysRevB.104.L180102
[162]
Clima S, McMitchell S R C, Florent K, et al. First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf1- xZr xO2 for FEFET applications. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 16.5.1 doi: 10.1109/IEDM.2018.8614552
[163]
Lee K, Park K, Lee H J, et al. Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency. Sci Rep, 2021, 11, 6290 doi: 10.1038/s41598-021-85773-7
[164]
Capron N, Broqvist P, Pasquarello A. Migration of oxygen vacancy in HfO2 and across the HfO2∕SiO2 interface: A first-principles investigation. Appl Phys Lett, 2007, 91, 192905 doi: 10.1063/1.2807282
[165]
Kim B, Hochella M F Jr. Analytical transmission electron microscopy and scanning transmission electron microscopy techniques for the characterization of nanomaterial composition, phase and crystallinity. Characterization of Nanomaterials in Complex Environmental and Biological Media. Amsterdam: Elsevier, 2015, 123
[166]
Wang R, Wang C, Zhang H, et al. Progress in nanoscale characterization and manipulation. Springer, 2018
[167]
Transmission/Scanning Transmission Electron Microscopy. https://www.nrel.gov/materials-science/transmission-microscopy.html
[168]
Comparison between HRTEM and HAADF-STEM (Z contrast). https://www.microscopy.ethz.ch/TEM-STEM.htm
[169]
Pennycook S J, Nellist P D. Scanning transmission electron microscopy: imaging and analysis. Springer Science & Business Media, 2011
[170]
[171]
O’Connor É, Halter M, Eltes F, et al. Stabilization of ferroelectric Hf xZr1− xO2 films using a millisecond flash lamp annealing technique. APL Mater, 2018, 6, 121103 doi: 10.1063/1.5060676
[172]
Yadav M, Kashir A, Oh S, et al. High polarization and wake-up free ferroelectric characteristics in ultrathin Hf0.5Zr0.5O2 devices by control of oxygen-deficient layer. Nanotechnology, 2021, 33, 085206 doi: 10.1088/1361-6528/ac3a38
[173]
Bouaziz J, Rojo Romeo P, Baboux N, et al. Dramatic impact of pressure and annealing temperature on the properties of sputtered ferroelectric HZO layers. APL Mater, 2019, 7, 081109 doi: 10.1063/1.5110894
[174]
Li T, Ye M, Sun Z Z, et al. Origin of ferroelectricity in epitaxial Si-doped HfO2 films. ACS Appl Mater Interfaces, 2019, 11, 4139 doi: 10.1021/acsami.8b19558
[175]
Zheng Y Z, Zhong C R, Zheng Y H, et al. In-situ atomic visualization of structural transformation in Hf0.5Zr0.5O2 ferroelectric thin film: From nonpolar tetragonal phase to polar orthorhombic phase. 2021 Symposium on VLSI Technology, 2021, 1
[176]
Park M H, Kim H J, Lee G, et al. A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl Phys Rev, 2019, 6, 041403 doi: 10.1063/1.5118737
[177]
Cheng Y, Gao Z M, Ye K H, et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat Commun, 2022, 13, 645 doi: 10.1038/s41467-022-28236-5
[178]
Sawyer C B, Tower C H. Rochelle salt as a dielectric. Phys Rev, 1930, 35, 269 doi: 10.1103/PhysRev.35.269
[179]
Diamant H, Drenck K, Pepinsky R. Bridge for accurate measurement of ferroelectric hysteresis. Rev Sci Instrum, 1957, 28, 30 doi: 10.1063/1.1715701
[180]
Tsui Y T, Hinderaker P D, McFadden F J. New ferroelectric hysteresis curve tracer featuring compensation and virtual sample grounding. Rev Sci Instrum, 1968, 39, 1423 doi: 10.1063/1.1683123
[181]
Si M W, Lyu X, Shrestha P R, et al. Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide. Appl Phys Lett, 2019, 115, 072107 doi: 10.1063/1.5098786
[182]
Mehmood F, Mikolajick T, Schroeder U. Wake-up mechanisms in ferroelectric lanthanum-doped Hf0.5Zr0.5O2 thin films. Phys Status Solidi A, 2020, 217, 2000281 doi: 10.1002/pssa.202000281
[183]
Chu F. A mathematical description of the switching behavior of ferroelectric thin films for FRAM applications. Integr Ferroelectr, 2002, 48, 255 doi: 10.1080/713718324
[184]
Garcia V, Bibes M. Ferroelectric tunnel junctions for information storage and processing. Nat Commun, 2014, 5, 4289 doi: 10.1038/ncomms5289
[185]
Luo Q, Cheng Y, Yang J, et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat Commun, 2020, 11, 1391 doi: 10.1038/s41467-020-15159-2
[186]
Apachitei G, Peters J J P, Sanchez A M, et al. Antiferroelectric tunnel junctions. Adv Electron Mater, 2017, 3, 1700126 doi: 10.1002/aelm.201700126
[187]
Goh Y, Hwang J, Jeon S. Excellent reliability and high-speed antiferroelectric HfZrO2 tunnel junction by a high-pressure annealing process and built-In bias engineering. ACS Appl Mater Interfaces, 2020, 12, 57539 doi: 10.1021/acsami.0c15091
[188]
Polakowski P, Müller J. Ferroelectricity in undoped hafnium oxide. Appl Phys Lett, 2015, 106, 232905 doi: 10.1063/1.4922272
[189]
Grimley E D, Schenk T, Sang X H, et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv Electron Mater, 2016, 2, 1600173 doi: 10.1002/aelm.201600173
[190]
Kim H J, Park M H, Kim Y J, et al. A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale, 2016, 8, 1383 doi: 10.1039/C5NR05339K
[191]
Lyu X, Si M, Sun X, et al. Ferroelectric and anti-ferroelectric hafnium zirconium oxide: Scaling limit, switching speed and record high polarization density. 2019 Symposium on VLSI Technology, 2019, T44 doi: 10.23919/VLSIT.2019.8776548
[192]
Kim S J, Mohan J, Summerfelt S R, et al. Ferroelectric Hf0. 5Zr0. 5O2 thin films: A review of recent advances. JOM, 2019, 71, 246 doi: 10.1007/s11837-018-3140-5
[193]
Fengler F P G, Pešić M, Starschich S, et al. Domain pinning: Comparison of hafnia and PZT based ferroelectrics. Adv Electron Mater, 2017, 3, 1600505 doi: 10.1002/aelm.201600505
[194]
Cima L, Laboure E, Muralt P. Characterization and model of ferroelectrics based on experimental Preisach density. Rev Sci Instrum, 2002, 73, 3546 doi: 10.1063/1.1505659
[195]
Bartic A T, Wouters D J, Maes H E, et al. Preisach model for the simulation of ferroelectric capacitors. J Appl Phys, 2001, 89, 3420 doi: 10.1063/1.1335639
[196]
Hoffmann M, Schenk T, Pešić M, et al. Insights into antiferroelectrics from first-order reversal curves. Appl Phys Lett, 2017, 111, 182902 doi: 10.1063/1.5003612
[197]
Allouche B, Hwang H J, Yoo T J, et al. A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film. Nanoscale, 2020, 12, 3894 doi: 10.1039/C9NR07293D
[198]
Schenk T, Hoffmann M, Ocker J, et al. Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl Mater Interfaces, 2015, 7, 20224 doi: 10.1021/acsami.5b05773
[199]
Jiang P F, Luo Q, Xu X X, et al. Wake-up effect in HfO2-based ferroelectric films. Adv Electron Mater, 2021, 7, 2000728 doi: 10.1002/aelm.202000728
[200]
Morozov M I, Damjanovic D. Hardening-softening transition in Fe-doped Pb(Zr, Ti)O3 ceramics and evolution of the third harmonic of the polarization response. J Appl Phys, 2008, 104, 034107 doi: 10.1063/1.2963704
[201]
Schenk T, Schroeder U, Pešić M, et al. Electric field cycling behavior of ferroelectric hafnium oxide. ACS Appl Mater Interfaces, 2014, 6, 19744 doi: 10.1021/am504837r
[202]
Schenk T, Yurchuk E, Mueller S, et al. About the deformation of ferroelectric hystereses. Appl Phys Rev, 2014, 1, 041103 doi: 10.1063/1.4902396
[203]
Rodriguez J, Remack K, Gertas J, et al. Reliability of Ferroelectric Random Access memory embedded within 130nm CMOS. 2010 IEEE International Reliability Physics Symposium, 2010, 750 doi: 10.1109/NVMT.2007.4389948
[204]
Mueller S, Muller J, Schroeder U, et al. Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications. IEEE Trans Device Mater Relib, 2013, 13, 93 doi: 10.1109/TDMR.2012.2216269
[205]
Yurchuk E, Mueller S, Martin D, et al. Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories. 2014 IEEE International Reliability Physics Symposium, 2014, 2E.5.1 doi: 10.1109/IRPS.2014.6860603
[206]
Yurchuk E, Muller J, Muller S, et al. Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories. IEEE Trans Electron Devices, 2016, 63, 3501 doi: 10.1109/TED.2016.2588439
[207]
Gong N B, Ma T P. A study of endurance issues in HfO2-based ferroelectric field effect transistors: Charge trapping and trap generation. IEEE Electron Device Lett, 2018, 39, 15 doi: 10.1109/LED.2017.2776263
[208]
Ni K, Sharma P, Zhang J C, et al. Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance. IEEE Trans Electron Devices, 2018, 65, 2461 doi: 10.1109/TED.2018.2829122
[209]
Alam M N K, Kaczer B, Ragnarsson L Å, et al. On the characterization and separation of trapping and ferroelectric behavior in HfZrO FET. IEEE J Electron Devices Soc, 2019, 7, 855 doi: 10.1109/JEDS.2019.2902953
[210]
Toprasertpong K, Takenaka M, Takagi S. Direct observation of interface charge behaviors in FeFET by quasi-static split C-V and hall techniques: Revealing FeFET operation. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 23.7.1 doi: 10.1109/IEDM19573.2019.8993664
[211]
Higashi Y, Ronchi N, Kaczer B, et al. Impact of charge trapping and depolarization on data retention using simultaneous P–V and I–V in HfO2-based ferroelectric FET. IEEE Trans Electron Devices, 2021, 68, 4391 doi: 10.1109/TED.2021.3096510
[212]
Li J K, Si M W, Qu Y M, et al. Quantitative characterization of ferroelectric/dielectric interface traps by pulse measurements. IEEE Trans Electron Devices, 2021, 68, 1214 doi: 10.1109/TED.2021.3053497
[213]
Tasneem N, Wang Z, Zhao Z J, et al. Trap capture and emission dynamics in ferroelectric field-effect transistors and their impact on device operation and reliability. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 6.1.1 doi: 10.1109/IEDM19574.2021.9720615
[214]
Ichihara R, Higashi Y, Suzuki K, et al. Accurate picture of cycling degradation in HfO2-FeFET based on charge trapping dynamics revealed by fast charge centroid analysis. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 6.3.1 doi: 10.1109/IEDM19574.2021.9720516
[215]
Martin D, Müller J, Schenk T, et al. Ferroelectricity in Si-doped HfO2 revealed: A binary lead-free ferroelectric. Adv Mater, 2014, 26, 8198 doi: 10.1002/adma.201403115
[216]
Buragohain P, Richter C, Schenk T, et al. Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors. Appl Phys Lett, 2018, 112, 222901 doi: 10.1063/1.5030562
[217]
Lim S Y, Park M S, Kim A, et al. Nonlinear domain wall velocity in ferroelectric Si-doped HfO2 thin film capacitors. Appl Phys Lett, 2021, 118, 102902 doi: 10.1063/5.0035753
[218]
Preisach F. Über Die magnetische nachwirkung. Z Physik, 1935, 94, 277 doi: 10.1007/BF01349418
[219]
Takcs J. The Everett integral and its analytical approximation. In: Advanced Magnetic Materials. InTech, 2012
[220]
Jiang B, Zurcher, Jones, et al. Computationally efficient ferroelectric capacitor model for circuit simulation. 1997 Symposium on VLSI Technology, 2002, 141 doi: 10.1109/VLSIT.1997.623738
[221]
Ni K, Jerry M, Smith J A, et al. A circuit compatible accurate compact model for ferroelectric-FETs. 2018 IEEE Symposium on VLSI Technology, 2018, 131 doi: 10.1109/VLSIT.2018.8510622
[222]
Liu Y S, Su P. Impact of trapped-charge variations on scaled ferroelectric FET nonvolatile memories. IEEE Trans Electron Devices, 2021, 68, 1639 doi: 10.1109/TED.2021.3061330
[223]
Zhou H, Ocker J, Pesic M, et al. Mechanism of retention degradation after endurance cycling of HfO2-based ferroelectric transistors. 2021 Symposium on VLSI Technology, 2021, 1
[224]
Chow J, Sheikholeslami A, Cross J S, et al. A voltage-dependent switching-time (VDST) model of ferroelectric capacitors for low-voltage FeRAM circuits. 2004 Symposium on VLSI Circuits. Digest of Technical Papers, 2004, 448 doi: 10.1109/VLSIC.2004.1346646
[225]
Merz W J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev, 1954, 95, 690 doi: 10.1103/PhysRev.95.690
[226]
Merz W J. Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness. J Appl Phys, 1956, 27, 938 doi: 10.1063/1.1722518
[227]
Saha A K, Gupta S K. Modeling and comparative analysis of hysteretic ferroelectric and anti-ferroelectric FETs. 2018 76th Device Research Conference (DRC), 2018, 1
[228]
Ali T, Polakowski P, Büttner T, et al. Theory and experiment of antiferroelectric (AFE) Si-doped hafnium oxide (HSO) enhanced floating-gate memory. IEEE Trans Electron Devices, 2019, 66, 3356 doi: 10.1109/TED.2019.2921618
[229]
Gong N, Sun X, Jiang H, et al. Nucleation limited switching (NLS) model for HfO2-based metal-ferroelectric-metal (MFM) capacitors: Switching kinetics and retention characteristics. Appl Phys Lett, 2018, 112, 262903 doi: 10.1063/1.5010207
[230]
Alessandri C, Pandey P, Abusleme A, et al. Switching dynamics of ferroelectric Zr-doped HfO2. IEEE Electron Device Lett, 2018, 39, 1780 doi: 10.1109/LED.2018.2872124
[231]
Alessandri C, Pandey P, Abusleme A, et al. Monte Carlo simulation of switching dynamics in polycrystalline ferroelectric capacitors. IEEE Trans Electron Devices, 2019, 66, 3527 doi: 10.1109/TED.2019.2922268
[232]
Xiang Y, Bardon M G, Alam M N K, et al. Physical insights on steep slope FEFETs including nucleation-propagation and charge trapping. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 21.6.1 doi: 10.1109/IEDM19573.2019.8993492
[233]
Ni K, Chakraborty W, Smith J, et al. Fundamental understanding and control of device-to-device variation in deeply scaled ferroelectric FETs. 2019 Symposium on VLSI Technology, 2019, T40 doi: 10.23919/VLSIT.2019.8776497
[234]
Tagantsev A K, Stolichnov I, Setter N, et al. Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films. Phys Rev B, 2002, 66, 214109 doi: 10.1103/PhysRevB.66.214109
[235]
Alessandri C, Pandey P, Seabaugh A C. Experimentally validated, predictive Monte Carlo modeling of ferroelectric dynamics and variability. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 16.2.1 doi: 10.1109/IEDM.2018.8614607
[236]
Deng S, Yin G D, Chakraborty W, et al. A comprehensive model for ferroelectric FET capturing the key behaviors: Scalability, variation, stochasticity, and accumulation. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265014
[237]
Stolichnov I, Tagantsev A, Setter N, et al. Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films. Appl Phys Lett, 2003, 83, 3362 doi: 10.1063/1.1621730
[238]
Wei W, Zhang W Q, Tai L, et al. In-depth understanding of polarization switching kinetics in polycrystalline Hf0.5Zr0.5O2 ferroelectric thin film: A transition from NLS to KAI. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 19.1.1 doi: 10.1109/IEDM19574.2021.9720664
[239]
Chen Y C, Hsiang K Y, Tang Y T, et al. NLS based modeling and characterization of switching dynamics for antiferroelectric/ferroelectric hafnium zirconium oxides. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 15.4.1 doi: 10.1109/IEDM19574.2021.9720645
[240]
Stolichnov I, Tagantsev A K, Colla E, et al. Physical model of retention and temperature-dependent polarization reversal in ferroelectric films. J Appl Phys, 2005, 98, 084106 doi: 10.1063/1.2112174
[241]
Hoffmann M, Pešić M, Chatterjee K, et al. Direct observation of negative capacitance in polycrystalline ferroelectric HfO2. Adv Funct Mater, 2016, 26, 8643 doi: 10.1002/adfm.201602869
[242]
Chang P Y, Zhang Y Z, Du G, et al. Experiment and modeling of dynamical hysteresis in thin film ferroelectrics. Jpn J Appl Phys, 2020, 59, SGGA07 doi: 10.35848/1347-4065/ab6d80
[243]
Saha A K, Ni K, Dutta S, et al. Phase field modeling of domain dynamics and polarization accumulation in ferroelectric HZO. Appl Phys Lett, 2019, 114, 202903 doi: 10.1063/1.5092707
[244]
Saha A K, Si M, Ni K, et al. Ferroelectric thickness dependent domain interactions in FEFETs for memory and logic: A phase-field model based analysis. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 4.3.1 doi: 10.1109/IEDM13553.2020.9372099
[245]
Koduru R, Saha A K, Si M, et al. Variation and stochasticity in polycrystalline HZO based MFIM: Grain-growth coupled 3D phase field model based analysis. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 15.2.1 doi: 10.1109/IEDM19574.2021.9720564
[246]
Park H W, Roh J, Lee Y B, et al. Modeling of negative capacitance in ferroelectric thin films. Adv Mater, 2019, 31, e1805266 doi: 10.1002/adma.201805266
[247]
Chang P Y, Du G, Liu X Y. Design space for stabilized negative capacitance in HfO2 ferroelectric-dielectric stacks based on phase field simulation. Sci China Inf Sci, 2021, 64, 122402 doi: 10.1007/s11432-020-3005-8
[248]
Wang P N, Wang Z, Sun X Y, et al. Investigating ferroelectric minor loop dynamics and history effect—Part II: Physical modeling and impact on neural network training. IEEE Trans Electron Devices, 2020, 67, 3598 doi: 10.1109/TED.2020.3009956
[249]
Sun X Y, Wang P N, Ni K, et al. Exploiting hybrid precision for training and inference: A 2T-1FeFET based analog synaptic weight cell. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 3.1.1 doi: 10.1109/IEDM.2018.8614611
[250]
Ni K, Smith J A, Grisafe B, et al. SoC logic compatible multi-bit FeMFET weight cell for neuromorphic applications. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 13.2.1 doi: 10.1109/IEDM.2018.8614496
[251]
Breyer E T, Mulaosmanovic H, Trommer J, et al. Compact FeFET circuit building blocks for fast and efficient nonvolatile logic-in-memory. IEEE J Electron Devices Soc, 2020, 8, 748 doi: 10.1109/JEDS.2020.2987084
[252]
Zhang X Y, Liu R, Song T, et al. Re-FeMAT: A reconfigurable multifunctional FeFET-based memory architecture. IEEE Trans Comput Aided Des Integr Circuits Syst, 2022, 41, 5071 doi: 10.1109/TCAD.2021.3140194
[253]
Aziz A, Ghosh S, Datta S, et al. Physics-based circuit-compatible SPICE model for ferroelectric transistors. IEEE Electron Device Lett, 2016, 37, 805 doi: 10.1109/LED.2016.2558149
[254]
Chen J J, Jin C J, Yu X, et al. Impact of oxygen vacancy on ferroelectric characteristics and its implication for wake-up and fatigue of HfO2-based thin films. IEEE Trans Electron Devices, 2022, 69, 5297 doi: 10.1109/TED.2022.3190256
[255]
Xiang Y, Bardon M G, Kaczer B, et al. Implication of channel percolation in ferroelectric FETs for threshold voltage shift modeling. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 18.2.1 doi: 10.1109/IEDM13553.2020.9371907
[256]
Park H W, Lee J G, Hwang C S. Review of ferroelectric field-effect transistors for three-dimensional storage applications. Nano Sel, 2021, 2, 1187 doi: 10.1002/nano.202000281
[257]
Ichihara R, Suzuki K, Kusai H, et al. Re-examination of vth window and reliability in HfO2 FeFET based on the direct extraction of spontaneous polarization and trap charge during memory operation. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265055
[258]
Chatterjee K, Kim S, Karbasian G, et al. Self-aligned, gate last, FDSOI, ferroelectric gate memory device with 5.5-nm Hf0. 8Zr0. 2O2, high endurance and breakdown recovery. IEEE Electron Device Lett, 2017, 38, 1379 doi: 10.1109/LED.2017.2748992
[259]
Deng S, Zhao Z J, Kim Y S, et al. Unraveling the dynamics of charge trapping and de-trapping in ferroelectric FETs. IEEE Trans Electron Devices, 2022, 69, 1503 doi: 10.1109/TED.2022.3143485
[260]
Mulaosmanovic H, Muller F, Lederer M, et al. Interplay between switching and retention in HfO2-based ferroelectric FETs. IEEE Trans Electron Devices, 2020, 67, 3466 doi: 10.1109/TED.2020.3004033
[261]
Mulaosmanovic H, Breyer E T, Mikolajick T, et al. Ferroelectric FETs with 20-nm-thick HfO2 Layer for large memory window and high performance. IEEE Trans Electron Devices, 2019, 66, 3828 doi: 10.1109/TED.2019.2930749
[262]
Pesic M, Padovani A, Slcsazeck S, et al. Deconvoluting charge trapping and nucleation interplay in FeFETs: Kinetics and Reliability. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 25.1.1 doi: 10.1109/IEDM.2018.8614492
[263]
Deng S, Jiang Z H, Dutta S, et al. Examination of the interplay between polarization switching and charge trapping in ferroelectric FET. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 4.4.1 doi: 10.1109/IEDM13553.2020.9371999
[264]
Tan A J, Pešić M, Larcher L, et al. Hot electrons as the dominant source of degradation for sub-5nm HZO FeFETs. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265067
[265]
Ni K, Thomann S, Prakash O, et al. On the channel percolation in ferroelectric FET towards proper analog states engineering. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 15.3.1 doi: 10.1109/IEDM19574.2021.9720631
[266]
Ni K, Gupta A, Prakash O, et al. Impact of extrinsic variation sources on the device-to-device variation in ferroelectric FET. 2020 IEEE International Reliability Physics Symposium (IRPS), 2020, 1 doi: 10.1109/IRPS45951.2020.9128323
[267]
Choe G, Yu S M. Variability study of ferroelectric field-effect transistors towards 7nm technology node. IEEE J Electron Devices Soc, 2021, 9, 1131 doi: 10.1109/JEDS.2021.3100290
[268]
Liu Y S, Su P. Variability analysis for ferroelectric FET nonvolatile memories considering random ferroelectric-dielectric phase distribution. IEEE Electron Device Lett, 2020, 41, 369 doi: 10.1109/LED.2020.2967423
[269]
Choe G, Shim W, Wang P N, et al. Impact of random phase distribution in ferroelectric transistors-based 3-D NAND architecture on In-memory computing. IEEE Trans Electron Devices, 2021, 68, 2543 doi: 10.1109/TED.2021.3068086
[270]
Choe G, Lu A N, Yu S M. 3D AND-type ferroelectric transistors for compute-in-memory and the variability analysis. IEEE Electron Device Lett, 2022, 43, 304 doi: 10.1109/LED.2021.3139574
[271]
Pan X, Ma T P. Retention mechanism study of the ferroelectric field effect transistor. Appl Phys Lett, 2011, 99, 013505 doi: 10.1063/1.3609323
[272]
Gong N B, Ma T P. Why is FE–HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective. IEEE Electron Device Lett, 2016, 37, 1123 doi: 10.1109/LED.2016.2593627
[273]
Müller J, Yurchuk E, Schlösser T, et al. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. 2012 Symposium on VLSI Technology (VLSIT), 2012, 25 doi: 10.1109/VLSIT.2012.6242443
[274]
Zeng B J, Liao M, Peng Q X, et al. 2-bit/cell operation of Hf0. 5Zr0. 5O2 based FeFET memory devices for NAND applications. IEEE J Electron Devices Soc, 2019, 7, 551 doi: 10.1109/JEDS.2019.2913426
[275]
Ali T, Polakowski P, Riedel S, et al. High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty. IEEE Trans Electron Devices, 2018, 65, 3769 doi: 10.1109/TED.2018.2856818
[276]
Xiao W W, Liu C, Peng Y, et al. Memory window and endurance improvement of Hf0.5Zr0.5O2-based FeFETs with ZrO2 seed layers characterized by fast voltage pulse measurements. Nanoscale Res Lett, 2019, 14, 254 doi: 10.1186/s11671-019-3063-2
[277]
Wang Z, Islam M M, Wang P N, et al. Depolarization field induced instability of polarization states in HfO2 based ferroelectric FET. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 4.5.1 doi: 10.1109/IEDM13553.2020.9372098
[278]
Mo F, Xiang J W, Mei X R, et al. Critical role of GIDL current for erase operation in 3D vertical FeFET and compact long-term FeFET retention model. 2021 Symposium on VLSI Technology, 2021, 1
[279]
Higashi Y, Ronchi N, Kaczer B, et al. Impact of Charge trapping on Imprint and its Recovery in HfO2 based FeFET. 2019 IEEE International Electron Devices Meeting (IEDM), 2019, 15.6.1 doi: 10.1109/IEDM19573.2019.8993472
[280]
Datta S. The non-equilibrium Green's function (NEGF) formalism: An elementary introduction. Digest. International Electron Devices Meeting, 2003, 703 doi: 10.1109/IEDM.2002.1175935
[281]
Mo F, Tagawa Y, Saraya T, et al. Scalability study on ferroelectric-HfO2 tunnel junction memory based on non-equilibrium green function method. 2019 19th Non-Volatile Memory Technology Symposium (NVMTS), 2020, 1 doi: 10.1109/IEDM.2018.8614702
[282]
Chang P Y, Du G, Kang J F, et al. Conduction mechanisms of metal-ferroelectric- insulator-semiconductor tunnel junction on N- and P-type semiconductor. IEEE Electron Device Lett, 2021, 42, 118 doi: 10.1109/LED.2020.3041515
[283]
Chang P Y, Du G, Kang J F, et al. Guidelines for ferroelectric-semiconductor tunnel junction optimization by band structure engineering. IEEE Trans Electron Devices, 2021, 68, 3526 doi: 10.1109/TED.2021.3079881
[284]
Pantel D, Alexe M. Electroresistance effects in ferroelectric tunnel barriers. Phys Rev B, 2010, 82, 134105 doi: 10.1103/PhysRevB.82.134105
[285]
Kobayashi M, Tagawa Y, Mo F, et al. Ferroelectric HfO2 tunnel junction memory with high TER and multi-level operation featuring metal replacement process. IEEE J Electron Devices Soc, 2018, 7, 134 doi: 10.1109/JEDS.2018.2885932
[286]
Deng S, Zhao Z J, Kurinec S, et al. Overview of ferroelectric memory devices and reliability aware design optimization. Proceedings of the 2021 on Great Lakes Symposium on VLSI, 2021, 473 doi: 10.1145/3453688.3461743
[287]
Song C M, Kwon H J. Ferroelectrics based on HfO2 film. Electronics, 2021, 10, 2759 doi: 10.3390/electronics10222759
[288]
Mikolajick T, Slesazeck S, Park M H, et al. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull, 2018, 43, 340 doi: 10.1557/mrs.2018.92
[289]
Francois T, Grenouillet L, Coignus J, et al. Demonstration of BEOL-compatible ferroelectric Hf0.5Zr0.5O2 scaled FeRAM co-integrated with 130nm CMOS for embedded NVM applications. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 15.7.1 doi: 10.1109/IEDM19573.2019.8993485
[290]
Okuno J, Kunihiro T, Konishi K, et al. SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf0.5Zr0.5O2. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265063
[291]
Okuno J, Kunihiro T, Konishi K, et al. 1T1C FeRAM memory array based on ferroelectric HZO with capacitor under bitline. IEEE J Electron Devices Soc, 2022, 10, 29 doi: 10.1109/JEDS.2021.3129279
[292]
Francois T, Coignus J, Makosiej A, et al. High-performance operation and solder reflow compatibility in BEOL-integrated 16-kb HfO2: Si-based 1T-1C FeRAM arrays. IEEE Trans Electron Devices, 2022, 69, 2108 doi: 10.1109/TED.2021.3138360
[293]
Polakowski P, Riedel S, Weinreich W, et al. Ferroelectric deep trench capacitors based on Al: HfO2 for 3D nonvolatile memory applications. 2014 IEEE 6th International Memory Workshop (IMW), 2014, 1 doi: 10.1109/IMW.2014.6849367
[294]
Sung M, Rho K, Kim J, et al. Low voltage and high speed 1Xnm 1T1C FE-RAM with ultra-thin 5nm HZO. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 33.3.1 doi: 10.1109/IEDM19574.2021.9720545
[295]
Müller J, Böscke T S, Müller S, et al. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. 2013 IEEE International Electron Devices Meeting, 2014, 10.8.1 doi: 10.1109/IEDM.2013.6724605
[296]
Yoo H K, Kim J S, Zhu Z, et al. Engineering of ferroelectric switching speed in Si doped HfO2 for high-speed 1T-FERAM application. 2017 IEEE International Electron Devices Meeting (IEDM), 2018, 19.6.1 doi: 10.1109/IEDM.2017.8268424
[297]
Peng Y, Xiao W W, Liu Y, et al. HfO2-ZrO2 superlattice ferroelectric capacitor with improved endurance performance and higher fatigue recovery capability. IEEE Electron Device Lett, 2022, 43, 216 doi: 10.1109/LED.2021.3135961
[298]
Lue H T, Wu C J, Tseng T Y. Device modeling of ferroelectric memory field-effect transistor for the application of ferroelectric random access memory. IEEE Trans Ultrason Ferroelectr Freq Control, 2003, 50, 5 doi: 10.1109/TUFFC.2003.1176521
[299]
Mulaosmanovic H, Breyer E T, Dünkel S, et al. Ferroelectric field-effect transistors based on HfO2: A review. Nanotechnology, 2021, 32, 502002 doi: 10.1088/1361-6528/ac189f
[300]
Kim H J, Park M H, Kim Y J, et al. Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl Phys Lett, 2014, 105, 192903 doi: 10.1063/1.4902072
[301]
Liao C Y, Hsiang K Y, Hsieh F C, et al. Multibit ferroelectric FET based on nonidentical double HfZrO2 for high-density nonvolatile memory. IEEE Electron Device Lett, 2021, 42, 617 doi: 10.1109/LED.2021.3060589
[302]
Xiao W W, Liu C, Peng Y, et al. Performance improvement of Hf0.5Zr0.5O2-based ferroelectric-field-effect transistors with ZrO2 seed layers. IEEE Electron Device Lett, 2019, 40, 714 doi: 10.1109/LED.2019.2903641
[303]
Toprasertpong K, Lin Z Y, Lee T E, et al. Asymmetric polarization response of electrons and holes in Si FeFETs: Demonstration of absolute polarization hysteresis loop and inversion hole density over 2 × 1013 cm−2. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265015
[304]
Peng H K, Kao T H, Kao Y C, et al. Reduced asymmetric memory window between Si-based n- and p-FeFETs with scaled ferroelectric HfZrOₓ and AlON interfacial layer. IEEE Electron Device Lett, 2021, 42, 835 doi: 10.1109/LED.2021.3074434
[305]
Muller J, Polakowski P, Muller S, et al. High endurance strategies for hafnium oxide based ferroelectric field effect transistor. 2016 16th Non-Volatile Memory Technology Symposium (NVMTS), 2016, 1 doi: 10.1109/NVMTS.2016.7781517
[306]
Mulaosmanovic H, Breyer E T, Mikolajick T, et al. Recovery of cycling endurance failure in ferroelectric FETs by self-heating. IEEE Electron Device Lett, 2019, 40, 216 doi: 10.1109/LED.2018.2889412
[307]
Yoon S J, Min D H, Moon S E, et al. Improvement in long-term and high-temperature retention stability of ferroelectric field-effect memory transistors with metal–ferroelectric–metal–insulator–semiconductor gate-stacks using Al-doped HfO2 thin films. IEEE Trans Electron Devices, 2020, 67, 499 doi: 10.1109/TED.2019.2961117
[308]
Ali T, Seidel K, Kühnel K, et al. A novel dual ferroelectric layer based MFMFIS FeFET with optimal stack tuning toward low power and high-speed NVM for neuromorphic applications. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265111
[309]
Toprasertpong K, Tahara K, Fukui T, et al. Improved ferroelectric/semiconductor interface properties in Hf0.5Zr0.5O2 ferroelectric FETs by low-temperature annealing. IEEE Electron Device Lett, 2020, 41, 1588 doi: 10.1109/LED.2020.3019265
[310]
Zhuravlev M Y, Sabirianov R F, Jaswal S S, et al. Giant electroresistance in ferroelectric tunnel junctions. Phys Rev Lett, 2005, 94, 246802 doi: 10.1103/PhysRevLett.94.246802
[311]
Wang X R, Wang J L. Ferroelectric tunnel junctions with high tunnelling electroresistance. Nat Electron, 2020, 3, 440 doi: 10.1038/s41928-020-0463-3
[312]
Wen Z, Li C, Wu D, et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater, 2013, 12, 617 doi: 10.1038/nmat3649
[313]
Max B, Hoffmann M, Slesazeck S, et al. Direct correlation of ferroelectric properties and memory characteristics in ferroelectric tunnel junctions. IEEE J Electron Devices Soc, 2019, 7, 1175 doi: 10.1109/JEDS.2019.2932138
[314]
Tian X, Shibayama S, Nishimura T, et al. Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm. Appl Phys Lett, 2018, 112, 102902 doi: 10.1063/1.5017094
[315]
Abuwasib M, Lu H D, Li T, et al. Scaling of electroresistance effect in fully integrated ferroelectric tunnel junctions. Appl Phys Lett, 2016, 108, 152904 doi: 10.1063/1.4947020
[316]
Sun P, Wu Y Z, Cai T Y, et al. Effects of ferroelectric dead layer on the electron transport in ferroelectric tunneling junctions. Appl Phys Lett, 2011, 99, 052901 doi: 10.1063/1.3619841
[317]
Chanthbouala A, Crassous A, Garcia V, et al. Solid-state memories based on ferroelectric tunnel junctions. Nat Nanotechnol, 2011, 7, 101 doi: 10.1038/nnano.2011.213
[318]
Huang H H, Wu T Y, Chu Y H, et al. A comprehensive modeling framework for ferroelectric tunnel junctions. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 32.2.1 doi: 10.1109/IEDM19573.2019.8993592
[319]
Chouprik A, Chernikova A, Markeev A, et al. Electron transport across ultrathin ferroelectric Hf0.5Zr0.5O2 films on Si. Microelectron Eng, 2017, 178, 250 doi: 10.1016/j.mee.2017.05.028
[320]
Mikheev V, Chouprik A, Lebedinskii Y, et al. Memristor with a ferroelectric HfO2 layer: In which case it is a ferroelectric tunnel junction. Nanotechnology, 2020, 31, 215205 doi: 10.1088/1361-6528/ab746d
[321]
Max B, Mikolajick T, Hoffmann M, et al. Retention characteristics of Hf0.5Zr0.5O2-based ferroelectric tunnel junctions. 2019 IEEE 11th International Memory Workshop (IMW), 2019, 1 doi: 10.1109/IMW.2019.8739765
[322]
Ali T, Sünbül A, Mertens K, et al. Impact of the Ferroelectric and Interface Layer Optimization in an MFIS HZO based Ferroelectric Tunnel Junction for Neuromorphic based Synaptic Storage. 2021 Silicon Nanoelectronics Workshop (SNW), 2021, 1
[323]
Kuo Y S, Lee S Y, Lee C C, et al. CMOS-compatible fabrication of low-power ferroelectric tunnel junction for neural network applications. IEEE Trans Electron Devices, 2021, 68, 879 doi: 10.1109/TED.2020.3045955
[324]
Yamaguchi M, Fujii S, Kamimuta Y, et al. Impact of specific failure mechanisms on endurance improvement for HfO2-based ferroelectric tunnel junction memory. 2018 IEEE International Reliability Physics Symposium (IRPS), 2018, 6D.2 doi: 10.1109/IRPS.2018.8353633
[325]
Chen Y F, Hsu L W, Hu C W, et al. Enhanced tunneling electro-resistance ratio for ferroelectric tunnel junctions by engineering metal work function. IEEE Electron Device Lett, 2022, 43, 208 doi: 10.1109/LED.2021.3133577
[326]
Yamaguchi M, Fujii S, Ota K, et al. Breakdown lifetime analysis of HfO2-based ferroelectric tunnel junction (FTJ) memory for In-memory reinforcement learning. 2020 IEEE International Reliability Physics Symposium (IRPS), 2020, 1 doi: 10.1109/IRPS45951.2020.9129314
[327]
Ni K, Smith J, Ye H C, et al. A novel ferroelectric superlattice based multi-level cell non-volatile memory. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 28.8.1 doi: 10.1109/IEDM19573.2019.8993670
[328]
Xu Y N, Yang Y, Zhao S J, et al. Improved multibit storage reliability by design of ferroelectric modulated antiferroelectric memory. IEEE Trans Electron Devices, 2022, 69, 2145 doi: 10.1109/TED.2021.3139054
[329]
Freitas R F, Wilcke W W. Storage-class memory: The next storage system technology. IBM J Res Dev, 2008, 52, 439 doi: 10.1147/rd.524.0439
[330]
Dünkel S, Trentzsch M, Richter R, et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond. 2017 IEEE International Electron Devices Meeting (IEDM), 2018, 19.7.1
[331]
Tan A J, Liao Y H, Wang L C, et al. Ferroelectric HfO2 memory transistors with high-κ interfacial layer and write endurance exceeding 1010 cycles. IEEE Electron Device Lett, 2021, 42, 994 doi: 10.1109/LED.2021.3083219
[332]
Mulaosmanovic H, Slesazeck S, Ocker J, et al. Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells. 2015 IEEE International Electron Devices Meeting (IEDM), 2016, 26.8.1 doi: 10.1109/IEDM.2015.7409777
[333]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521, 436 doi: 10.1038/nature14539
[334]
Yanming Guo, Yu Liu, Ard Oerlemans. Deep learning for visual understanding: A review. Neurocomputing, 2016, 187, 27 doi: 10.1016/j.neucom.2015.09.116
[335]
Tsai H, Ambrogio S, Narayanan P, et al. Recent progress in analog memory-based accelerators for deep learning. J Phys D, 2018, 51, 283001 doi: 10.1088/1361-6463/aac8a5
[336]
Kamimura K, Nohmi S, Suzuki K, et al. Parallel product-sum operation neuromorphic systems with 4-bit ferroelectric FET synapses. ESSDERC 2019-49th European Solid-State Device Research Conference (ESSDERC), 2019, 178
[337]
Long Y, Kim D, Lee E, et al. A ferroelectric FET-based processing-in-memory architecture for DNN acceleration. IEEE J Explor Solid State Comput Devices Circuits, 2019, 5, 113 doi: 10.1109/JXCDC.2019.2923745
[338]
Aabrar K A, Kirtania S G, Liang F X, et al. BEOL-compatible superlattice FEFET analog synapse with improved linearity and symmetry of weight update. IEEE Trans Electron Devices, 2022, 69, 2094 doi: 10.1109/TED.2022.3142239
[339]
Jerry M, Chen P Y, Zhang J C, et al. Ferroelectric FET analog synapse for acceleration of deep neural network training. 2017 IEEE International Electron Devices Meeting (IEDM), 2018, 6.2.1 doi: 10.1109/IEDM.2017.8268338
[340]
Long Y, Lee E, Kim D, et al. Flex-PIM: A ferroelectric FET based vector matrix multiplication engine with dynamical bitwidth and floating point precision. 2020 International Joint Conference on Neural Networks (IJCNN), 2020, 1 doi: 10.1109/IJCNN48605.2020.9206672
[341]
Luo Y D, Luc Y C, Yu S M. A FeRAM based volatile/non-volatile dual-mode buffer memory for deep neural network training. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021, 1871 doi: 10.23919/DATE51398.2021.9474180
[342]
Chen F. PUFFIN: an efficient DNN training accelerator for direct feedback alignment in FeFET. 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), 2021, 1 doi: 10.1109/ISLPED52811.2021.9502499
[343]
Mulaosmanovic H, Ocker J, Müller S, et al. Novel ferroelectric FET based synapse for neuromorphic systems. 2017 Symposium on VLSI Technology, 2017, T176 doi: 10.23919/VLSIT.2017.7998165
[344]
Mulaosmanovic H, Mikolajick T, Slesazeck S. Accumulative polarization reversal in nanoscale ferroelectric transistors. ACS Appl Mater Interfaces, 2018, 10, 23997 doi: 10.1021/acsami.8b08967
[345]
Mulaosmanovic H, Chicca E, Bertele M, et al. Mimicking biological neurons with a nanoscale ferroelectric transistor. Nanoscale, 2018, 10, 21755 doi: 10.1039/C8NR07135G
[346]
Chen C, Yang M, Liu S, et al. Bio-inspired neurons based on novel leaky-FeFET with ultra-low hardware cost and advanced functionality for all-ferroelectric neural network. 2019 Symposium on VLSI Technology, 2019, T136 doi: 10.23919/VLSIT.2019.8776495
[347]
Dutta S, Schafer C, Gomez J, et al. Supervised learning in all FeFET-based spiking neural network: Opportunities and challenges. Front Neurosci, 2020, 14, 634 doi: 10.3389/fnins.2020.00634
[348]
Stone H S. A logic-in-memory computer. IEEE Trans Comput, 1970, C-19,73 doi: 10.1109/TC.1970.5008902
[349]
Ielmini D, Wong H S P. In-memory computing with resistive switching devices. Nat Electron, 2018, 1, 333 doi: 10.1038/s41928-018-0092-2
[350]
Huang P, Kang J F, Zhao Y D, et al. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits. Adv Mater, 2016, 28, 9758 doi: 10.1002/adma.201602418
[351]
Cassinerio M, Ciocchini N, Ielmini D. Logic computation in phase change materials by threshold and memory switching. Adv Mater, 2013, 25, 5975 doi: 10.1002/adma.201301940
[352]
Kang W, Zhang L Y, Klein J O, et al. Reconfigurable codesign of STT-MRAM under process variations in deeply scaled technology. IEEE Trans Electron Devices, 2015, 62, 1769 doi: 10.1109/TED.2015.2412960
[353]
Marchand C, O’Connor I, Cantan M, et al. FeFET based Logic-in-Memory: An overview. 2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2021, 1 doi: 10.1109/DTIS53253.2021.9505078
[354]
Horie S, Noda K, Yamada H, et al. Flexible programmable logic gate using organic ferroelectric multilayer. Appl Phys Lett, 2007, 91, 193506 doi: 10.1063/1.2805219
[355]
Kimura H, Hanyu T, Kameyama M, et al. Complementary ferroelectric-capacitor logic for low-power logic-in-memory VLSI. 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers, 2004, 160 doi: 10.1109/JSSC.2004.827802
[356]
Breyer E T, Mulaosmanovic H, Mikolajick T, et al. Reconfigurable NAND/NOR logic gates in 28 nm HKMG and 22 nm FD-SOI FeFET technology. 2017 IEEE International Electron Devices Meeting (IEDM), 2018, 28.5.1 doi: 10.1109/IEDM.2017.8268471
[357]
Breyer E T, Mulaosmanovic H, Slesazeck S, et al. Demonstration of versatile nonvolatile logic gates in 28nm HKMG FeFET technology. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, 1 doi: 10.1109/ISCAS.2018.8351408
[358]
Zhang Z H, Luo Y N, Cui Y, et al. A polarization-switching, charge-trapping, modulated arithmetic logic unit for In-memory computing based on ferroelectric fin field-effect transistors. ACS Appl Mater Interfaces, 2022, 14, 6967 doi: 10.1021/acsami.1c20189
[359]
Kim M, Lee K, Kim S, et al. Double-gated ferroelectric-gate field-effect-transistor for processing in memory. IEEE Electron Device Lett, 2021, 42, 1607 doi: 10.1109/LED.2021.3116797
[360]
Yin X Z, Niemier M, Hu X S. Design and benchmarking of ferroelectric FET based TCAM. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, 1444
[361]
Pagiamtzis K, Sheikholeslami A. Content-addressable memory (CAM) circuits and architectures: A tutorial and survey. IEEE J Solid State Circuits, 2006, 41, 712 doi: 10.1109/JSSC.2005.864128
[362]
Li J, Montoye R K, Ishii M, et al. 1 mb 0.41 µm² 2T-2R cell nonvolatile TCAM with two-bit encoding and clocked self-referenced sensing. IEEE J Solid State Circuits, 2014, 49, 896 doi: 10.1109/JSSC.2013.2292055
[363]
Yin X Z, Ni K, Reis D, et al. An ultra-dense 2FeFET TCAM design based on a multi-domain FeFET model. IEEE Trans Circuits Syst II, 2019, 66, 1577 doi: 10.1109/TCSII.2018.2889225
[364]
Li C, Müller F, Ali T, et al. A scalable design of multi-bit ferroelectric content addressable memory for data-centric computing. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 29.3.1 doi: 10.1109/IEDM13553.2020.9372119
[365]
Laguna A F, Yin X Z, Reis D, et al. Ferroelectric FET based In-memory computing for few-shot learning. Proceedings of the 2019 on Great Lakes Symposium on VLSI, 2019, 373 doi: 10.1145/3299874.3319450
[366]
Ni K, Yin X Z, Laguna A F, et al. Ferroelectric ternary content-addressable memory for one-shot learning. Nat Electron, 2019, 2, 521 doi: 10.1038/s41928-019-0321-3
[367]
Huang P, Han R Z, Kang J F. AI learns how to learn with TCAMs. Nat Electron, 2019, 2, 493 doi: 10.1038/s41928-019-0328-9
[368]
Zhou F C, Chai Y. Near-sensor and in-sensor computing. Nat Electron, 2020, 3, 664 doi: 10.1038/s41928-020-00501-9
[369]
Zambrano B, Strangio S, Rizzo T, et al. All-analog silicon integration of image sensor and neural computing engine for image classification. IEEE Access, 2022, 10, 94417 doi: 10.1109/ACCESS.2022.3203394
[370]
Meng J L, Wang T Y, Zhu H, et al. Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett, 2022, 22, 81 doi: 10.1021/acs.nanolett.1c03240
[371]
Cui B, Fan Z, Li W, et al. Ferroelectric photosensor network: An advanced hardware solution to real-time machine vision. Nat Commun, 2022, 13, 1707 doi: 10.1038/s41467-022-29364-8
[372]
Pintilie L, Vrejoiu I, Le Rhun G, et al. Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films. J Appl Phys, 2007, 101, 064109 doi: 10.1063/1.2560217
[373]
Choi T, Lee S, Choi Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324, 63 doi: 10.1126/science.1168636
Fig. 1.  (Color online) Ferroelectric behaviors of HfO2 systems with different dopants. (a) P–E and C–E loop of Zr:HfO2 with increasing concentration. Pr is enhanced until the atom ratio of Hf : Zr reaches 1 : 1. For higher doping concentration antiferroelectricity emerges. (b) Polarization and coercive field for La:HfO2 with increasing La doping. A larger doping window of 12 mol% is observed for La compared to Si, Al and Gd. (a) is reprinted with permission from Ref. [20], copyright 2012 American Chemical Society. (b) is reprinted with permission from Ref. [53], copyright 2018 American Chemical Society.

Fig. 2.  (Color online) 2Pr and o/t/m-phase fraction of (a) 5.5, (b) 10, (c) 17, (d) 25 nm HZO films annealing with different temperature. Pr is enhanced in the 400–600 °C section and the ratio of m-phase significantly increases with higher annealing temperature. Reprinted with permission from Ref. [37], copyright 2013 AIP Publishing LLC.

Fig. 3.  (a) P–V loops and (b) GIXRD patterns for Y:HfO2 undergoing 600 °C PMA and PDA process with different doping concentration. Y:HfO2 adopting PDA still shows stable Pr and considerable o-phase fraction with doping concentration from 3.6 mol% to 5.2 mol%. But Y:HfO2 after PMA shows a larger Pr at the same Y concentration level, which reaches 24 μC/cm2 at 5.2 mol%. Reprinted with permission from Ref. [58], copyright 2011 American Institute of Physics.

Fig. 4.  (Color online) (a) The experimental and (b) computed equilibrium phase diagrams of $ {\mathrm{H}\mathrm{f}\mathrm{O}}_{2} $. (c) The regimes in which the free energy difference between $ Pca{2}_{1} $ and $ Pmn{2}_{1} $ phases, and the equilibrium phases are small (i.e., $ < {k}_{\mathrm{B}}T/5 $). (d–h) The schematic structures of m, t, oI, oII, oIII phases of $ {\mathrm{H}\mathrm{f}\mathrm{O}}_{2} $ respectively. (a) is reprinted with permission from Ref. [124], copyright 2023 The American Ceramic Society. (b) and (c) are reprinted with permission from Ref. [14], copyright 2014 American Physical Society.

Fig. 5.  (Color online) Thin film energies, computed via the energy model considering the interfacial energies and bulk energies, as a function of film thickness for $ \mathrm{I}\mathrm{r}/{\mathrm{H}\mathrm{f}\mathrm{O}}_{2}/\mathrm{I}\mathrm{r} $ stacks. The bulk energy of m phase is set as the zero point of bulk energies. Reprinted with permission from Ref. [131], copyright 2019 Royal Society of Chemistry.

Fig. 6.  (Color online) The computed phase diagram of $ {\mathrm{H}\mathrm{f}\mathrm{O}}_{2} $ under the influence of electric field and in-plane stress. The red, yellow, and green colors respectively mark the regions where the m, the oI, and the oIII phase are the equilibrium state. Reprinted with permission from Ref. [132], copyright 2017 American Chemical Society.

Fig. 7.  (Color online) Formation energy of various dopants. The dopant above the red line tends to form a substitutional defect, while the dopant below the red line tends to form an interstitial defect. The red line should be located at $ {E}_{\text{form}}^{\text{rel}}=0 $, but Falkowski et al. set it to 8.5 eV to compensate DFT (density functional theory) error and match experimental findings. Reprinted with permission from Ref. [147], copyright 2017 American Chemical Society.

Fig. 8.  (Color online) (a, b) Oxygen-deficient polar orthorhombic phase with different polarization orientation. (c) Total energy of the o (oI), f (oIII) and t phase relative to the m phase at different vacancy concentrations. (d) Polarization and switching barrier of the f (oIII) phase at different vacancy concentrations. Reprinted with permission from Ref. [105], copyright 2019 Elsevier B.V.

Fig. 9.  (Color online) Oxygen vacancy induced polarization and the ferroelectric switching process. Reprinted with permission from Ref. [36], copyright 2018 IEEE.

Fig. 10.  (Color online) Phase diagram of $ {\mathrm{H}\mathrm{f}\mathrm{O}}_{1.75} $. Reprinted with permission from Ref. [17], copyright 2021 American Physical Society.

Fig. 11.  (Color online) Transition barrier of M–O transition (black curve, corresponds to NEB image 10–20), M1 phase switching (black curve, corresponds to NEB image 0–10) and O phase switching (red curve). Blue curve is the M–O transition in stoichiometric $ {\mathrm{H}\mathrm{f}\mathrm{O}}_{2} $. Reprinted with permission from Ref. [17], copyright 2021 American Physical Society.

Fig. 12.  (Color online) (a) HAADF-STEM of a pristine Gd:HfO2 grain with O and M regions separated by boundaries indicated by white arrows. (c) Magnified view of the O1/O2 boundary from (a), with (d). (b, e) Magnified regions from (a) where planes are indicated with lines and the polar direction by arrows. (f) Experiment and simulated PACBED patterns corresponding to O1 and O2 regions. Reprinted with permission from Ref. [26], copyright 2018 John Wiley & Sons, Inc.

Fig. 13.  (Color online) The direct observation of oxygen atoms of single orthorhombic (O-) phase grain in TiN/Hf0.5Zr0.5O2 (HZO, 15 nm)/TiN device. HAADF- and ABF-STEM images of single O-phase grain (a, b) in pristine, (d, e) after wake-up process, and (f–h) after fatigue process. (c) The atomic models of the Pbc21 and Pbca phases along [010] direction. Reprinted with permission from REF. [177], copyright 2022 Springer Nature Limited.

Fig. 14.  (Color online) (a) Sawyer-Tower circuit. (b) A circuit for transient I–V measurement. (c) A typical P–V loop of ferroelectric capacitor. (d) A typical transient response of ferroelectric capacitor under triangle wave.

Fig. 15.  (Color online) (a) Typical I–V–t graph of PUND test: the applied voltage waveform (black line) and the corresponding transient current response (red line). (b) The P–V loop of a HZO ferroelectric capacitor obtained from PUND measurement.

Fig. 16.  P–E and C–E curves of (a, b) ferroelectrics and (c, d) anti-ferroelectrics

Fig. 17.  (a) First order reversal curve (FORC) test waveform, (b) FORC I–V plot, (c) FORC PV loop, and (d) the extracted Preisach density. Reprinted with permission from Ref. [198], copyright 2015 American Chemical Society.

Fig. 18.  (Color online) 4-cap retention test. Reprinted with permission from Ref. [204], copyright 2013 IEEE.

Fig. 19.  (Color online) Minor loops are simulated by a linear scaling from the saturated polarization-voltage hysteresis loop. ↑/↓ indicates forward/reverse branch respectively. The switching dynamics are captured using a RC delay. Reprinted with permission from Ref. [221], copyright 2018 IEEE.

Fig. 20.  (Color online) (a) P–E characteristics in the FE-HfO2-based MFIM structure with ferroelectric thickness of 30 nm and dielectric thickness of 5 nm. (b) Voltages, (c) electric fields, and (d) polarization charges as a function of time operated by triangular voltage waveform at frequency of 1 MHz. (e) Polarization domain patterns during the polarization switching corresponding to the stages label in (d). Reprinted with permission from Ref. [247], copyright 2021 Science China Press.

Fig. 21.  (Color online) Simulated wake-up of the device: (a) vacancy diffusion and (b) corresponding electric field evolution within the device with the field cycling of the FeCap in three different points in time at 4 MV/cm external applied field. (c) Resulting I–V and P–V characteristics obtained by removing the charges from the interface and changing the k-value of the grains undergoing the phase transformation. Reprinted with permission from Ref. [104], copyright 2016 John Wiley & Sons, Inc.

Fig. 22.  (Color online) (a) Simulated evolution of remanent polarization during the electric cycles. (b) Simulated VO distribution at different device states corresponding to the points in (a). Reprinted with permission from Ref. [36], copyright 2018 IEEE.

Fig. 23.  (Color online) Whether percolation exists (a) or not (b) impacts the Vth states. (c) Summary of percolation in FeFET. Reprinted with permission from Ref. [265], copyright 2021 IEEE.

Fig. 24.  (Color online) (a) 3D Al:HfO2 trench capacitor with trench number up to 105 and aspect ratio of 13 : 1. Measured Pr of 12 nm Al:HfO2 with 100k trenches is 150 μC/cm2. (b) 1T1C FeRAM using 1X nm node DRAM technology. At lower pulse amplitude (0.6 V) the operation of FeRAM with 5 nm HZO is possible with 2Pr of 5 μC/cm2. (a) is reprinted with permission from Ref. [293], copyright 2014 IEEE. (b) is reprinted with permission from Ref. [294], copyright 2021 IEEE.

Fig. 25.  (Color online) (a) Band diagram of metal/FE-HfO2/SiO2/Si FTJs, where the total tunneling current consists of tunneling current from the CBE (JCBE), VBE (JVBE) and VBH (JVBH). (b) and (c) Comparison of the calculated and measured read current of FTJ based on MFIS(n+) and MFIS(p+). (d) and (e) Corresponding contributions of JCBE, JVBE and JVBH to the total current. Reprinted with permission from Ref. [282], copyright 2020 IEEE.

Fig. 26.  (Color online) Band diagrams of (a–d) n-type and (e–h) p-type MFIS-FTJ with various metal work function ΦM and remnant polarization Pr at read voltage of |Vread| = 0.2 V. According to the overlap between metal Fermi level Efm and surface energy level of minority band in the semiconductor (Evs in n-type device and Ecs in p-type device), the carrier transport can be respectively classified in to different conduction modes (I-IV). They are differentiated from the tunneling transmission of minority carriers, as represented by the shadow region of (d) and (h). Reprinted with permission from Ref. [283], copyright 2021 IEEE.

Fig. 27.  (Color online) The storage class memory among the memory pyramid hierarchy. 1T1C FeRAM, 1T FeFET and 3D FeFET are located at M-SCM and S-SCM separately.

Fig. 28.  (Color online) Ferroelectric based deep learning accelerator. (a) The partial polarization switching behavior in FeFET. (b) Symmetric analog weight modulation schemes. (c) VMM engines in analog and digital modes. (d) The macro circuits for the deep learning accelerator. (a) and (b) are reprinted with permission from Ref. [339], copyright 2017 IEEE. (c) and (d) are reprinted with permission from Ref. [340].

Fig. 29.  (Color online) Logic gates based on the ferroelectric-capacitor. (a) Logic operation principle of single devices. (b) Circuit diagram of complementary ferroelectric-capacitor logic gate. (c) Measured results of complementary ferroelectric-capacitor logic gate. (a) is reprinted with permission from Ref. [354], copyright 2007 American Institute of Physics. (b) and (c) are reprinted with permission from Ref. [355], copyright 2004 IEEE.

Fig. 30.  (Color online) Logic gates-based FeFET. (a) Logic operation principle based on single FeFET devices. (b) Circuit diagram of the FeFET based logic gate and the measured results of NOR logic operation. (c) Circuit diagram of XOR and XNOR gates. (d) The full adder based 2T-FeFET array. (a) and (b) are reprinted with permission from Ref. [356], copyright 2017 IEEE. (d) is reprinted with permission from Ref. [251].

Fig. 31.  (Color online) FeFET based TCAM. (a) The architecture of a TCAM array. (b) The multi-bit FeFET CAM. (b) is reprinted with permission from Ref. [364], copyright 2020 IEEE.

Table 1.   Ferroelectric HfO2 with different fabrication conditions.

Stack (TE/FE/BE)Dop.%Thickness
(nm)
Deposition technologyThermal
process
Pr
(μC/cm2)
Ec(+/–)
(MV/cm)
Ref.
TiN/Si:HfO2/TiN3.8 mol%8.5ALD1000 °C/20 s>101[1]
TiN/Si:HfO2/TiN3.8 mol%10ALD650 °C/N2151[43]
TiN/Si:HfO2/TiN2.7 cat%10TALD650 °C/20 s18.8~1[44]
TiN/Si:HfO2/TiN1 mol%10ALDNLA 100 pulses/
0.4 J/cm2
19 (2Pr)1.5[45]
TiN/Zr:HfO2/TiN50 at%7.5/9.5ALD450 °C161[47]
TiN/Zr:HfO2/TiN50 at%9ALD500 °C171[20]
TiN/Zr:HfO2/SiOx/n+Si50 at%2.5ALD400 °C3.50.8V[40]
TiN/Zr:HfO2/TiN50 at%5/7/10/20ALD400 °C/60 s/N211.9/40.5/
50.9/32.1 (2Pr)
1[48]
TiN/Al:HfO2/TiN4.8 mol%16ALD1000 °C/20 s/N251[21]
TiN/Al:HfO2/TiN2.2 cat%10TALD650 °C/20 s16.5~1[44]
TiN/La:HfO2/TiN2.1 at%10PEALD650 °C/20 s34 (2Pr)1.3/–1.1[50]
TiN/La:HfO2/TiN1 mol%10PAALD400–500 °C~20 (2Pr)~1.4[51]
TiN/La:HfO2/TiN10 cat%14ALD800 °C/20 s27.71.2[53]
TiN/La:HfO2/TiN6.0 cat%10TALD650 °C/20 s23.6~1[44]
TiN/La:HfO2/TiN5.5 cat%10ALD650°C/20 s/N223~1.2[54]
Pt/La:HfO2/LSMO2 at%6.9PLDTs = 700 °C~30~3.5[56]
Pt/La:HfO2/LSMO5 at%8.5PLDTs = 800 °C~203[57]
TiN/Y:HfO2/TiN5.2 mol%10TALD650°C/20 s/N2241.2[58]
TiN/Y:HfO2/TiN0.9–1.9 mol%12Co-sputtering1000 °C/1 s/N212.51[59]
Pt/ Y:HfO2/Pt5.2 mol%35CSD700 °C/5 min/O2>132[60]
Au/Y:HfO2/n+Ge10 at%26Co-sputtering600 °C/30 s/N2102/–1[61]
TiN/Gd:HfO2/TiN2 mol%10ALD1000 °C/1 s121.75[62]
TaN/Gd:HfO2/TiN3.4 cat%10TALD650 °C/20 s/N230~2[18]
TiN/Ca:HfO2/p+Si4.8 mol%35CSD700 °C/30 s/N210.52[63]
Pt/Ba:HfO2/Pt7.5 mol%42CSD800 °C/90 s
Ar : O2 = 1 : 1
121.5[64]
Pt/Fe:HfO2/ITO6 at%20Ion beam
sputtering
900 °C/10 min/N28.8~2[65]
TiN/N:HfO2/p+Ge0.51%28RF sputtering600 °C102[66]
TiN/HfO2/TiN20RF sputtering500 °C/30 s/N2~2.52[67]
TiN/HfO2/TiN136CSD700 °C/60 s/O222.56[68]
Pt/Zr:HfO2/TiN50 at%10ALD500 °C/30 s/N225 (2Pr)~1.5[79]
Pt/TiN/Zr:HfO2/TiN50 at%10ALD600 °C/30 s/
forming gas
34.1 (2Pr)~1.5[79]
TaN/Si:HfO2/TiN1.2 mol%10PEALD800 °C/20 s/N2101.4[90]
W/Zr:HfO2/TiN50 at%10ALD500 °C/30 s/N238.7 (2Pr)1.18/–0.82[29]
Au/Zr:HfO2/TiN50 at%10ALD500 °C/30 s/N222.8 (2Pr)1.36/–0.64[29]
W/Al:HfO2/IL/p+Si1.03 wt%15ALD650 °C/30 s/N223 (2Pr)[92]
Pd/Ti/Al:HfO2/p+SiHf:Al cycle
ratio = 23 : 1
20ALD900–950 °C/
1–2 s/N2
20~3[93]
Ir/Si:HfO2/SiO2/p+Si5.65 mol%10ALD1000 °C/1 s/N222[94]
Pt/TiN/Zr:HfO2/Ir50 at%12.2ALD500 °C/30 s/N2>32 (2Pr)1[95]
Ni/Zr:HfO2/Ru/Si50 at%25ALD550 °C/30 s/N262.4[96]
DownLoad: CSV

Table 2.   Impact of substitutional dopant on the phase stability of $ {\mathrm{H}\mathrm{f}\mathrm{O}}_{2} $. “S” stands for “stabilization”, “D” stands for “destabilization”, and “–” means no data available. “Stabilization” means the relative energy between target phase and m phase lowers when dopant concentration increases. The dopant concentration falls in the range of 0%–6.25%.

ValenceDopantPhase
oIoIIItc
5PS[148]D[148]
4SiS[147, 149, 154]/D[135]S[135, 147, 149, 154]S[135, 147, 149, 154]D[148]
GeD[149]D[149]S[148, 149]D[148]
SnD[149]S[149]S[148, 149]D[148]
TiD[149]D[149]S[148, 149]D[148]
CS[149]D[149]D[149]
ZrS[149]S[149]S[149]
CeS[149]S[149]S[149]
3LaS[147, 150, 154]S[147, 150, 154]S[147, 150, 154]S[150]
YS[150]S[150]S[148, 150]S[148, 150]
AlS[150]S[150]S[148, 150]D[148, 150]
ScD[148]S[148]
GdS[148]S[148]
2SrS[151]S[151, 155]S[151, 155]D[151]
BaS[151]S[151]D[151]D[151]
CaS[151]S[151]S[151]D[151]
MgS[151]S[151]D[151]D[151]
BeS[43]S[43]S[43]D[43]
DownLoad: CSV

Table 3.   Selected formation energy of charged oxygen vacancies in m phase $ {\mathrm{H}\mathrm{f}\mathrm{O}}_{2} $ and $ {\mathrm{Z}\mathrm{r}\mathrm{O}}_{2} $ when Fermi level is at VBM. “M” stands for metal species ($ \mathrm{H}\mathrm{f} $ or $ \mathrm{Z}\mathrm{r} $). The system is under extreme reducing condition when ${\mu }_{\rm M}={\mu }_{\rm M}^{0}$, and is under extreme oxidation conditions when ${\mu }_{\rm O}={\mu }_{\rm O}^{0}$. There are two types of oxygen vacancies in m phase $ {\mathrm{H}\mathrm{f}\mathrm{O}}_{2} $: threefold-coordinated vacancy and fourfold-coordinated vacancy. The lowest vacancy energy is listed. Data comes from Ref. [158].

DefectCharge$ {E}_{\mathrm{F}} $ in $ {\mathrm{H}\mathrm{f}\mathrm{O}}_{2} $ (eV)$ {E}_{\mathrm{F}} $ in $ {\mathrm{Z}\mathrm{r}\mathrm{O}}_{2} $ (eV)
${\mu }_{\rm M}={\mu }_{\rm M}^{0}$${\mu }_{\rm O}={\mu }_{\rm O}^{0}$${\mu }_{\rm M}={\mu }_{\rm M}^{0}$${\mu }_{\rm O}={\mu }_{\rm O}^{0}$
$ {\mathrm{V}}_{\mathrm{O}} $00.986.630.826.15
+1–1.663.98–1.793.54
+2–4.830.81–4.790.54
$ {\mathrm{V}}_{\mathrm{M}} $017.015.7316.445.78
–116.975.6916.385.72
–216.995.7116.375.71
-317.075.7916.425.76
–417.265.9816.535.87
$ {\mathrm{O}}_{\mathrm{i}} $07.221.586.641.31
–19.043.408.523.19
–29.523.888.903.57
DownLoad: CSV

Table 4.   The basic functions of CTEM[167, 168].

DownLoad: CSV

Table 5.   Comparison of HAADF- and ABF-STEM techniques[167-169].

DownLoad: CSV
[1]
Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett, 2011, 99, 102903 doi: 10.1063/1.3634052
[2]
Cheema S S, Kwon D, Shanker N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 2020, 580, 478 doi: 10.1038/s41586-020-2208-x
[3]
Schroeder U, Park M H, Mikolajick T, et al. The fundamentals and applications of ferroelectric HfO2. Nat Rev Mater, 2022, 7, 653 doi: 10.1038/s41578-022-00431-2
[4]
Valasek J. Piezo-electric and allied phenomena in rochelle salt. Phys Rev, 1921, 17, 475 doi: 10.1103/PhysRev.17.475
[5]
Haertling G H. Ferroelectric ceramics: History and technology. J Am Ceram Soc, 1999, 82, 797 doi: 10.1111/j.1151-2916.1999.tb01840.x
[6]
Mikolajick T, Slesazeck S, Mulaosmanovic H, et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J Appl Phys, 2021, 129, 100901 doi: 10.1063/5.0037617
[7]
Slater J C. Theory of the transition in KH2PO4. J Chem Phys, 1941, 9, 16 doi: 10.1063/1.1750821
[8]
Cowley R A. Structural phase transitions I. Landau theory. Adv Phys, 1980, 29, 1 doi: 10.1080/00018738000101346
[9]
Vugmeister B E, Glinchuk M D. Dipole glass and ferroelectricity in random-site electric dipole systems. Rev Mod Phys, 1990, 62, 993 doi: 10.1103/RevModPhys.62.993
[10]
Sicron N, Ravel B, Yacoby Y, et al. Nature of the ferroelectric phase transition in PbTiO3. Phys Rev B Condens Matter, 1994, 50, 13168 doi: 10.1103/PhysRevB.50.13168
[11]
Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358, 136 doi: 10.1038/358136a0
[12]
Dawber M, Rabe K M, Scott J F. Physics of thin-film ferroelectric oxides. Rev Mod Phys, 2005, 77, 1083 doi: 10.1103/RevModPhys.77.1083
[13]
Martin L W, Rappe A M. Thin-film ferroelectric materials and their applications. Nat Rev Mater, 2017, 2, 16087 doi: 10.1038/natrevmats.2016.87
[14]
Doan Huan T, Sharma V, Rossetti G A, et al. Pathways towards ferroelectricity in hafnia. Phys Rev B, 2014, 90, 064111 doi: 10.1103/PhysRevB.90.064111
[15]
Materlik R, Künneth C, Kersch A. The origin of ferroelectricity in Hf1− xZr xO2: A computational investigation and a surface energy model. J Appl Phys, 2015, 117, 134109 doi: 10.1063/1.4916707
[16]
Sang X H, Grimley E D, Schenk T, et al. On the structural origins of ferroelectricity in HfO2 thin films. Appl Phys Lett, 2015, 106, 162905 doi: 10.1063/1.4919135
[17]
Rushchanskii K Z, Blügel S, Ležaić M. Ordering of oxygen vacancies and related ferroelectric properties in HfO2-δ. Phys Rev Lett, 2021, 127, 087602 doi: 10.1103/PhysRevLett.127.087602
[18]
Hoffmann M, Schroeder U, Schenk T, et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J Appl Phys, 2015, 118, 072006 doi: 10.1063/1.4927805
[19]
Lee H J, Lee M, Lee K, et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science, 2020, 369, 1343 doi: 10.1126/science.aba0067
[20]
Müller J, Böscke T S, Schröder U, et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett, 2012, 12, 4318 doi: 10.1021/nl302049k
[21]
Mueller S, Mueller J, Singh A, et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv Funct Mater, 2012, 22, 2412 doi: 10.1002/adfm.201103119
[22]
Xu X H, Huang F T, Qi Y B, et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat Mater, 2021, 20, 826 doi: 10.1038/s41563-020-00897-x
[23]
Mimura T, Shimizu T, Sakata O, et al. Large thermal hysteresis of ferroelectric transition in HfO2-based ferroelectric films. Appl Phys Lett, 2021, 118, 112903 doi: 10.1063/5.0040934
[24]
Schenk T, Fancher C M, Park M H, et al. On the origin of the large remanent polarization in La:HfO 2. Adv Electron Mater, 2019, 5, 1900303 doi: 10.1002/aelm.201900303
[25]
Schroeder U, Yurchuk E, Müller J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn J Appl Phys, 2014, 53, 08LE02 doi: 10.7567/JJAP.53.08LE02
[26]
Grimley E D, Schenk T, Mikolajick T, et al. Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv Mater Interfaces, 2018, 5, 1701258 doi: 10.1002/admi.201701258
[27]
Park M H, Lee Y H, Kim H J, et al. Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: A comparison of model and experiment. Nanoscale, 2017, 9, 9973 doi: 10.1039/C7NR02121F
[28]
Park M H, Kim H J, Kim Y J, et al. The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl Phys Lett, 2014, 104, 072901 doi: 10.1063/1.4866008
[29]
Cao R R, Wang Y, Zhao S J, et al. Effects of capping electrode on ferroelectric properties of Hf0.5Zr0.5O2 thin films. IEEE Electron Device Lett, 2018, 39, 1207 doi: 10.1109/LED.2018.2846570
[30]
Hamouda W, Pancotti A, Lubin C, et al. Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface. J Appl Phys, 2020, 127, 064105 doi: 10.1063/1.5128502
[31]
Starschich S, Menzel S, Böttger U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl Phys Lett, 2016, 108, 032903 doi: 10.1063/1.4940370
[32]
Liao P J, Chang Y K, Lee Y H, et al. Characterization of fatigue and its recovery behavior in ferroelectric HfZrO. 2021 Symposium on VLSI Technology, 2021, 1
[33]
Glinchuk M D, Morozovska A N, Lukowiak A, et al. Possible electrochemical origin of ferroelectricity in HfO2 thin films. J Alloys Compd, 2020, 830, 153628 doi: 10.1016/j.jallcom.2019.153628
[34]
Nukala P, Ahmadi M, Wei Y F, et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science, 2021, 372, 630 doi: 10.1126/science.abf3789
[35]
Kang S, Jang W S, Morozovska A N, et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment. Science, 2022, 376, 731 doi: 10.1126/science.abk3195
[36]
Liu C, Liu F, Luo Q, et al. Role of oxygen vacancies in electric field cycling behaviors of ferroelectric hafnium oxide. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 16.4.1 doi: 10.1109/IEDM.2018.8614540
[37]
Park M H, Kim H J, Kim Y J, et al. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl Phys Lett, 2013, 102, 242905 doi: 10.1063/1.4811483
[38]
Mimura T, Shimizu T, Uchida H, et al. Thickness-dependent crystal structure and electric properties of epitaxial ferroelectric Y2O3-HfO2 films. Appl Phys Lett, 2018, 113, 102901 doi: 10.1063/1.5040018
[39]
Park M H, Lee Y H, Kim H J, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater, 2015, 27, 1811 doi: 10.1002/adma.201404531
[40]
Chernikova A, Kozodaev M, Markeev A, et al. Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si. ACS Appl Mater Interfaces, 2016, 8, 7232 doi: 10.1021/acsami.5b11653
[41]
Luo Q, Gong T C, Cheng Y, et al. Hybrid 1T e-DRAM and e-NVM Realized in One 10 nm node Ferro FinFET device with Charge Trapping and Domain Switching Effects. 2018 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, 2019, 2.6.1 doi: 10.1109/IEDM.2018.8614650
[42]
Tomida K, Kita K, Toriumi A. Dielectric constant enhancement due to Si incorporation into HfO2. Appl Phys Lett, 2006, 89, 142902 doi: 10.1063/1.2355471
[43]
Mueller S, Summerfelt S R, Muller J, et al. Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors. IEEE Electron Device Lett, 2012, 33, 1300 doi: 10.1109/LED.2012.2204856
[44]
Mart C, Kühnel K, Kämpfe T, et al. Doping ferroelectric hafnium oxide by in situ precursor mixing. ACS Appl Electron Mater, 2019, 1, 2612 doi: 10.1021/acsaelm.9b00591
[45]
Grenouillet L, Francois T, Coignus J, et al. Nanosecond laser anneal (NLA) for Si-implanted HfO2 ferroelectric memories integrated in back-end of line (BEOL). 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265061
[46]
Francois T, Coignus J, Makosiej A, et al. 16kbit HfO2: Si-based 1T-1C FeRAM arrays demonstrating high performance operation and solder reflow compatibility. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 33.1.1 doi: 10.1109/IEDM19574.2021.9720640
[47]
Müller J, Böscke T S, Bräuhaus D, et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl Phys Lett, 2011, 99, 112901 doi: 10.1063/1.3636417
[48]
Kim S J, Mohan J, Lee J, et al. Effect of film thickness on the ferroelectric and dielectric properties of low-temperature (400 °C) Hf0.5Zr0.5O2 films. Appl Phys Lett, 2018, 112, 172902 doi: 10.1063/1.5026715
[49]
Park M H, Chung C C, Schenk T, et al. Effect of annealing ferroelectric HfO2 thin films: in situ, high temperature X-ray diffraction. Adv Electron Mater, 2018, 4, 1800091 doi: 10.1002/aelm.201800091
[50]
Chernikova A G, Kuzmichev D S, Negrov D V, et al. Ferroelectric properties of full plasma-enhanced ALD TiN/La: HfO2/TiN stacks. Appl Phys Lett, 2016, 108, 242905 doi: 10.1063/1.4953787
[51]
Kozodaev M G, Chernikova A G, Korostylev E V, et al. Ferroelectric properties of lightly doped La:HfO2 thin films grown by plasma-assisted atomic layer deposition. Appl Phys Lett, 2017, 111, 132903 doi: 10.1063/1.4999291
[52]
Perevalov T V, Gutakovskii A K, Kruchinin V N, et al. Atomic and electronic structure of ferroelectric La-doped HfO2 films. Mater Res Express, 2018, 6, 036403 doi: 10.1088/2053-1591/aaf436
[53]
Schroeder U, Richter C, Park M H, et al. Lanthanum-doped hafnium oxide: A robust ferroelectric material. Inorg Chem, 2018, 57, 2752 doi: 10.1021/acs.inorgchem.7b03149
[54]
Mart C, Kühnel K, Kämpfe T, et al. Ferroelectric and pyroelectric properties of polycrystalline La-doped HfO2 thin films. Appl Phys Lett, 2019, 114, 102903 doi: 10.1063/1.5089821
[55]
Boncheol, Ku. Improved ferroelectric characteristics of ALD lanthanum-doped hafnium oxide thin film by controlling post-cooling time. Appl Surf Sci, 2022, 599, 153905 doi: 10.1016/j.apsusc.2022.153905
[56]
Song T F, Bachelet R, Saint-Girons G, et al. Thickness effect on the ferroelectric properties of La-doped HfO2 epitaxial films down to 4.5 nm. J Mater Chem C, 2021, 9, 12224 doi: 10.1039/D1TC02512K
[57]
Song T F, Tan H, Bachelet R, et al. Impact of La concentration on ferroelectricity of La-doped HfO2 epitaxial thin films. ACS Appl Electron Mater, 2021, 3, 4809 doi: 10.1021/acsaelm.1c00672
[58]
Müller J, Schröder U, Böscke T S, et al. Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys, 2011, 110, 114113 doi: 10.1063/1.3667205
[59]
Olsen T, Schröder U, Müller S, et al. Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Appl Phys Lett, 2012, 101, 082905 doi: 10.1063/1.4747209
[60]
Starschich S, Griesche D, Schneller T, et al. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes. Appl Phys Lett, 2014, 104, 202903 doi: 10.1063/1.4879283
[61]
Shibayama S, Xu L, Migita S, et al. Study of wake-up and fatigue properties in doped and undoped ferroelectric HfO2 in conjunction with piezo-response force microscopy analysis. 2016 IEEE Symposium on VLSI Technology, 2016, 1 doi: 10.1109/VLSIT.2016.7573415
[62]
Mueller S, Adelmann C, Singh A, et al. Ferroelectricity in Gd-doped HfO2Thin films. ECS J Solid State Sci Technol, 2012, 1, N123 doi: 10.1149/2.002301jss
[63]
Yao Y F, Zhou D Y, Li S D, et al. Experimental evidence of ferroelectricity in calcium doped hafnium oxide thin films. J Appl Phys, 2019, 126, 154103 doi: 10.1063/1.5117358
[64]
Starschich S, Boettger U. An extensive study of the influence of dopants on the ferroelectric properties of HfO2. J Mater Chem C, 2017, 5, 333 doi: 10.1039/C6TC04807B
[65]
Shiraishi T, Choi S, Kiguchi T, et al. Fabrication of ferroelectric Fe doped HfO2 epitaxial thin films by ion-beam sputtering method and their characterization. Jpn J Appl Phys, 2018, 57, 11UF02 doi: 10.7567/JJAP.57.11UF02
[66]
Xu L, Shibayama S, Izukashi K, et al. General relationship for cation and anion doping effects on ferroelectric HfO2 formation. 2016 IEEE International Electron Devices Meeting (IEDM), 2017, 25.2.1 doi: 10.1109/IEDM.2016.7838477
[67]
Nishimura T, Xu L, Shibayama S, et al. Ferroelectricity of nondoped thin HfO2 films in TiN/HfO2/TiN stacks. Jpn J Appl Phys, 2016, 55, 08PB01 doi: 10.7567/JJAP.55.08PB01
[68]
Chen H Y, Chen Y H, Tang L, et al. Obvious ferroelectricity in undoped HfO2 films by chemical solution deposition. J Mater Chem C, 2020, 8, 2820 doi: 10.1039/C9TC06400A
[69]
Batra R, Doan Huan T, Rossetti G A Jr, et al. Dopants promoting ferroelectricity in hafnia: Insights from a comprehensive chemical space exploration. Chem Mater, 2017, 29, 9102 doi: 10.1021/acs.chemmater.7b02835
[70]
Xu L, Nishimura T, Shibayama S, et al. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films. J Appl Phys, 2017, 122, 124104 doi: 10.1063/1.5003918
[71]
Park M H, Schroeder U. Ferroelectricity in doped hafnium oxide: Materials, properties and devices. Amsterdam: Elsevier, 2019, 47
[72]
Alexandra Hsain H, Lee Y, Materano M, et al. Many routes to ferroelectric HfO2: A review of current deposition methods. J Vac Sci Technol A, 2022, 40, 010803 doi: 10.1116/6.0001317
[73]
Kang C Y, Kirsch P D, Lee B H, et al. Reliability of La-doped Hf-based dielectrics nMOSFETs. IEEE Trans Device Mater Relib, 2009, 9, 171 doi: 10.1109/TDMR.2009.2020741
[74]
An C H, Lee M S, Choi J Y, et al. Change of the trap energy levels of the atomic layer deposited HfLaOx films with different La concentration. Appl Phys Lett, 2009, 94, 262901 doi: 10.1063/1.3159625
[75]
Ali T, Polakowski P, Riedel S, et al. Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics. Appl Phys Lett, 2018, 112, 222903 doi: 10.1063/1.5029324
[76]
Fujii S, Kamimuta Y, Ino T, et al. First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property. 2016 IEEE Symposium on VLSI Technology, 2016, 1 doi: 10.1109/VLSIT.2016.7573413
[77]
Yoon S J, Moon S E, Yoon S M. Implementation of an electrically modifiable artificial synapse based on ferroelectric field-effect transistors using Al-doped HfO2 thin films. Nanoscale, 2020, 12, 13421 doi: 10.1039/D0NR02401E
[78]
Chen H Y, Zhou X F, Tang L, et al. HfO2-based ferroelectrics: From enhancing performance, material design, to applications. Appl Phys Rev, 2022, 9, 011307 doi: 10.1063/5.0066607
[79]
Park M H, Kim H J, Kim Y J, et al. Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl Phys Lett, 2013, 102, 112914 doi: 10.1063/1.4798265
[80]
Patrick D. Lomenzo, Qanit Takmeel, Saeed Moghaddam Annealing behavior of ferroelectric Si-doped HfO2 thin films. Thin Solid Films, 2016, 615, 139 doi: 10.1016/j.tsf.2016.07.009
[81]
Kim T, Park J, Cheong B H, et al. Effects of high pressure nitrogen annealing on ferroelectric Hf0.5Zr0.5O2 films. Appl Phys Lett, 2018, 112, 092906 doi: 10.1063/1.5003369
[82]
Böscke T S, Teichert S, Bräuhaus D, et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl Phys Lett, 2011, 99, 112904 doi: 10.1063/1.3636434
[83]
Park M H, Lee Y H, Hwang C S. Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory. Nanoscale, 2019, 11, 19477 doi: 10.1039/C9NR05768D
[84]
Toriumi A, Xu L, Mori Y, et al. Material perspectives of HfO2-based ferroelectric films for device applications. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 15.1.1 doi: 10.1109/IEDM19573.2019.8993464
[85]
Park M H, Lee Y H, Kim H J, et al. Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. Nanoscale, 2018, 10, 716 doi: 10.1039/C7NR06342C
[86]
Materano M, Lomenzo P D, Kersch A, et al. Interplay between oxygen defects and dopants: Effect on structure and performance of HfO2-based ferroelectrics. Inorg Chem Front, 2021, 8, 2650 doi: 10.1039/D1QI00167A
[87]
Mittmann T, Materano M, Lomenzo P D, et al. Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering. Adv Mater Interfaces, 2019, 6, 1900042 doi: 10.1002/admi.201900042
[88]
Suzuki T, Shimizu T, Mimura T, et al. Epitaxial ferroelectric Y-doped HfO2 film grown by the RF magnetron sputtering. Jpn J Appl Phys, 2018, 57, 11UF15 doi: 10.7567/JJAP.57.11UF15
[89]
Mittmann T, Szyjka T, Alex H, et al. Impact of iridium oxide electrodes on the ferroelectric phase of thin Hf0.5Zr0.5O2 films. Phys Rap Rese Lett, 2021, 15, 2100012 doi: 10.1002/pssr.202100012
[90]
Lomenzo P D, Takmeel Q, Zhou C Z, et al. TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J Appl Phys, 2015, 117, 134105 doi: 10.1063/1.4916715
[91]
Goh Y, Hwang J, Kim M, et al. High performance and self-rectifying hafnia-based ferroelectric tunnel junction for neuromorphic computing and TCAM applications. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 17.2.1 doi: 10.1109/IEDM19574.2021.9720610
[92]
Oh S, Song J, Yoo I K, et al. Improved endurance of HfO2-based metal- ferroelectric-insulator-silicon structure by high-pressure hydrogen annealing. IEEE Electron Device Lett, 2019, 40, 1092 doi: 10.1109/LED.2019.2914700
[93]
Ryu H, Xu K, Kim J, et al. Exploring new metal electrodes for ferroelectric aluminum-doped hafnium oxide. IEEE Trans Electron Devices, 2019, 66, 2359 doi: 10.1109/TED.2019.2907070
[94]
Lomenzo P D, Zhao P, Takmeel Q, et al. Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom, 2014, 32, 03D123 doi: 10.1116/1.4873323
[95]
Park M H, Kim H J, Kim Y J, et al. Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes. Appl Phys Lett, 2014, 105, 072902 doi: 10.1063/1.4893376
[96]
Zhang X, Chen L, Sun Q Q, et al. Inductive crystallization effect of atomic-layer-deposited Hf0.5Zr0.5O2 films for ferroelectric application. Nanoscale Res Lett, 2015, 10, 25 doi: 10.1186/s11671-014-0711-4
[97]
Hwang J, Goh Y, Jeon S. Effect of forming gas high-pressure annealing on metal-ferroelectric-semiconductor hafnia ferroelectric tunnel junction. IEEE Electron Device Lett, 2020, 41, 1193 doi: 10.1109/LED.2020.3001639
[98]
Yao L L, Liu X, Cheng Y H, et al. A synergistic interplay between dopant ALD cycles and film thickness on the improvement of the ferroelectricity of uncapped Al:HfO2 nanofilms. Nanotechnology, 2021, 32, 32, 2110.1088/1361 doi: 10.1088/1361-6528/abe785
[99]
Batra R, Doan Tran H, Ramprasad R. Stabilization of metastable phases in hafnia owing to surface energy effects. Appl Phys Lett, 2016, 108, 172902 doi: 10.1063/1.4947490
[100]
Chouprik A, Negrov D, Tsymbal E Y, et al. Defects in ferroelectric HfO2. Nanoscale, 2021, 13, 11635 doi: 10.1039/D1NR01260F
[101]
Pal A, Narasimhan V K, Weeks S, et al. Enhancing ferroelectricity in dopant-free hafnium oxide. Appl Phys Lett, 2017, 110, 022903 doi: 10.1063/1.4973928
[102]
Alcala R, Richter C, Materano M, et al. Influence of oxygen source on the ferroelectric properties of ALD grown Hf1– xZr xO2 films. J Phys D, 2021, 54, 035102 doi: 10.1088/1361-6463/abbc98
[103]
Mittmann T, Materano M, Chang S C, et al. Impact of oxygen vacancy content in ferroelectric HZO films on the device performance. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 18.4.1 doi: 10.1109/IEDM13553.2020.9372097
[104]
Pešić M, Fengler F P G, Larcher L, et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv Funct Mater, 2016, 26, 4601 doi: 10.1002/adfm.201600590
[105]
Zhou Y, Zhang Y K, Yang Q, et al. The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Comput Mater Sci, 2019, 167, 143 doi: 10.1016/j.commatsci.2019.05.041
[106]
Islamov D R, Zalyalov T M, Orlov O M, et al. Impact of oxygen vacancy on the ferroelectric properties of lanthanum-doped hafnium oxide. Appl Phys Lett, 2020, 117, 162901 doi: 10.1063/5.0023554
[107]
Kashir A, Oh S, Hwang H. Defect engineering to achieve wake-up free HfO2-based ferroelectrics. Adv Eng Mater, 2021, 23, 2000791 doi: 10.1002/adem.202000791
[108]
Materano M, Mittmann T, Lomenzo P D, et al. Influence of oxygen content on the structure and reliability of ferroelectric Hf xZr1– xO2 layers. ACS Appl Electron Mater, 2020, 2, 3618 doi: 10.1021/acsaelm.0c00680
[109]
Lee T Y, Lee K, Lim H H, et al. Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2. ACS Appl Mater Interfaces, 2019, 11, 3142 doi: 10.1021/acsami.8b11681
[110]
Buragohain P, Erickson A, Kariuki P, et al. Fluid imprint and inertial switching in ferroelectric La: HfO2 capacitors. ACS Appl Mater Interfaces, 2019, 11, 35115 doi: 10.1021/acsami.9b11146
[111]
Jung T, Shin J, Shin C. Impact of depolarization electric-field and charge trapping on the coercive voltage of an Si: HfO2-based ferroelectric capacitor. Semicond Sci Technol, 2020, 36, 015005 doi: 10.1088/1361-6641/abbf0f
[112]
Baumgarten L, Szyjka T, Mittmann T, et al. Impact of vacancies and impurities on ferroelectricity in PVD- and ALD-grown HfO2 films. Appl Phys Lett, 2021, 118, 032903 doi: 10.1063/5.0035686
[113]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, B864 doi: 10.1103/PhysRev.136.B864
[114]
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, A1133 doi: 10.1103/PhysRev.140.A1133
[115]
Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can J Phys, 1980, 58, 1200 doi: 10.1139/p80-159
[116]
Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B, 1981, 23, 5048 doi: 10.1103/PhysRevB.23.5048
[117]
Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45, 13244 doi: 10.1103/PhysRevB.45.13244
[118]
Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys, 1988, 38, 3098 doi: 10.1103/PhysRevA.38.3098
[119]
Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37, 785 doi: 10.1103/PhysRevB.37.785
[120]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[121]
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118, 8207 doi: 10.1063/1.1564060
[122]
Perdew J P, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations. J Chem Phys, 1996, 105, 9982 doi: 10.1063/1.472933
[123]
Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys, 1999, 110, 6158 doi: 10.1063/1.478522
[124]
Ohtaka O, Fukui H, Kunisada T, et al. Phase relations and volume changes of hafnia under high pressure and high temperature. J Am Ceram Soc, 2004, 84, 1369 doi: 10.1111/j.1151-2916.2001.tb00843.x
[125]
Clima S, Wouters D J, Adelmann C, et al. Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight. Appl Phys Lett, 2014, 104, 092906 doi: 10.1063/1.4867975
[126]
Lowther J E, Dewhurst J K, Leger J M, et al. Relative stability of ZrO2 and HfO2 structural phases. Phys Rev B, 1999, 60, 14485 doi: 10.1103/PhysRevB.60.14485
[127]
Barabash S V. Prediction of new metastable HfO2 phases: Toward understanding Ferro- and antiferroelectric films. J Comput Electron, 2017, 16, 1227 doi: 10.1007/s10825-017-1077-5
[128]
Shuvalov L. Symmetry aspects of ferroelectricity. J Phys Soc Jpn, 1970, 28, 38
[129]
Wei Y, Nukala P, Salverda M, et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat Mater, 2018, 17, 1095 doi: 10.1038/s41563-018-0196-0
[130]
Künneth C, Materlik R, Kersch A. Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1– xZr xO2 grains. J Appl Phys, 2017, 121, 205304 doi: 10.1063/1.4983811
[131]
Dogan M, Gong N, Ma T P, et al. Causes of ferroelectricity in HfO2-based thin films: An ab initio perspective. Phys Chem Chem Phys, 2019, 21, 12150 doi: 10.1039/C9CP01880H
[132]
Batra R, Doan Huan T, Jones J L, et al. Factors favoring ferroelectricity in hafnia: A first-principles computational study. J Phys Chem C, 2017, 121, 4139 doi: 10.1021/acs.jpcc.6b11972
[133]
Garvie R C. The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem, 1965, 69, 1238 doi: 10.1021/j100888a024
[134]
Chen Q, Zhang Y K, Liu W Y, et al. Ferroelectric switching behavior of nanoscale Hf0.5Zr0.5O2 grains. Int J Mech Sci, 2021, 212, 106828 doi: 10.1016/j.ijmecsci.2021.106828
[135]
Wu J X, Mo F, Saraya T, et al. A first-principles study on ferroelectric phase formation of Si-doped HfO2 through nucleation and phase transition in thermal process. Appl Phys Lett, 2020, 117, 252904 doi: 10.1063/5.0035139
[136]
Lee H, Choe D H, Jo S, et al. Unveiling the origin of robust ferroelectricity in sub-2 nm hafnium zirconium oxide films. ACS Appl Mater Interfaces, 2021, 13, 36499 doi: 10.1021/acsami.1c08718
[137]
Liu S, Hanrahan B M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films. Phys Rev Materials, 2019, 3, 054404 doi: 10.1103/PhysRevMaterials.3.054404
[138]
Zhang Y K, Yang Q, Tao L L, et al. Effects of strain and film thickness on the stability of the rhombohedral phase of HfO2. Phys Rev Applied, 2020, 14, 014068 doi: 10.1103/PhysRevApplied.14.014068
[139]
Qi Y B, Singh S, Lau C, et al. Stabilization of competing ferroelectric phases of HfO2 under epitaxial strain. Phys Rev Lett, 2020, 125, 257603 doi: 10.1103/PhysRevLett.125.257603
[140]
Delodovici F, Barone P, Picozzi S. Trilinear-coupling-driven ferroelectricity in HfO2. Phys Rev Materials, 2021, 5, 064405 doi: 10.1103/PhysRevMaterials.5.064405
[141]
Qi Y, Rabe K M. Phase competition in HfO2 with applied electric field from first principles. Phys Rev B, 2020, 102, 214108 doi: 10.1103/PhysRevB.102.214108
[142]
Fan P, Zhang Y K, Yang Q, et al. Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics. J Phys Chem C, 2019, 123, 21743 doi: 10.1021/acs.jpcc.9b04106
[143]
Huang F, Chen X, Liang X, et al. Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition. Phys Chem Chem Phys, 2017, 19, 3486 doi: 10.1039/C6CP07501K
[144]
Yuan P, Mao G Q, Cheng Y, et al. Microscopic mechanism of imprint in hafnium oxide-based ferroelectrics. Nano Res, 2022, 15, 3667 doi: 10.1007/s12274-021-4047-y
[145]
Fengler F P G, Hoffmann M, Slesazeck S, et al. On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2. J Appl Phys, 2018, 123, 204101 doi: 10.1063/1.5026424
[146]
Dan D C, Magyari-Köpe B, Nishi Y. Properties of dopants in HfOx for improving the performance of nonvolatile memory. Phys Rev Appl, 2017, 7, 034020 doi: 10.1103/PhysRevApplied.7.034020
[147]
Falkowski M, Kersch A. Optimizing the piezoelectric strain in ZrO2- and HfO2-based incipient ferroelectrics for thin-film applications: An ab initio dopant screening study. ACS Appl Mater Interfaces, 2020, 12, 32915 doi: 10.1021/acsami.0c08310
[148]
Lee C K, Cho E, Lee H S, et al. First-principles study on doping and phase stability of HfO2. Phys Rev B, 2008, 78, 012102 doi: 10.1103/PhysRevB.78.012102
[149]
Künneth C, Materlik R, Falkowski M, et al. Impact of four-valent doping on the crystallographic phase formation for ferroelectric HfO2 from first-principles: Implications for ferroelectric memory and energy-related applications. ACS Appl Nano Mater, 2018, 1, 254 doi: 10.1021/acsanm.7b00124
[150]
Materlik R, Künneth C, Falkowski M, et al. Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: A first principles study. J Appl Phys, 2018, 123, 164101 doi: 10.1063/1.5021746
[151]
Materlik R. Stabilization of ferroelectricity in Hafnia, zirconia and their mixtures by dopants and interface energy: First principles calculations and a phenomenological model. Technische Universit ä t Dresden, 2019
[152]
Fischer D, Kersch A. The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles. Appl Phys Lett, 2008, 92, 012908 doi: 10.1063/1.2828696
[153]
Yang H, Lee H J, Jo J, et al. Role of Si doping in reducing coercive fields for ferroelectric switching in HfO2. Phys Rev Appl, 2020, 14, 064012 doi: 10.1103/PhysRevApplied.14.064012
[154]
Falkowski M, Künneth C, Materlik R, et al. Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations. Npj Comput Mater, 2018, 4, 73 doi: 10.1038/s41524-018-0133-4
[155]
Materlik R, Künneth C, Mikolajick T, et al. The impact of charge compensated and uncompensated strontium defects on the stabilization of the ferroelectric phase in HfO2. Appl Phys Lett, 2017, 111, 082902 doi: 10.1063/1.4993110
[156]
Foster A S, Sulimov V B, Lopez Gejo F, et al. Structure and electrical levels of point defects in monoclinic zirconia. Phys Rev B, 2001, 64, 224108 doi: 10.1103/PhysRevB.64.224108
[157]
Foster A S, Lopez Gejo F, Shluger A L, et al. Vacancy and interstitial defects in hafnia. Phys Rev B, 2002, 65, 174117 doi: 10.1103/PhysRevB.65.174117
[158]
Zheng J X, Ceder G, Maxisch T, et al. First-principles study of native point defects in hafnia and zirconia. Phys Rev B, 2007, 75, 104112 doi: 10.1103/PhysRevB.75.104112
[159]
Zhang H W, Gao B, Yu S M, et al. Effects of ionic doping on the behaviors of oxygen vacancies in HfO2 and ZrO2: A first principles study. 2009 International Conference on Simulation of Semiconductor Processes and Devices, 2009, 1 doi: 10.1109/SISPAD.2009.5290225
[160]
Hao Zhou, Xiaodi Wei, Wei Wei. On the origin of enhanced resistive switching behaviors of Ti-doped HfO2 film with nitrogen annealing atmosphere. Surf Coat Technol, 2019, 359, 150 doi: 10.1016/j.surfcoat.2018.12.042
[161]
He R, Wu H Y, Liu S, et al. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. Phys Rev B, 2021, 104, L180102 doi: 10.1103/PhysRevB.104.L180102
[162]
Clima S, McMitchell S R C, Florent K, et al. First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf1- xZr xO2 for FEFET applications. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 16.5.1 doi: 10.1109/IEDM.2018.8614552
[163]
Lee K, Park K, Lee H J, et al. Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency. Sci Rep, 2021, 11, 6290 doi: 10.1038/s41598-021-85773-7
[164]
Capron N, Broqvist P, Pasquarello A. Migration of oxygen vacancy in HfO2 and across the HfO2∕SiO2 interface: A first-principles investigation. Appl Phys Lett, 2007, 91, 192905 doi: 10.1063/1.2807282
[165]
Kim B, Hochella M F Jr. Analytical transmission electron microscopy and scanning transmission electron microscopy techniques for the characterization of nanomaterial composition, phase and crystallinity. Characterization of Nanomaterials in Complex Environmental and Biological Media. Amsterdam: Elsevier, 2015, 123
[166]
Wang R, Wang C, Zhang H, et al. Progress in nanoscale characterization and manipulation. Springer, 2018
[167]
Transmission/Scanning Transmission Electron Microscopy. https://www.nrel.gov/materials-science/transmission-microscopy.html
[168]
Comparison between HRTEM and HAADF-STEM (Z contrast). https://www.microscopy.ethz.ch/TEM-STEM.htm
[169]
Pennycook S J, Nellist P D. Scanning transmission electron microscopy: imaging and analysis. Springer Science & Business Media, 2011
[170]
[171]
O’Connor É, Halter M, Eltes F, et al. Stabilization of ferroelectric Hf xZr1− xO2 films using a millisecond flash lamp annealing technique. APL Mater, 2018, 6, 121103 doi: 10.1063/1.5060676
[172]
Yadav M, Kashir A, Oh S, et al. High polarization and wake-up free ferroelectric characteristics in ultrathin Hf0.5Zr0.5O2 devices by control of oxygen-deficient layer. Nanotechnology, 2021, 33, 085206 doi: 10.1088/1361-6528/ac3a38
[173]
Bouaziz J, Rojo Romeo P, Baboux N, et al. Dramatic impact of pressure and annealing temperature on the properties of sputtered ferroelectric HZO layers. APL Mater, 2019, 7, 081109 doi: 10.1063/1.5110894
[174]
Li T, Ye M, Sun Z Z, et al. Origin of ferroelectricity in epitaxial Si-doped HfO2 films. ACS Appl Mater Interfaces, 2019, 11, 4139 doi: 10.1021/acsami.8b19558
[175]
Zheng Y Z, Zhong C R, Zheng Y H, et al. In-situ atomic visualization of structural transformation in Hf0.5Zr0.5O2 ferroelectric thin film: From nonpolar tetragonal phase to polar orthorhombic phase. 2021 Symposium on VLSI Technology, 2021, 1
[176]
Park M H, Kim H J, Lee G, et al. A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl Phys Rev, 2019, 6, 041403 doi: 10.1063/1.5118737
[177]
Cheng Y, Gao Z M, Ye K H, et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat Commun, 2022, 13, 645 doi: 10.1038/s41467-022-28236-5
[178]
Sawyer C B, Tower C H. Rochelle salt as a dielectric. Phys Rev, 1930, 35, 269 doi: 10.1103/PhysRev.35.269
[179]
Diamant H, Drenck K, Pepinsky R. Bridge for accurate measurement of ferroelectric hysteresis. Rev Sci Instrum, 1957, 28, 30 doi: 10.1063/1.1715701
[180]
Tsui Y T, Hinderaker P D, McFadden F J. New ferroelectric hysteresis curve tracer featuring compensation and virtual sample grounding. Rev Sci Instrum, 1968, 39, 1423 doi: 10.1063/1.1683123
[181]
Si M W, Lyu X, Shrestha P R, et al. Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide. Appl Phys Lett, 2019, 115, 072107 doi: 10.1063/1.5098786
[182]
Mehmood F, Mikolajick T, Schroeder U. Wake-up mechanisms in ferroelectric lanthanum-doped Hf0.5Zr0.5O2 thin films. Phys Status Solidi A, 2020, 217, 2000281 doi: 10.1002/pssa.202000281
[183]
Chu F. A mathematical description of the switching behavior of ferroelectric thin films for FRAM applications. Integr Ferroelectr, 2002, 48, 255 doi: 10.1080/713718324
[184]
Garcia V, Bibes M. Ferroelectric tunnel junctions for information storage and processing. Nat Commun, 2014, 5, 4289 doi: 10.1038/ncomms5289
[185]
Luo Q, Cheng Y, Yang J, et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat Commun, 2020, 11, 1391 doi: 10.1038/s41467-020-15159-2
[186]
Apachitei G, Peters J J P, Sanchez A M, et al. Antiferroelectric tunnel junctions. Adv Electron Mater, 2017, 3, 1700126 doi: 10.1002/aelm.201700126
[187]
Goh Y, Hwang J, Jeon S. Excellent reliability and high-speed antiferroelectric HfZrO2 tunnel junction by a high-pressure annealing process and built-In bias engineering. ACS Appl Mater Interfaces, 2020, 12, 57539 doi: 10.1021/acsami.0c15091
[188]
Polakowski P, Müller J. Ferroelectricity in undoped hafnium oxide. Appl Phys Lett, 2015, 106, 232905 doi: 10.1063/1.4922272
[189]
Grimley E D, Schenk T, Sang X H, et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv Electron Mater, 2016, 2, 1600173 doi: 10.1002/aelm.201600173
[190]
Kim H J, Park M H, Kim Y J, et al. A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale, 2016, 8, 1383 doi: 10.1039/C5NR05339K
[191]
Lyu X, Si M, Sun X, et al. Ferroelectric and anti-ferroelectric hafnium zirconium oxide: Scaling limit, switching speed and record high polarization density. 2019 Symposium on VLSI Technology, 2019, T44 doi: 10.23919/VLSIT.2019.8776548
[192]
Kim S J, Mohan J, Summerfelt S R, et al. Ferroelectric Hf0. 5Zr0. 5O2 thin films: A review of recent advances. JOM, 2019, 71, 246 doi: 10.1007/s11837-018-3140-5
[193]
Fengler F P G, Pešić M, Starschich S, et al. Domain pinning: Comparison of hafnia and PZT based ferroelectrics. Adv Electron Mater, 2017, 3, 1600505 doi: 10.1002/aelm.201600505
[194]
Cima L, Laboure E, Muralt P. Characterization and model of ferroelectrics based on experimental Preisach density. Rev Sci Instrum, 2002, 73, 3546 doi: 10.1063/1.1505659
[195]
Bartic A T, Wouters D J, Maes H E, et al. Preisach model for the simulation of ferroelectric capacitors. J Appl Phys, 2001, 89, 3420 doi: 10.1063/1.1335639
[196]
Hoffmann M, Schenk T, Pešić M, et al. Insights into antiferroelectrics from first-order reversal curves. Appl Phys Lett, 2017, 111, 182902 doi: 10.1063/1.5003612
[197]
Allouche B, Hwang H J, Yoo T J, et al. A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film. Nanoscale, 2020, 12, 3894 doi: 10.1039/C9NR07293D
[198]
Schenk T, Hoffmann M, Ocker J, et al. Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl Mater Interfaces, 2015, 7, 20224 doi: 10.1021/acsami.5b05773
[199]
Jiang P F, Luo Q, Xu X X, et al. Wake-up effect in HfO2-based ferroelectric films. Adv Electron Mater, 2021, 7, 2000728 doi: 10.1002/aelm.202000728
[200]
Morozov M I, Damjanovic D. Hardening-softening transition in Fe-doped Pb(Zr, Ti)O3 ceramics and evolution of the third harmonic of the polarization response. J Appl Phys, 2008, 104, 034107 doi: 10.1063/1.2963704
[201]
Schenk T, Schroeder U, Pešić M, et al. Electric field cycling behavior of ferroelectric hafnium oxide. ACS Appl Mater Interfaces, 2014, 6, 19744 doi: 10.1021/am504837r
[202]
Schenk T, Yurchuk E, Mueller S, et al. About the deformation of ferroelectric hystereses. Appl Phys Rev, 2014, 1, 041103 doi: 10.1063/1.4902396
[203]
Rodriguez J, Remack K, Gertas J, et al. Reliability of Ferroelectric Random Access memory embedded within 130nm CMOS. 2010 IEEE International Reliability Physics Symposium, 2010, 750 doi: 10.1109/NVMT.2007.4389948
[204]
Mueller S, Muller J, Schroeder U, et al. Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications. IEEE Trans Device Mater Relib, 2013, 13, 93 doi: 10.1109/TDMR.2012.2216269
[205]
Yurchuk E, Mueller S, Martin D, et al. Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories. 2014 IEEE International Reliability Physics Symposium, 2014, 2E.5.1 doi: 10.1109/IRPS.2014.6860603
[206]
Yurchuk E, Muller J, Muller S, et al. Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories. IEEE Trans Electron Devices, 2016, 63, 3501 doi: 10.1109/TED.2016.2588439
[207]
Gong N B, Ma T P. A study of endurance issues in HfO2-based ferroelectric field effect transistors: Charge trapping and trap generation. IEEE Electron Device Lett, 2018, 39, 15 doi: 10.1109/LED.2017.2776263
[208]
Ni K, Sharma P, Zhang J C, et al. Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance. IEEE Trans Electron Devices, 2018, 65, 2461 doi: 10.1109/TED.2018.2829122
[209]
Alam M N K, Kaczer B, Ragnarsson L Å, et al. On the characterization and separation of trapping and ferroelectric behavior in HfZrO FET. IEEE J Electron Devices Soc, 2019, 7, 855 doi: 10.1109/JEDS.2019.2902953
[210]
Toprasertpong K, Takenaka M, Takagi S. Direct observation of interface charge behaviors in FeFET by quasi-static split C-V and hall techniques: Revealing FeFET operation. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 23.7.1 doi: 10.1109/IEDM19573.2019.8993664
[211]
Higashi Y, Ronchi N, Kaczer B, et al. Impact of charge trapping and depolarization on data retention using simultaneous P–V and I–V in HfO2-based ferroelectric FET. IEEE Trans Electron Devices, 2021, 68, 4391 doi: 10.1109/TED.2021.3096510
[212]
Li J K, Si M W, Qu Y M, et al. Quantitative characterization of ferroelectric/dielectric interface traps by pulse measurements. IEEE Trans Electron Devices, 2021, 68, 1214 doi: 10.1109/TED.2021.3053497
[213]
Tasneem N, Wang Z, Zhao Z J, et al. Trap capture and emission dynamics in ferroelectric field-effect transistors and their impact on device operation and reliability. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 6.1.1 doi: 10.1109/IEDM19574.2021.9720615
[214]
Ichihara R, Higashi Y, Suzuki K, et al. Accurate picture of cycling degradation in HfO2-FeFET based on charge trapping dynamics revealed by fast charge centroid analysis. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 6.3.1 doi: 10.1109/IEDM19574.2021.9720516
[215]
Martin D, Müller J, Schenk T, et al. Ferroelectricity in Si-doped HfO2 revealed: A binary lead-free ferroelectric. Adv Mater, 2014, 26, 8198 doi: 10.1002/adma.201403115
[216]
Buragohain P, Richter C, Schenk T, et al. Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors. Appl Phys Lett, 2018, 112, 222901 doi: 10.1063/1.5030562
[217]
Lim S Y, Park M S, Kim A, et al. Nonlinear domain wall velocity in ferroelectric Si-doped HfO2 thin film capacitors. Appl Phys Lett, 2021, 118, 102902 doi: 10.1063/5.0035753
[218]
Preisach F. Über Die magnetische nachwirkung. Z Physik, 1935, 94, 277 doi: 10.1007/BF01349418
[219]
Takcs J. The Everett integral and its analytical approximation. In: Advanced Magnetic Materials. InTech, 2012
[220]
Jiang B, Zurcher, Jones, et al. Computationally efficient ferroelectric capacitor model for circuit simulation. 1997 Symposium on VLSI Technology, 2002, 141 doi: 10.1109/VLSIT.1997.623738
[221]
Ni K, Jerry M, Smith J A, et al. A circuit compatible accurate compact model for ferroelectric-FETs. 2018 IEEE Symposium on VLSI Technology, 2018, 131 doi: 10.1109/VLSIT.2018.8510622
[222]
Liu Y S, Su P. Impact of trapped-charge variations on scaled ferroelectric FET nonvolatile memories. IEEE Trans Electron Devices, 2021, 68, 1639 doi: 10.1109/TED.2021.3061330
[223]
Zhou H, Ocker J, Pesic M, et al. Mechanism of retention degradation after endurance cycling of HfO2-based ferroelectric transistors. 2021 Symposium on VLSI Technology, 2021, 1
[224]
Chow J, Sheikholeslami A, Cross J S, et al. A voltage-dependent switching-time (VDST) model of ferroelectric capacitors for low-voltage FeRAM circuits. 2004 Symposium on VLSI Circuits. Digest of Technical Papers, 2004, 448 doi: 10.1109/VLSIC.2004.1346646
[225]
Merz W J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev, 1954, 95, 690 doi: 10.1103/PhysRev.95.690
[226]
Merz W J. Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness. J Appl Phys, 1956, 27, 938 doi: 10.1063/1.1722518
[227]
Saha A K, Gupta S K. Modeling and comparative analysis of hysteretic ferroelectric and anti-ferroelectric FETs. 2018 76th Device Research Conference (DRC), 2018, 1
[228]
Ali T, Polakowski P, Büttner T, et al. Theory and experiment of antiferroelectric (AFE) Si-doped hafnium oxide (HSO) enhanced floating-gate memory. IEEE Trans Electron Devices, 2019, 66, 3356 doi: 10.1109/TED.2019.2921618
[229]
Gong N, Sun X, Jiang H, et al. Nucleation limited switching (NLS) model for HfO2-based metal-ferroelectric-metal (MFM) capacitors: Switching kinetics and retention characteristics. Appl Phys Lett, 2018, 112, 262903 doi: 10.1063/1.5010207
[230]
Alessandri C, Pandey P, Abusleme A, et al. Switching dynamics of ferroelectric Zr-doped HfO2. IEEE Electron Device Lett, 2018, 39, 1780 doi: 10.1109/LED.2018.2872124
[231]
Alessandri C, Pandey P, Abusleme A, et al. Monte Carlo simulation of switching dynamics in polycrystalline ferroelectric capacitors. IEEE Trans Electron Devices, 2019, 66, 3527 doi: 10.1109/TED.2019.2922268
[232]
Xiang Y, Bardon M G, Alam M N K, et al. Physical insights on steep slope FEFETs including nucleation-propagation and charge trapping. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 21.6.1 doi: 10.1109/IEDM19573.2019.8993492
[233]
Ni K, Chakraborty W, Smith J, et al. Fundamental understanding and control of device-to-device variation in deeply scaled ferroelectric FETs. 2019 Symposium on VLSI Technology, 2019, T40 doi: 10.23919/VLSIT.2019.8776497
[234]
Tagantsev A K, Stolichnov I, Setter N, et al. Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films. Phys Rev B, 2002, 66, 214109 doi: 10.1103/PhysRevB.66.214109
[235]
Alessandri C, Pandey P, Seabaugh A C. Experimentally validated, predictive Monte Carlo modeling of ferroelectric dynamics and variability. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 16.2.1 doi: 10.1109/IEDM.2018.8614607
[236]
Deng S, Yin G D, Chakraborty W, et al. A comprehensive model for ferroelectric FET capturing the key behaviors: Scalability, variation, stochasticity, and accumulation. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265014
[237]
Stolichnov I, Tagantsev A, Setter N, et al. Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films. Appl Phys Lett, 2003, 83, 3362 doi: 10.1063/1.1621730
[238]
Wei W, Zhang W Q, Tai L, et al. In-depth understanding of polarization switching kinetics in polycrystalline Hf0.5Zr0.5O2 ferroelectric thin film: A transition from NLS to KAI. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 19.1.1 doi: 10.1109/IEDM19574.2021.9720664
[239]
Chen Y C, Hsiang K Y, Tang Y T, et al. NLS based modeling and characterization of switching dynamics for antiferroelectric/ferroelectric hafnium zirconium oxides. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 15.4.1 doi: 10.1109/IEDM19574.2021.9720645
[240]
Stolichnov I, Tagantsev A K, Colla E, et al. Physical model of retention and temperature-dependent polarization reversal in ferroelectric films. J Appl Phys, 2005, 98, 084106 doi: 10.1063/1.2112174
[241]
Hoffmann M, Pešić M, Chatterjee K, et al. Direct observation of negative capacitance in polycrystalline ferroelectric HfO2. Adv Funct Mater, 2016, 26, 8643 doi: 10.1002/adfm.201602869
[242]
Chang P Y, Zhang Y Z, Du G, et al. Experiment and modeling of dynamical hysteresis in thin film ferroelectrics. Jpn J Appl Phys, 2020, 59, SGGA07 doi: 10.35848/1347-4065/ab6d80
[243]
Saha A K, Ni K, Dutta S, et al. Phase field modeling of domain dynamics and polarization accumulation in ferroelectric HZO. Appl Phys Lett, 2019, 114, 202903 doi: 10.1063/1.5092707
[244]
Saha A K, Si M, Ni K, et al. Ferroelectric thickness dependent domain interactions in FEFETs for memory and logic: A phase-field model based analysis. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 4.3.1 doi: 10.1109/IEDM13553.2020.9372099
[245]
Koduru R, Saha A K, Si M, et al. Variation and stochasticity in polycrystalline HZO based MFIM: Grain-growth coupled 3D phase field model based analysis. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 15.2.1 doi: 10.1109/IEDM19574.2021.9720564
[246]
Park H W, Roh J, Lee Y B, et al. Modeling of negative capacitance in ferroelectric thin films. Adv Mater, 2019, 31, e1805266 doi: 10.1002/adma.201805266
[247]
Chang P Y, Du G, Liu X Y. Design space for stabilized negative capacitance in HfO2 ferroelectric-dielectric stacks based on phase field simulation. Sci China Inf Sci, 2021, 64, 122402 doi: 10.1007/s11432-020-3005-8
[248]
Wang P N, Wang Z, Sun X Y, et al. Investigating ferroelectric minor loop dynamics and history effect—Part II: Physical modeling and impact on neural network training. IEEE Trans Electron Devices, 2020, 67, 3598 doi: 10.1109/TED.2020.3009956
[249]
Sun X Y, Wang P N, Ni K, et al. Exploiting hybrid precision for training and inference: A 2T-1FeFET based analog synaptic weight cell. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 3.1.1 doi: 10.1109/IEDM.2018.8614611
[250]
Ni K, Smith J A, Grisafe B, et al. SoC logic compatible multi-bit FeMFET weight cell for neuromorphic applications. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 13.2.1 doi: 10.1109/IEDM.2018.8614496
[251]
Breyer E T, Mulaosmanovic H, Trommer J, et al. Compact FeFET circuit building blocks for fast and efficient nonvolatile logic-in-memory. IEEE J Electron Devices Soc, 2020, 8, 748 doi: 10.1109/JEDS.2020.2987084
[252]
Zhang X Y, Liu R, Song T, et al. Re-FeMAT: A reconfigurable multifunctional FeFET-based memory architecture. IEEE Trans Comput Aided Des Integr Circuits Syst, 2022, 41, 5071 doi: 10.1109/TCAD.2021.3140194
[253]
Aziz A, Ghosh S, Datta S, et al. Physics-based circuit-compatible SPICE model for ferroelectric transistors. IEEE Electron Device Lett, 2016, 37, 805 doi: 10.1109/LED.2016.2558149
[254]
Chen J J, Jin C J, Yu X, et al. Impact of oxygen vacancy on ferroelectric characteristics and its implication for wake-up and fatigue of HfO2-based thin films. IEEE Trans Electron Devices, 2022, 69, 5297 doi: 10.1109/TED.2022.3190256
[255]
Xiang Y, Bardon M G, Kaczer B, et al. Implication of channel percolation in ferroelectric FETs for threshold voltage shift modeling. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 18.2.1 doi: 10.1109/IEDM13553.2020.9371907
[256]
Park H W, Lee J G, Hwang C S. Review of ferroelectric field-effect transistors for three-dimensional storage applications. Nano Sel, 2021, 2, 1187 doi: 10.1002/nano.202000281
[257]
Ichihara R, Suzuki K, Kusai H, et al. Re-examination of vth window and reliability in HfO2 FeFET based on the direct extraction of spontaneous polarization and trap charge during memory operation. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265055
[258]
Chatterjee K, Kim S, Karbasian G, et al. Self-aligned, gate last, FDSOI, ferroelectric gate memory device with 5.5-nm Hf0. 8Zr0. 2O2, high endurance and breakdown recovery. IEEE Electron Device Lett, 2017, 38, 1379 doi: 10.1109/LED.2017.2748992
[259]
Deng S, Zhao Z J, Kim Y S, et al. Unraveling the dynamics of charge trapping and de-trapping in ferroelectric FETs. IEEE Trans Electron Devices, 2022, 69, 1503 doi: 10.1109/TED.2022.3143485
[260]
Mulaosmanovic H, Muller F, Lederer M, et al. Interplay between switching and retention in HfO2-based ferroelectric FETs. IEEE Trans Electron Devices, 2020, 67, 3466 doi: 10.1109/TED.2020.3004033
[261]
Mulaosmanovic H, Breyer E T, Mikolajick T, et al. Ferroelectric FETs with 20-nm-thick HfO2 Layer for large memory window and high performance. IEEE Trans Electron Devices, 2019, 66, 3828 doi: 10.1109/TED.2019.2930749
[262]
Pesic M, Padovani A, Slcsazeck S, et al. Deconvoluting charge trapping and nucleation interplay in FeFETs: Kinetics and Reliability. 2018 IEEE International Electron Devices Meeting (IEDM), 2019, 25.1.1 doi: 10.1109/IEDM.2018.8614492
[263]
Deng S, Jiang Z H, Dutta S, et al. Examination of the interplay between polarization switching and charge trapping in ferroelectric FET. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 4.4.1 doi: 10.1109/IEDM13553.2020.9371999
[264]
Tan A J, Pešić M, Larcher L, et al. Hot electrons as the dominant source of degradation for sub-5nm HZO FeFETs. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265067
[265]
Ni K, Thomann S, Prakash O, et al. On the channel percolation in ferroelectric FET towards proper analog states engineering. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 15.3.1 doi: 10.1109/IEDM19574.2021.9720631
[266]
Ni K, Gupta A, Prakash O, et al. Impact of extrinsic variation sources on the device-to-device variation in ferroelectric FET. 2020 IEEE International Reliability Physics Symposium (IRPS), 2020, 1 doi: 10.1109/IRPS45951.2020.9128323
[267]
Choe G, Yu S M. Variability study of ferroelectric field-effect transistors towards 7nm technology node. IEEE J Electron Devices Soc, 2021, 9, 1131 doi: 10.1109/JEDS.2021.3100290
[268]
Liu Y S, Su P. Variability analysis for ferroelectric FET nonvolatile memories considering random ferroelectric-dielectric phase distribution. IEEE Electron Device Lett, 2020, 41, 369 doi: 10.1109/LED.2020.2967423
[269]
Choe G, Shim W, Wang P N, et al. Impact of random phase distribution in ferroelectric transistors-based 3-D NAND architecture on In-memory computing. IEEE Trans Electron Devices, 2021, 68, 2543 doi: 10.1109/TED.2021.3068086
[270]
Choe G, Lu A N, Yu S M. 3D AND-type ferroelectric transistors for compute-in-memory and the variability analysis. IEEE Electron Device Lett, 2022, 43, 304 doi: 10.1109/LED.2021.3139574
[271]
Pan X, Ma T P. Retention mechanism study of the ferroelectric field effect transistor. Appl Phys Lett, 2011, 99, 013505 doi: 10.1063/1.3609323
[272]
Gong N B, Ma T P. Why is FE–HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective. IEEE Electron Device Lett, 2016, 37, 1123 doi: 10.1109/LED.2016.2593627
[273]
Müller J, Yurchuk E, Schlösser T, et al. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. 2012 Symposium on VLSI Technology (VLSIT), 2012, 25 doi: 10.1109/VLSIT.2012.6242443
[274]
Zeng B J, Liao M, Peng Q X, et al. 2-bit/cell operation of Hf0. 5Zr0. 5O2 based FeFET memory devices for NAND applications. IEEE J Electron Devices Soc, 2019, 7, 551 doi: 10.1109/JEDS.2019.2913426
[275]
Ali T, Polakowski P, Riedel S, et al. High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty. IEEE Trans Electron Devices, 2018, 65, 3769 doi: 10.1109/TED.2018.2856818
[276]
Xiao W W, Liu C, Peng Y, et al. Memory window and endurance improvement of Hf0.5Zr0.5O2-based FeFETs with ZrO2 seed layers characterized by fast voltage pulse measurements. Nanoscale Res Lett, 2019, 14, 254 doi: 10.1186/s11671-019-3063-2
[277]
Wang Z, Islam M M, Wang P N, et al. Depolarization field induced instability of polarization states in HfO2 based ferroelectric FET. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 4.5.1 doi: 10.1109/IEDM13553.2020.9372098
[278]
Mo F, Xiang J W, Mei X R, et al. Critical role of GIDL current for erase operation in 3D vertical FeFET and compact long-term FeFET retention model. 2021 Symposium on VLSI Technology, 2021, 1
[279]
Higashi Y, Ronchi N, Kaczer B, et al. Impact of Charge trapping on Imprint and its Recovery in HfO2 based FeFET. 2019 IEEE International Electron Devices Meeting (IEDM), 2019, 15.6.1 doi: 10.1109/IEDM19573.2019.8993472
[280]
Datta S. The non-equilibrium Green's function (NEGF) formalism: An elementary introduction. Digest. International Electron Devices Meeting, 2003, 703 doi: 10.1109/IEDM.2002.1175935
[281]
Mo F, Tagawa Y, Saraya T, et al. Scalability study on ferroelectric-HfO2 tunnel junction memory based on non-equilibrium green function method. 2019 19th Non-Volatile Memory Technology Symposium (NVMTS), 2020, 1 doi: 10.1109/IEDM.2018.8614702
[282]
Chang P Y, Du G, Kang J F, et al. Conduction mechanisms of metal-ferroelectric- insulator-semiconductor tunnel junction on N- and P-type semiconductor. IEEE Electron Device Lett, 2021, 42, 118 doi: 10.1109/LED.2020.3041515
[283]
Chang P Y, Du G, Kang J F, et al. Guidelines for ferroelectric-semiconductor tunnel junction optimization by band structure engineering. IEEE Trans Electron Devices, 2021, 68, 3526 doi: 10.1109/TED.2021.3079881
[284]
Pantel D, Alexe M. Electroresistance effects in ferroelectric tunnel barriers. Phys Rev B, 2010, 82, 134105 doi: 10.1103/PhysRevB.82.134105
[285]
Kobayashi M, Tagawa Y, Mo F, et al. Ferroelectric HfO2 tunnel junction memory with high TER and multi-level operation featuring metal replacement process. IEEE J Electron Devices Soc, 2018, 7, 134 doi: 10.1109/JEDS.2018.2885932
[286]
Deng S, Zhao Z J, Kurinec S, et al. Overview of ferroelectric memory devices and reliability aware design optimization. Proceedings of the 2021 on Great Lakes Symposium on VLSI, 2021, 473 doi: 10.1145/3453688.3461743
[287]
Song C M, Kwon H J. Ferroelectrics based on HfO2 film. Electronics, 2021, 10, 2759 doi: 10.3390/electronics10222759
[288]
Mikolajick T, Slesazeck S, Park M H, et al. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull, 2018, 43, 340 doi: 10.1557/mrs.2018.92
[289]
Francois T, Grenouillet L, Coignus J, et al. Demonstration of BEOL-compatible ferroelectric Hf0.5Zr0.5O2 scaled FeRAM co-integrated with 130nm CMOS for embedded NVM applications. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 15.7.1 doi: 10.1109/IEDM19573.2019.8993485
[290]
Okuno J, Kunihiro T, Konishi K, et al. SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf0.5Zr0.5O2. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265063
[291]
Okuno J, Kunihiro T, Konishi K, et al. 1T1C FeRAM memory array based on ferroelectric HZO with capacitor under bitline. IEEE J Electron Devices Soc, 2022, 10, 29 doi: 10.1109/JEDS.2021.3129279
[292]
Francois T, Coignus J, Makosiej A, et al. High-performance operation and solder reflow compatibility in BEOL-integrated 16-kb HfO2: Si-based 1T-1C FeRAM arrays. IEEE Trans Electron Devices, 2022, 69, 2108 doi: 10.1109/TED.2021.3138360
[293]
Polakowski P, Riedel S, Weinreich W, et al. Ferroelectric deep trench capacitors based on Al: HfO2 for 3D nonvolatile memory applications. 2014 IEEE 6th International Memory Workshop (IMW), 2014, 1 doi: 10.1109/IMW.2014.6849367
[294]
Sung M, Rho K, Kim J, et al. Low voltage and high speed 1Xnm 1T1C FE-RAM with ultra-thin 5nm HZO. 2021 IEEE International Electron Devices Meeting (IEDM), 2022, 33.3.1 doi: 10.1109/IEDM19574.2021.9720545
[295]
Müller J, Böscke T S, Müller S, et al. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. 2013 IEEE International Electron Devices Meeting, 2014, 10.8.1 doi: 10.1109/IEDM.2013.6724605
[296]
Yoo H K, Kim J S, Zhu Z, et al. Engineering of ferroelectric switching speed in Si doped HfO2 for high-speed 1T-FERAM application. 2017 IEEE International Electron Devices Meeting (IEDM), 2018, 19.6.1 doi: 10.1109/IEDM.2017.8268424
[297]
Peng Y, Xiao W W, Liu Y, et al. HfO2-ZrO2 superlattice ferroelectric capacitor with improved endurance performance and higher fatigue recovery capability. IEEE Electron Device Lett, 2022, 43, 216 doi: 10.1109/LED.2021.3135961
[298]
Lue H T, Wu C J, Tseng T Y. Device modeling of ferroelectric memory field-effect transistor for the application of ferroelectric random access memory. IEEE Trans Ultrason Ferroelectr Freq Control, 2003, 50, 5 doi: 10.1109/TUFFC.2003.1176521
[299]
Mulaosmanovic H, Breyer E T, Dünkel S, et al. Ferroelectric field-effect transistors based on HfO2: A review. Nanotechnology, 2021, 32, 502002 doi: 10.1088/1361-6528/ac189f
[300]
Kim H J, Park M H, Kim Y J, et al. Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl Phys Lett, 2014, 105, 192903 doi: 10.1063/1.4902072
[301]
Liao C Y, Hsiang K Y, Hsieh F C, et al. Multibit ferroelectric FET based on nonidentical double HfZrO2 for high-density nonvolatile memory. IEEE Electron Device Lett, 2021, 42, 617 doi: 10.1109/LED.2021.3060589
[302]
Xiao W W, Liu C, Peng Y, et al. Performance improvement of Hf0.5Zr0.5O2-based ferroelectric-field-effect transistors with ZrO2 seed layers. IEEE Electron Device Lett, 2019, 40, 714 doi: 10.1109/LED.2019.2903641
[303]
Toprasertpong K, Lin Z Y, Lee T E, et al. Asymmetric polarization response of electrons and holes in Si FeFETs: Demonstration of absolute polarization hysteresis loop and inversion hole density over 2 × 1013 cm−2. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265015
[304]
Peng H K, Kao T H, Kao Y C, et al. Reduced asymmetric memory window between Si-based n- and p-FeFETs with scaled ferroelectric HfZrOₓ and AlON interfacial layer. IEEE Electron Device Lett, 2021, 42, 835 doi: 10.1109/LED.2021.3074434
[305]
Muller J, Polakowski P, Muller S, et al. High endurance strategies for hafnium oxide based ferroelectric field effect transistor. 2016 16th Non-Volatile Memory Technology Symposium (NVMTS), 2016, 1 doi: 10.1109/NVMTS.2016.7781517
[306]
Mulaosmanovic H, Breyer E T, Mikolajick T, et al. Recovery of cycling endurance failure in ferroelectric FETs by self-heating. IEEE Electron Device Lett, 2019, 40, 216 doi: 10.1109/LED.2018.2889412
[307]
Yoon S J, Min D H, Moon S E, et al. Improvement in long-term and high-temperature retention stability of ferroelectric field-effect memory transistors with metal–ferroelectric–metal–insulator–semiconductor gate-stacks using Al-doped HfO2 thin films. IEEE Trans Electron Devices, 2020, 67, 499 doi: 10.1109/TED.2019.2961117
[308]
Ali T, Seidel K, Kühnel K, et al. A novel dual ferroelectric layer based MFMFIS FeFET with optimal stack tuning toward low power and high-speed NVM for neuromorphic applications. 2020 IEEE Symposium on VLSI Technology, 2020, 1 doi: 10.1109/VLSITechnology18217.2020.9265111
[309]
Toprasertpong K, Tahara K, Fukui T, et al. Improved ferroelectric/semiconductor interface properties in Hf0.5Zr0.5O2 ferroelectric FETs by low-temperature annealing. IEEE Electron Device Lett, 2020, 41, 1588 doi: 10.1109/LED.2020.3019265
[310]
Zhuravlev M Y, Sabirianov R F, Jaswal S S, et al. Giant electroresistance in ferroelectric tunnel junctions. Phys Rev Lett, 2005, 94, 246802 doi: 10.1103/PhysRevLett.94.246802
[311]
Wang X R, Wang J L. Ferroelectric tunnel junctions with high tunnelling electroresistance. Nat Electron, 2020, 3, 440 doi: 10.1038/s41928-020-0463-3
[312]
Wen Z, Li C, Wu D, et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater, 2013, 12, 617 doi: 10.1038/nmat3649
[313]
Max B, Hoffmann M, Slesazeck S, et al. Direct correlation of ferroelectric properties and memory characteristics in ferroelectric tunnel junctions. IEEE J Electron Devices Soc, 2019, 7, 1175 doi: 10.1109/JEDS.2019.2932138
[314]
Tian X, Shibayama S, Nishimura T, et al. Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm. Appl Phys Lett, 2018, 112, 102902 doi: 10.1063/1.5017094
[315]
Abuwasib M, Lu H D, Li T, et al. Scaling of electroresistance effect in fully integrated ferroelectric tunnel junctions. Appl Phys Lett, 2016, 108, 152904 doi: 10.1063/1.4947020
[316]
Sun P, Wu Y Z, Cai T Y, et al. Effects of ferroelectric dead layer on the electron transport in ferroelectric tunneling junctions. Appl Phys Lett, 2011, 99, 052901 doi: 10.1063/1.3619841
[317]
Chanthbouala A, Crassous A, Garcia V, et al. Solid-state memories based on ferroelectric tunnel junctions. Nat Nanotechnol, 2011, 7, 101 doi: 10.1038/nnano.2011.213
[318]
Huang H H, Wu T Y, Chu Y H, et al. A comprehensive modeling framework for ferroelectric tunnel junctions. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 32.2.1 doi: 10.1109/IEDM19573.2019.8993592
[319]
Chouprik A, Chernikova A, Markeev A, et al. Electron transport across ultrathin ferroelectric Hf0.5Zr0.5O2 films on Si. Microelectron Eng, 2017, 178, 250 doi: 10.1016/j.mee.2017.05.028
[320]
Mikheev V, Chouprik A, Lebedinskii Y, et al. Memristor with a ferroelectric HfO2 layer: In which case it is a ferroelectric tunnel junction. Nanotechnology, 2020, 31, 215205 doi: 10.1088/1361-6528/ab746d
[321]
Max B, Mikolajick T, Hoffmann M, et al. Retention characteristics of Hf0.5Zr0.5O2-based ferroelectric tunnel junctions. 2019 IEEE 11th International Memory Workshop (IMW), 2019, 1 doi: 10.1109/IMW.2019.8739765
[322]
Ali T, Sünbül A, Mertens K, et al. Impact of the Ferroelectric and Interface Layer Optimization in an MFIS HZO based Ferroelectric Tunnel Junction for Neuromorphic based Synaptic Storage. 2021 Silicon Nanoelectronics Workshop (SNW), 2021, 1
[323]
Kuo Y S, Lee S Y, Lee C C, et al. CMOS-compatible fabrication of low-power ferroelectric tunnel junction for neural network applications. IEEE Trans Electron Devices, 2021, 68, 879 doi: 10.1109/TED.2020.3045955
[324]
Yamaguchi M, Fujii S, Kamimuta Y, et al. Impact of specific failure mechanisms on endurance improvement for HfO2-based ferroelectric tunnel junction memory. 2018 IEEE International Reliability Physics Symposium (IRPS), 2018, 6D.2 doi: 10.1109/IRPS.2018.8353633
[325]
Chen Y F, Hsu L W, Hu C W, et al. Enhanced tunneling electro-resistance ratio for ferroelectric tunnel junctions by engineering metal work function. IEEE Electron Device Lett, 2022, 43, 208 doi: 10.1109/LED.2021.3133577
[326]
Yamaguchi M, Fujii S, Ota K, et al. Breakdown lifetime analysis of HfO2-based ferroelectric tunnel junction (FTJ) memory for In-memory reinforcement learning. 2020 IEEE International Reliability Physics Symposium (IRPS), 2020, 1 doi: 10.1109/IRPS45951.2020.9129314
[327]
Ni K, Smith J, Ye H C, et al. A novel ferroelectric superlattice based multi-level cell non-volatile memory. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 28.8.1 doi: 10.1109/IEDM19573.2019.8993670
[328]
Xu Y N, Yang Y, Zhao S J, et al. Improved multibit storage reliability by design of ferroelectric modulated antiferroelectric memory. IEEE Trans Electron Devices, 2022, 69, 2145 doi: 10.1109/TED.2021.3139054
[329]
Freitas R F, Wilcke W W. Storage-class memory: The next storage system technology. IBM J Res Dev, 2008, 52, 439 doi: 10.1147/rd.524.0439
[330]
Dünkel S, Trentzsch M, Richter R, et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond. 2017 IEEE International Electron Devices Meeting (IEDM), 2018, 19.7.1
[331]
Tan A J, Liao Y H, Wang L C, et al. Ferroelectric HfO2 memory transistors with high-κ interfacial layer and write endurance exceeding 1010 cycles. IEEE Electron Device Lett, 2021, 42, 994 doi: 10.1109/LED.2021.3083219
[332]
Mulaosmanovic H, Slesazeck S, Ocker J, et al. Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells. 2015 IEEE International Electron Devices Meeting (IEDM), 2016, 26.8.1 doi: 10.1109/IEDM.2015.7409777
[333]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521, 436 doi: 10.1038/nature14539
[334]
Yanming Guo, Yu Liu, Ard Oerlemans. Deep learning for visual understanding: A review. Neurocomputing, 2016, 187, 27 doi: 10.1016/j.neucom.2015.09.116
[335]
Tsai H, Ambrogio S, Narayanan P, et al. Recent progress in analog memory-based accelerators for deep learning. J Phys D, 2018, 51, 283001 doi: 10.1088/1361-6463/aac8a5
[336]
Kamimura K, Nohmi S, Suzuki K, et al. Parallel product-sum operation neuromorphic systems with 4-bit ferroelectric FET synapses. ESSDERC 2019-49th European Solid-State Device Research Conference (ESSDERC), 2019, 178
[337]
Long Y, Kim D, Lee E, et al. A ferroelectric FET-based processing-in-memory architecture for DNN acceleration. IEEE J Explor Solid State Comput Devices Circuits, 2019, 5, 113 doi: 10.1109/JXCDC.2019.2923745
[338]
Aabrar K A, Kirtania S G, Liang F X, et al. BEOL-compatible superlattice FEFET analog synapse with improved linearity and symmetry of weight update. IEEE Trans Electron Devices, 2022, 69, 2094 doi: 10.1109/TED.2022.3142239
[339]
Jerry M, Chen P Y, Zhang J C, et al. Ferroelectric FET analog synapse for acceleration of deep neural network training. 2017 IEEE International Electron Devices Meeting (IEDM), 2018, 6.2.1 doi: 10.1109/IEDM.2017.8268338
[340]
Long Y, Lee E, Kim D, et al. Flex-PIM: A ferroelectric FET based vector matrix multiplication engine with dynamical bitwidth and floating point precision. 2020 International Joint Conference on Neural Networks (IJCNN), 2020, 1 doi: 10.1109/IJCNN48605.2020.9206672
[341]
Luo Y D, Luc Y C, Yu S M. A FeRAM based volatile/non-volatile dual-mode buffer memory for deep neural network training. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021, 1871 doi: 10.23919/DATE51398.2021.9474180
[342]
Chen F. PUFFIN: an efficient DNN training accelerator for direct feedback alignment in FeFET. 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), 2021, 1 doi: 10.1109/ISLPED52811.2021.9502499
[343]
Mulaosmanovic H, Ocker J, Müller S, et al. Novel ferroelectric FET based synapse for neuromorphic systems. 2017 Symposium on VLSI Technology, 2017, T176 doi: 10.23919/VLSIT.2017.7998165
[344]
Mulaosmanovic H, Mikolajick T, Slesazeck S. Accumulative polarization reversal in nanoscale ferroelectric transistors. ACS Appl Mater Interfaces, 2018, 10, 23997 doi: 10.1021/acsami.8b08967
[345]
Mulaosmanovic H, Chicca E, Bertele M, et al. Mimicking biological neurons with a nanoscale ferroelectric transistor. Nanoscale, 2018, 10, 21755 doi: 10.1039/C8NR07135G
[346]
Chen C, Yang M, Liu S, et al. Bio-inspired neurons based on novel leaky-FeFET with ultra-low hardware cost and advanced functionality for all-ferroelectric neural network. 2019 Symposium on VLSI Technology, 2019, T136 doi: 10.23919/VLSIT.2019.8776495
[347]
Dutta S, Schafer C, Gomez J, et al. Supervised learning in all FeFET-based spiking neural network: Opportunities and challenges. Front Neurosci, 2020, 14, 634 doi: 10.3389/fnins.2020.00634
[348]
Stone H S. A logic-in-memory computer. IEEE Trans Comput, 1970, C-19,73 doi: 10.1109/TC.1970.5008902
[349]
Ielmini D, Wong H S P. In-memory computing with resistive switching devices. Nat Electron, 2018, 1, 333 doi: 10.1038/s41928-018-0092-2
[350]
Huang P, Kang J F, Zhao Y D, et al. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits. Adv Mater, 2016, 28, 9758 doi: 10.1002/adma.201602418
[351]
Cassinerio M, Ciocchini N, Ielmini D. Logic computation in phase change materials by threshold and memory switching. Adv Mater, 2013, 25, 5975 doi: 10.1002/adma.201301940
[352]
Kang W, Zhang L Y, Klein J O, et al. Reconfigurable codesign of STT-MRAM under process variations in deeply scaled technology. IEEE Trans Electron Devices, 2015, 62, 1769 doi: 10.1109/TED.2015.2412960
[353]
Marchand C, O’Connor I, Cantan M, et al. FeFET based Logic-in-Memory: An overview. 2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2021, 1 doi: 10.1109/DTIS53253.2021.9505078
[354]
Horie S, Noda K, Yamada H, et al. Flexible programmable logic gate using organic ferroelectric multilayer. Appl Phys Lett, 2007, 91, 193506 doi: 10.1063/1.2805219
[355]
Kimura H, Hanyu T, Kameyama M, et al. Complementary ferroelectric-capacitor logic for low-power logic-in-memory VLSI. 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers, 2004, 160 doi: 10.1109/JSSC.2004.827802
[356]
Breyer E T, Mulaosmanovic H, Mikolajick T, et al. Reconfigurable NAND/NOR logic gates in 28 nm HKMG and 22 nm FD-SOI FeFET technology. 2017 IEEE International Electron Devices Meeting (IEDM), 2018, 28.5.1 doi: 10.1109/IEDM.2017.8268471
[357]
Breyer E T, Mulaosmanovic H, Slesazeck S, et al. Demonstration of versatile nonvolatile logic gates in 28nm HKMG FeFET technology. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, 1 doi: 10.1109/ISCAS.2018.8351408
[358]
Zhang Z H, Luo Y N, Cui Y, et al. A polarization-switching, charge-trapping, modulated arithmetic logic unit for In-memory computing based on ferroelectric fin field-effect transistors. ACS Appl Mater Interfaces, 2022, 14, 6967 doi: 10.1021/acsami.1c20189
[359]
Kim M, Lee K, Kim S, et al. Double-gated ferroelectric-gate field-effect-transistor for processing in memory. IEEE Electron Device Lett, 2021, 42, 1607 doi: 10.1109/LED.2021.3116797
[360]
Yin X Z, Niemier M, Hu X S. Design and benchmarking of ferroelectric FET based TCAM. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, 1444
[361]
Pagiamtzis K, Sheikholeslami A. Content-addressable memory (CAM) circuits and architectures: A tutorial and survey. IEEE J Solid State Circuits, 2006, 41, 712 doi: 10.1109/JSSC.2005.864128
[362]
Li J, Montoye R K, Ishii M, et al. 1 mb 0.41 µm² 2T-2R cell nonvolatile TCAM with two-bit encoding and clocked self-referenced sensing. IEEE J Solid State Circuits, 2014, 49, 896 doi: 10.1109/JSSC.2013.2292055
[363]
Yin X Z, Ni K, Reis D, et al. An ultra-dense 2FeFET TCAM design based on a multi-domain FeFET model. IEEE Trans Circuits Syst II, 2019, 66, 1577 doi: 10.1109/TCSII.2018.2889225
[364]
Li C, Müller F, Ali T, et al. A scalable design of multi-bit ferroelectric content addressable memory for data-centric computing. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 29.3.1 doi: 10.1109/IEDM13553.2020.9372119
[365]
Laguna A F, Yin X Z, Reis D, et al. Ferroelectric FET based In-memory computing for few-shot learning. Proceedings of the 2019 on Great Lakes Symposium on VLSI, 2019, 373 doi: 10.1145/3299874.3319450
[366]
Ni K, Yin X Z, Laguna A F, et al. Ferroelectric ternary content-addressable memory for one-shot learning. Nat Electron, 2019, 2, 521 doi: 10.1038/s41928-019-0321-3
[367]
Huang P, Han R Z, Kang J F. AI learns how to learn with TCAMs. Nat Electron, 2019, 2, 493 doi: 10.1038/s41928-019-0328-9
[368]
Zhou F C, Chai Y. Near-sensor and in-sensor computing. Nat Electron, 2020, 3, 664 doi: 10.1038/s41928-020-00501-9
[369]
Zambrano B, Strangio S, Rizzo T, et al. All-analog silicon integration of image sensor and neural computing engine for image classification. IEEE Access, 2022, 10, 94417 doi: 10.1109/ACCESS.2022.3203394
[370]
Meng J L, Wang T Y, Zhu H, et al. Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett, 2022, 22, 81 doi: 10.1021/acs.nanolett.1c03240
[371]
Cui B, Fan Z, Li W, et al. Ferroelectric photosensor network: An advanced hardware solution to real-time machine vision. Nat Commun, 2022, 13, 1707 doi: 10.1038/s41467-022-29364-8
[372]
Pintilie L, Vrejoiu I, Le Rhun G, et al. Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films. J Appl Phys, 2007, 101, 064109 doi: 10.1063/1.2560217
[373]
Choi T, Lee S, Choi Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324, 63 doi: 10.1126/science.1168636
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4146 Times PDF downloads: 819 Times Cited by: 0 Times

    History

    Received: 16 November 2022 Revised: 01 February 2023 Online: Accepted Manuscript: 11 February 2023Uncorrected proof: 15 February 2023Corrected proof: 08 May 2023Published: 10 May 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wanwang Yang, Chenxi Yu, Haolin Li, Mengqi Fan, Xujin Song, Haili Ma, Zheng Zhou, Pengying Chang, Peng Huang, Fei Liu, Xiaoyan Liu, Jinfeng Kang. Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications[J]. Journal of Semiconductors, 2023, 44(5): 053101. doi: 10.1088/1674-4926/44/5/053101 W W Yang, C X Yu, H L Li, M Q Fan, X J Song, H L Ma, Z Zhou, P Y Chang, P Huang, F Liu, X Y Liu, J F Kang. Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications[J]. J. Semicond, 2023, 44(5): 053101. doi: 10.1088/1674-4926/44/5/053101Export: BibTex EndNote
      Citation:
      Wanwang Yang, Chenxi Yu, Haolin Li, Mengqi Fan, Xujin Song, Haili Ma, Zheng Zhou, Pengying Chang, Peng Huang, Fei Liu, Xiaoyan Liu, Jinfeng Kang. Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications[J]. Journal of Semiconductors, 2023, 44(5): 053101. doi: 10.1088/1674-4926/44/5/053101

      W W Yang, C X Yu, H L Li, M Q Fan, X J Song, H L Ma, Z Zhou, P Y Chang, P Huang, F Liu, X Y Liu, J F Kang. Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications[J]. J. Semicond, 2023, 44(5): 053101. doi: 10.1088/1674-4926/44/5/053101
      Export: BibTex EndNote

      Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications

      doi: 10.1088/1674-4926/44/5/053101
      More Information
      • Author Bio:

        Wanwang Yang received his B.S. degree in applied physics from the University of Science and Technology of China (USTC) in 2020. Now he is a Ph.D. candidate student at the School of Integrated Circuits, Peking University, under the supervision of Professor Jinfeng Kang. His current research interests focus on the physical mechanism of novel ferroelectric materials and devices

        Chenxi Yu received his B.S. degree in microelectronics engineering from Peking University in 2022. He is a Ph.D. student in the School of Integrated Circuits of Peking University since 2022, under the supervision of Professor Jinfeng Kang. His current research interests include the physical mechanism of novel ferroelectric materials and devices

        Haolin Li received his B.S. degree in microelectronics from Peking University in 2020. He is currently pursuing his Ph.D. degree in microelectronics and solid-state electronics from the School of Integrated Circuits, Peking University. His current research interests include the fabrication and simulation of novel ferroelectric devices

        Mengqi Fan received her B.S. degree in microelectronics from Sun Yat-Sen University, China, in 2018. She is currently pursuing the Ph.D. degree in microelectronics and solid-state electronics with Peking University. Her current research interests include the modeling and simulation of HfO2-based ferroelectric devices

        Xujin Song received his B.S. degree in microelectronics from Peking University, Beijing, China, in 2021. He is currently a Ph.D. student at the School of Integrated Circuits, Peking University, under the supervision of Professor Jinfeng Kang. His current research interests include fabrication and characterization of HfO2-based novel ferroelectric devices

        Haili Ma received his Ph.D. degree in electronic science and technology from Shanghai Jiao Tong University in 2019. He is a Post Doctor of the School of Integrated Circuits, Peking University. His main research interest involves with characterization of ferroelectric materials via Cs-corrected scanning transmission electron microscopy

        Zheng Zhou received his Ph.D. degree in microelectronics and solid-state electronics from Peking University in 2019. He is a Post Doctor of the School of Integrated Circuits, Peking University. His main research interest is the applications of novel electronic devices with integrated sensing, computing and storage

        Pengying Chang received her Ph.D. degree in microelectronics from Peking University in 2017. She is now a professor of Key Laboratory of Optoelectronics Technology, Beijing University of Technology. Her research focuses on the novel logic and memory devices based on III-V, two-dimensional, and ferroelectric materials

        Peng Huang received the B.S. degree from Xidian University, Xi’an, China, in 2010 and the Ph.D. degree in microelectronics from Peking University, Beijing, China in 2015. He is currently an assistant professor in School of Integrated Circuits, Peking University. His research interest is in-memory computing, including device, circuit and architecture

        Fei Liu received a Ph.D. degree in microelectronics and solid-state electronics from Peking University in 2013. Then, he worked at the University of Hong Kong and McGill University. Since 2018, he has been an assistant Professor at Peking University. His research interests focus on modeling and simulation of emerging logic and memory devices

        Xiaoyan Liu received the B.S., M.S., and Ph.D. degrees in microelectronics from Peking University, in 1988, 1991, and 2001, respectively. She is currently a Professor of the School of Integrated Circuits, Peking University. Her research interests include modeling and simulation of physical phenomena in the field of microelectronics. She has published more than 200 research papers coauthored 1 book on microelectronics

        Jinfeng Kang received his Ph.D. degree in solid-state electronics from Peking University in 1995. He is a Professor of the School of Integrated Circuits, Peking University with research interests in novel devices for computing and data storage. He has published over 300 conference and journal papers, and was speaker of 30+ invited talks

      • Corresponding author: kangjf@pku.edu.cn
      • Received Date: 2022-11-16
      • Revised Date: 2023-02-01
      • Available Online: 2023-02-11

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return